
Distributions of Zeros

for Non-Abelian Zeta Functions

L. WENG∗

Abstract

Two levels of fine structures on distributions of zeros for non-abelian
zeta functions are exposed. For one, we show that the classical delta
type distributions for pair correlations of these zeros are of Dirac types.
For the other, we introduce a new type of big Delta distributions for
our zeros and conjecture that these big Delta distributions are closely
related with GUE. Supportive evidences from numerical calculations
are provided. In fact, treated are much more general zeta functions
associated to reductive groups and their maximal parabolic subgroups.

Introduction

A well-known conjecture on distributions of Riemann zeros claims that they
resemble that of Gaussian Unitary Ensembles. We in this paper study dis-
tributions of zeros for non-abelian zeta functions. By definition ([W0]), the
rank n non-abelian zeta function is given by

ζ̂Q,n(s) :=

∫
MQ,n

(
eh

0(Q,Λ) − 1
)
·
(
e−s

)degar(Λ)dµ, Re(s) > 1.

Here MQ,n denotes moduli space of semi-stable lattices of rank n. It is

known that ζ̂Q,1(s) = ζ̂(s) coincides with the complete Riemann zeta func-

tion and ζ̂Q,n(s)’s satisfy standard zeta properties. And for the Riemann
hypothesis, when n = 2, 3, 4, 5, Ki, Lagarias, and Suzuki show that it does
hold ([K, LS, S1, SW]); Moreover, based on extra symmetries, the author,
using their techniques, shows that, for any fixed n ≥ 2, all zeros of ζ̂Q,n(s)
are on the line Re(s) = 1

2 , except for (possibly) these lying in a bounded
domain of s-plane. So it is natural to investigate distributions of these
non-abelian zeta zeros. The initial works were done by Suzuki and myself
independently on n = 2 many years ago. The outcome was that, instead of
GUE, only Dirac type distribution appeared. It took quite long time for me
to understand this result. The turning point was a joint work with Zagier

∗This work is partially supported by JSPS.
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([WZ]) on the Riemann Hypothesis of high rank zeta functions of elliptic
curves over finite fields. From this work, we realize that there are two levels
of structures for distributions of (arguments theta of) our zeta zeros: For
one on theta in the classical sense, we simply get Dirac distributions; For the
other, we successfully recover the Sato-Tate type distributions for high rank
zeta zeros, using their infinitesimal structures, for non-CM elliptic curves
defined over Q. Indeed, for this second level, the key is a construction of
the big Theta, obtained from original theta by blowing-up the infinitesimal
structures around limit points ([W3]). In turn, this motivates our current
works on parallel structures for zeros of ζ̂Q,n(s).

To explain this, let ρ = 1
2 +
√
−1 γ’s be zeros of ζ̂Q,n(s). Arrange γ in

an increasing order

0 ≤ γn,1 ≤ γn,2 ≤ · · · ≤ γn,3 ≤ . . . ,

and, as usual, let
Nn(T ) := #

{
k : 0 < γn,k < T

}
denote the number of zeta zeros with imaginary parts between 0 and T .

Theorem 1. For the zeros of ζ̂Q,n(s), when n ≥ 2,1 we have

(1) Nn(T ) =
n

2π
T log T − n log(2πe)

2π
T +O(log T );

(2) γn,k =
2π

n

k

log k

(
1 +O

( 1

log k

))
;

(3) γn,k+1 − γn,k =
2π

n

1

log k
+O

( 1

log2 k

)
.

Motivated by classical works on pair correlations of Riemann zeta zeros
([BH, H, M, O]), as an analogue of the classical pair correlation function,
for n ≥ 2, define the pair correlation function of high rank zeta zeros, by

δn,k :=
( n

2π

(
γn,k+1 − γn,k

))
· log

( n

2π
γn,k

)
.

Theorem 2. For the zeros of ζ̂Q,n(s), when n ≥ 2, we have

δn,k = 1 +O
( 1

log k

)
.

In particular, the distributions of non-abelian zeta zeros are very dif-
ferent from that of Riemann zeros, which conjecturally coincide with the
GUE in the theory of random matrix. However, it turns out there is yet
another level of structure for non-abelian zeta zeros. To explain this, also,
motivated by our studies for function fields ([W3]) and classical works on
pair correlations of Riemann zeros ([CGGGH-B, F1,2, G, M]), we introduce
the big ∆ functions for the pair correlations of our zeros.

1Here and in the sequel, when n = 2, stronger results hold. For details, please see
Proposition 13 of §3.1.
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Definition 3. The big Delta pair correlation functions for the zeros of high
rank non-abelian zeta function ζ̂Q,n(s) are defined by

∆n,k :=
(
δn,k − 1

)
· log

( n

2π
γn,k

)
. (1)

The distributions of ∆n,k’s and δn’s for the Riemann zeta function are
expected to be closely related. For example, we, motivated by the conjec-
tural connection between Riemann zeros and random matrix theory ([D,
KS1,2, KeS, MS, M, O, Se, T]), have the following

Conjecture 4. Denote by µ(∆n) the measure introduced by ∆n,k, and
µ(GUE) the corresponding one for the Gaussian unitary ensemble. Then

limn→∞Discrep
(
µ(∆n,k), µ(GUE)

)
= 0.

Here Discrep (µ, ν) denotes the Kolomogorof-Smirnov distance of µ and ν,
up to a normalization depending only on n.

This is supported by some very impressive numerical calculations on
zeros of low rank non-abelian zeta functions. For details, please refer to the
figures at the end of this paper, or better, our web pages on Lab of Zeta
Zeros at http://www2.math.kyushu-u.ac.jp/∼weng/zetas.

Our method works for much more general zeta functions ζ̂
G/P
Q (s) asso-

ciated to Chevalley groups G and their maximal parabolic subgroups P .
Indeed, based on a beautiful work [KKS], we have

Theorem 5. Assuming the volume conjecture, for Chevelley groups G of
rank ≥ 2 and their maximal parabolic subgroup P defined over Q, we have

δ
G/P
k = 1 +O

( 1

log k

)
.

Here δ
G/P
k := dP

π

(
γ
G/P
k+1 − γ

G/P
k

)
· log

(
dP
π γ

G/P
k

)
.

Similarly, we have the corresponding big Delta pair correlation functions

for the zeros of ζ̂
G/P
Q (s):

∆
G/P
k :=

(
δ
G/P
k − 1

)
· log

(dP
π
γ
G/P
k

)
. (2)

At the moment, these general ∆’s still prove to be very mysterious, even the

strongest form of our conjectures predicts that ∆
G/P
k ’s obey GUE.

The contents of this paper are as follows. In §1, we recall some basic
constructions and properties for non-abelian zeta functions and zeta func-
tions associated to (G,P ). In §2, we state our main results, and in §3, we
prove them.
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1 Non-Abelian Zetas and Their Generalizations

1.1 Non-Abelian Zeta Functions for Number Fields

Let F be a number field with OF the integer ring and ∆F the absolute value
of discriminant. Then a rank n projective OF -module M is isomorphic to
On−1

F ⊕ a with a a fractional ideal of F . And, by the Minkowski embedding
F ↪→ Rr1 × Cr2 , we may view a rank n projective OF -module naturally as
a sub-OF -module of

(
Rr1 × Cr2

)r
. By an OF -lattice of rank n, we mean a

pair (M,h) consisting of a projective OF -module M of rank n, a metric h
on

(
Rr1 × Cr2

)n
and a Minkowski embedding M ↪→ F r ↪→

(
Rr1 × Cr2

)r
.

An OF -lattice L = (M,h) is called semi-stable if µ(L1) ≤ µ(L) for all OF -
sublattices L1 of L. Here, as usual, µ(L) := degar(L)

/
rank(L), with degar

the Arakelov degree ([L]).

Denote by MF,n, resp. MF,n[∆
1/2
F ], resp. MF,n[≥ ∆

1/2
F ], the moduli

space of semi-stable OF -lattices of rank n, resp. of rank n and co-voloume

∆
1/2
F , or the same, of the Arakelov degree 0, resp. of rank n and co-voloume

≥ ∆
1/2
F . It is well-known that, as sub-spaces of all OF -lattices of rank n,

there exist natural measures dµ on MF,n, say, induced from the natural
Tamagawa measure on the associated adelic space SLn(AF ). By definition
([W0]), the rank n non-abelian zeta function ζ̂F,n(s) of F is the integration

ζ̂F,r(s) := |∆F |
r
2
s

∫
MF,r

(
eh

0(F,L) − 1
) (

e−s
)degar(L) dµ(L), Re(s) > 1.

Here h0(F,L) denotes the 0-th arithmetic cohomology of the lattice L. These
zeta functions satisfy standard properties of zeta functions:

Theorem 6. (Zeta Facts)

(0) ζ̂F,1(s)
·
= ζ̂ F (s) is the completed Dedekind zeta function of F ;

(1) (Meromorphic continuation) ζ̂F,n(s) is well-defined when Re(s) > 1

and admits a unique meromorphic continuation, denoted also by ζ̂F,n(s), to
the whole complex s-plane;
(2) (Functional equation) ζ̂F,n(1− s) = ζ̂F,n(s);

(3) (Singularities&Residues) ζ̂F,n(s) has two singularities, all simple

poles, at s = 0, 1, with residues given by ±Vol
(
MF,n[∆

1
2
F ]
)
.

This theorem is proved tautologically in [W0], using an arithmetic co-
homology theory for number fields. Indeed, the functional equation and the
singularity and residues statements are direct consequences of the arithmetic
duality with respect to the Arakelov dualizing lattice ωF of F :

h1ar(F, ωF ⊗ L∨) = h0ar(F,L),

and the arithmetic Riemann-Roch theorem:

h0ar(F,L)− h1ar(F,L) = degar(L)−
n

2
log |∆F |.
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Moreover, with them, a formal calculation leads to the expression

ζ̂F,n(s) = IF,n(s) + IF,n(1− s) + Vol
(
MF,n[∆

1
2
F ]
)
·
( 1

s− 1
− 1

s

)
where

IF,n(s) =

∫
L∈MF,n[≥∆

1
2
F ]

(
eh

0(F,L) − 1
)
·Vol(L)s · dµ(L).

Finally, the convergence is given by the equivalence of the follows:
(1) Rank one OF -lattice A is arithmetic positive;
(2) Rank one OF -lattice A is arithmetic ample; and
(3) For rank one OF -lattice A and any OF -lattice L,

lim
n→∞

h1(F,An ⊗ L) = 0.

Or better, we can get the convergence from an effective arithmetic vanishing
theorem for semi-stable lattices: For semi-stable OF -lattice L of rank n
satisfying degar(L) ≤ −[F : Q] · (n logn)/2, we have

h0(F,L) ≤ 3n[F :Q]

1− log 3/π
· exp

(
−π[F : Q] · e−µ(L)

)
.

For more details, please refer to [W0].
Concerning the Riemann Hypothesis, we have is the following

Theorem 7. (1) (Weak RH) For n ≥ 2, outside a bounded domain of the
complex s-plane,

ζ̂Q,n(s) = 0 implies Re(s) =
1

2
.

(2) (RH for low ranks) ([K, LS, S1]) When n = 2, 3, 4, 5,

ζ̂Q,n(s) = 0 implies Re(s) =
1

2
.

The weak Riemann Hypothesis above is due to myself based on extra
symmetries and a method of Ki. See e.g., [K], [KKS, §4]. In fact, by the
special uniformity of zeta functions, high rank non-abelian zeta functions
coincide with zeta functions for (SLn, Pn−1,1), where Pn−1,1 denotes the
standard maximal parabolic subgroup of SLn corresponding to the partition
n = (n−1)+1. These latest zeta functions are special cases of the so-called
Weng zeta functions for reductive algebraic groups G and their maximal
parabolic subgroups P . Thanks to the beautiful work of Ki-Komori-Suzuki
([KKS]), we now have the weak Riemann Hypothesis for zeta functions of
(G,P ) assuming the volume conjecture. On the other hand, the volume con-
jecture is proved for the group SLn in [W1], as a special case of the conjec-
ture on Parabolic Reduction, Stability and the Masses for general reductive
groups, based on a result of Lafforgue on Arthur’s analytic truncation and
an advanced version of Rankin-Selberg & Zagier method.
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1.2 Zeta Functions for (G,P )/Q

Let G be a split reductive algebraic group defined over F with associated
Borel subgroup B and its maximal split sub-torus T . Denote the corre-
sponding root system by(

∆, Λ, Φ = Φ+ ∪ Φ−, Φ∨, W, ∆̂, Λ̂, ρ
)
,

where, ∆ = {α1, . . . , αr} is the set of simple roots, Λ = {λ1, . . . , λr} the set
of fundamental weights, Φ the set of roots with Φ+, resp. Φ− of positive
roots, resp. negative roots, Φ∨ = {α∨ : α ∈ Φ} the set of coroots, W the
Weyl group, ∆̂ ⊂ Φ∨ the set of simple co-roots, Λ̂ = {ϖ1, . . . , ϖr} the set
of fundamental co-weights, and ρ = 1

2

∑
α>0 α the Weyl vector. For each

w ∈W , set also Φw := Φ+ ∩ w−1Φ−.

Denote by X(G)R the R-span of fundamental weights and X(G)∗R the
R-span of simple roots. There is a natural W -invariant bi-linear pairing
⟨·, ·⟩ : X(G)R×X(G)∗R → R such that ⟨λi, α

∨
j ⟩ = δij . Introduce a particular

coordinate system on X(G)R by

λ =

r∑
i=1

(1 + si)λi = ρ+

r∑
i=1

si λi.

Following [W1], define the period of G over F by

ωG
F (λ) :=

∑
w∈W

1∏
α∈∆⟨λ− ρ, α∨⟩

·
∏

α>0, wα<0

ζ̂F (⟨λ, α∨⟩)
ζ̂F (⟨λ, α∨⟩+ 1)

.

Here ζ̂F (s) denotes the complete Dedekind zeta function of F . These periods
can be obtained from regularized integrations over cones for (constant terms
of) certain Siegel type Eisenstein series.

In general, ωG
F (λ) is a several variables function. To get a genuine one

variable zeta function, fix a maximal standard parabolic subgroup P of G.
Then, by Lie theory ([Hu]), P corresponds to a unique simple root, which
we denote by αP , or αp with p ∈ {1, 2, . . . , r}. Following [W2], we define
the period of (G,P )/F by

ω
G/P
F (s) := Res ⟨λ, α∨⟩=1

α∈∆P

ωG
F (λ) = Res ⟨λ, α∨

i ⟩=1
1≤i≤r, i ̸=p

ωG
F (λ),

where s = sP and ∆P = ∆\{αP }. This latest period is essentially the

zeta function ζ̂
G/P
F (s) associated to (G,P )/F : What is left is merely a

normalization of clearing out the factors involving Dedekind zeta functions
appeared in the denominators after taking residues. For details, please refer

to [W2]. Indeed, as proved in [Ko], our zeta function ζ̂
G/P
F (s) is given by

ζ̂
G/P
F (s) = ω

G/P
F (s) ·

∞∏
k=0

∞∏
h=2

ζ̂F (ks+ h)Mp(k,h), (∗)
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where, for w ∈WP
2 and (k, h) ∈ Z2,

Np,w(k, h) :=#
{
α ∈ w−1Φ− : ⟨λp, α

∨⟩ = k, ⟨ρ, α∨⟩ = h
}
,

Mp(k, h) :=maxw∈Wp

(
Np,w(k, h− 1)−Np,w(k, h)

)
.

Main structures exposed for ζ̂
G/P
F (s) can be summarized in the following:

Theorem 8. (i) (Special uniformity) ([W1,2]) Up to a certain constant
factor depending on F and n,

ζ̂F,n(s) = ζ̂
SLn/Pn−1,1

F (−ns);

(ii) (Functional equation) ([W2] ∥[Ko]) Let cP = 2⟨λP − ρP , α
∨
P ⟩

ζ̂
G/P
F (−cP − s) = ζ̂

G/P
F (s);

(iii) (Weak Riemann hypothesis) ([W2] ∥[KKS, also K, LS, S1,S2, SW])
Outside a bounded domain in the complex s-plane,

ζ̂
G/P
Q (s) = 0 implies Re (s) = −cP /2,

provided that the residue of ζ̂
G/P
Q (s) at s = 1 coincides the volume of semi-

stable principal G-lattices over Q of degree 0.

2 Main Theorems

Now assuming the Riemann hypothesis for ζ̂
G/P

Q (s) and consider the zeros

ρ = −cP /2 +
√
−1 γ of ζ̂

G/P
F (s) on the central line Re(s) = −cP /2. Arrange

γ in an increasing order

0 ≤ γ
G/P
1 ≤ γ

G/P
2 ≤ · · · ≤ γG/P

n ≤ . . . ,

and, as usual, let

NG/P (T ) := #
{
n : 0 < γG/P

n < T
}

denote the number of our zeta zeros with imaginary parts between 0 and T .
Also introduce

dP :=
1

2

∞∑
k=1

k ·NP (k, [(kcP − 1)/2])

eP :=
1

2

∞∑
k=1

k log k ·NP (k, [(kcP − 1)/2]),

where NP (k, h) := #
{
α ∈ Φ : ⟨λp, α

∨⟩ = k, ⟨ρ, α∨⟩ = h
}
.

2The definitions of WP and ρP below will be given in §3.

7



Theorem 9. Assume the volume conjecture for G,3 we have,

(1) NG/P (T ) =
dP
π

T log T +
eP − dP log(2πe)

π
T +O(log T );

(2) γG/P
n =

π

dP

n

log n

(
1 +O

( 1

log n

))
;

(3) γ
G/P
n+1 − γG/P

n =
π

dP

1

log n
+O

( 1

log2 n

)
.

Based on this, as an analogue of the classical pair correlation function,
introduce the pair correlation function small delta of these zeta zeros by

δG/P
n :=

[dP
π

(
γ
G/P
n+1 − γG/P

n

)]
· log

(dP
π
γG/P
n

)
.

Theorem 10. With the same conditions as in Theorem 9, we have,

δG/P
n = 1 +O

( 1

log n

)
.

Since, for special linear group SLn, the volume conjecture is proved in
[W1, §§3.1, 3.4, and 4.8] using Arthur’s analytic truncation and Lafforgue’s
arithmetic truncation, we have the following unconditional

Theorem 11. For the zeros of ζ̂Q,n(s), when n ≥ 3, we have

(1) Nn(T ) =
n

2π
T log T − n log(2πe)

2π
T +O(log T );

(2) γn,k =
2π

n

k

log k

(
1 +O

( 1

log k

))
;

(3) γn,k+1 − γn,k =
2π

n

1

log k
+O

( 1

log2 k

)
.

(4) δn,k = 1 +O
( 1

log k

)
.

Consequently, the distributions of our zeta zeros are very different from
that of Riemann zeros, which conjecturally coincide with the Gaussian Uni-
tary Ensemble in random matrix theory. However, it turns out there is yet
another level of structure for these zeta zeros. To explain this, also, moti-
vated by our study for function fields, we introduce the big ∆ functions for
the pair correlations of our zeta zeros.

Definition 12. The big Delta pair correlation functions for the zeros of

ζ̂
G/P
Q (s) are defined by

∆
G/P
k :=

(
δ
G/P
k − 1

)
· log

(dP
π
γ
G/P
k

)
.

3Here and in the next theorem, in order to get the weak RH for ζ̂
G/P
Q (s), we add the

assumption on volume conjecture. For details, see [KKS].
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The distributions of ∆
G/P
n ’s and δn’s for the Riemann zeta function are

supposed to be closely related. For example, we have the conjecture of the
introduction, supported by some very impressive numerical calculations on
zeros of low rank non-abelian zeta functions. For details, please refer to the
figures at the end of this paper, or better, our web pages on Lab of Zeta
Zeros at http://www2.math.kyushu-u.ac.jp/∼weng/zetas.

3 Proof of Main Theorems

3.1 Rank two zeta function

To start with, we prove the following stronger result for rank 2 zeta function
of rationals, due to Suzuki and myself independently, to indicate the analytic
structure involved.

Proposition 13. For the zeros γ2,k’s of ζ̂Q,2(s), we have

(1) N2(T ) =
1

π
T log T − 1

π
T log(πe) +O

( log T

log log T

)
;

(2) γ2,k = π
k

log k

(
1 +O

( 1

log k

))
;

(3) γ2,k+1 − γ2,k = π
1

log k
+O

( 1

log k log log k

)
;

(4) δ2,k :=
γ2,k+1 − γ2,k

π
log

γ2,k
π

= 1 +O
( 1

log log k

)
.

Proof. For s = 1
2 + it, we have ζ̂(2s− 1) = ζ̂(2s). Consequently, by [W2,

§A.1.1],

ζ̂Q,2(
1

2
+ it) =

1

2

∣∣∣ ζ̂(1 + 2it)

(−1
2 + it)

∣∣∣ · cos θ2(t),
where θ2(t) denotes the argument of ζ̂(1+2it)/(−1/2+it). So to understand
the distributions of rank two zeta function, it suffices to know the asymp-
totics of θ2(t) = arg Γ(12+ it)+arg ζ(12+ it)−arg(π

1
2
+it)−arg(−1

2+ it) when
t→∞. Now by Stirlings’ formula, arg Γ(σ+it) = t log t−t+ π

2 (σ−
1
2)+O(1t ).

Moreover, from [T, Thm 5.16], arg ζ(1 + 2it) = O
(
log t/ log log t

)
. Conse-

quently, θ2(t) = t log t − t(1 + log π) + O
( log t
log log t

)
. But γ2,n+1 − γ2,n = π.

So, asymptotically, N2(T ) = θ2(T )/π. This proves (1). To prove (2), since
N2(γ2,n − 1) ≤ n ≤ N2(γ2,n + 1). Consequently, γ2,n log γ2,n ∼ πn. Hence
γn,2 ∼ πn/ log n. In particular, πN2(γ2,n ± 1) = (γ2,n ± 1)

(
log(γ2,n ± 1) −

log π− 1
)
+O

(
log(γ2,n± 1)/ log log(γ2,n± 1)

)
. With a simple manipulation,

we obtain (2). To go further, as in the proof of (1), using Stirings’ formula
and [T, Thm 5.16], we have, for small h, θ2(t + h) − θ2(t) = h log t

(
1 +

O
(

1
log log t

))
+O

(
1
t

)
. To apply this, set t = γ2,n and h = γ2,n+1− γ2,n. Then,

using γ2,n+1−γ2,n = π again, we get (3) and hence prove the theorem, since
(4) is a direct consequence of (2) and (3).
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3.2 Proof of main theorems

Step 1. Fine symmetric structures of ζ̂
G/P

Q (s).

Let P be a standard parabolic subgroup of G. Denote by P = MPNP the
Levi decomposition of P , nP the Lie algebra of NP , and TP the maximal cen-
tral subgroup of MP with aP its Lie algebra. Let ∆P be the set of roots for
(P,AP ), i.e., the finite subset of non-zero elements in X(AP )Q parametrizing
the decomposition nP = ⊕α∈ΦP

nα of the eigenspace under the adjoint action
Ad : AP → GL(nP ) of AP , where, as usual, nα := {Xα ∈ nP : Ad(a)Xα =
aα ·Xα, ∀a ∈ AP }. Note that ΦP ⊂ X(AP )Q ⊂ X(AP )Q ⊗R ≃ a∗P . Similar

to the Weyl vector, introduce its P -version by ρP :=
1

2

∑
α∈ΦP

(dim nα)α.

By Lie theory ([Hu]), there is a natural order reversing bijection{
P : standard parabolic subgroup of G

}
←→

{
∆P ⊂ ∆

}
such that aP =

{
H ∈ a : α(H) = 0, ∀α ∈ ∆P

}
. Then ∆P forms a basis

of aP . Let ∆P be the set of linear forms on aP obtained by restrictions of
elements of ∆0\∆P

0 : ∆P :=
{
α|aP ∈ a∗P : ∃α ∈ ∆0\∆P

0

}
. It is well-known

that for any α ∈ ΦP , α =
∑

β∈∆P
nββ with nβ ∈ Z≥0. Even ∆P is not really

a root system in the usual sense, with this proproty, it is still possible to
introduce Φ±

P such that ΦP = Φ+
P ⊔Φ

−
P , Φ

−
P = −Φ+

P . Indeed, we can and will
identify ΦP as a subset of Φ from the above construction, so that, simply,
Φ+
P := Φ+ ∩ ΦP . In this language, then ρP = 1

2

∑
α∈ΦP

α. Following [Ko],
introduce the constant

cP := 2⟨λP − ρP , α
∨
p ⟩.

From now on, assume that P is maximal. Then ∆P = {αP } = {αp} con-
sisting of a single element (1 ≤ p ≤ r). By definition, ω

G/P
Q (s) =

∑
w∈W

Tw,

where Tw(s) := limλ→λP

∏
α∈∆P

⟨λ−ρ,α∨⟩∏
α∈∆⟨wλ−ρ,α∨⟩

∏
α>0, wα<0

ζ̂ (⟨λ,α∨⟩)
ζ̂ (⟨λ,α∨⟩+1)

. Note that

limλ→λp ⟨λ− ρ, α∨⟩ ≡ 0, ∀α ∈ ∆P . So, to obtain a non-trivial Tw(s) within

the period ω
G/P
Q (s), there should be a total cancellation for all factors

⟨λ − ρ, α∨⟩, α ∈ ∆P . In particular, Tw(s) ̸≡ 0 if and only if ∆P ⊂
w−1(∆ ∪ Φ−), since ζ̂(s) has poles only at s = 0, 1, which are also know to
be simple. Accordingly, we conclude that

ω
G/P
Q (s) =

∑
w∈WP

Tw with WP :=
{
w ∈W |∆P ⊂ w−1(∆ ∪ Φ−)

}
.

We will call elements w of WP special (with respect to P ).
To facilitate our ensuing discussions, we make the following preparations

following [KKS]. Let

XP (s) := QP (s) ·
(
FP (s) · ωG/P

Q (s)
)
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where FP (s) :=
∏

α∈Φ−
ζ̂
(
⟨λP s+ ρ, α∨⟩

)
and QP (s) :=

∏
w∈WP

qP,w(s) for

qP,w(s) :=
∏

w∈WP

[
2|∆P∩w−1Φ+|

∏
α∈(w−1∆)∩∆P

((
⟨λs + ρ, α∨⟩ − 1

)
×

∏
α∈Φ+\∆P

(
⟨λs + ρ, α∨⟩+ δα,w

)(
⟨λs + ρ, α∨⟩+ δα,w − 1

)]
,

with

δα,w :=

{
1 α ∈ w−1Φ+,

0 α ∈ w−1Φ−.

Then, we may write down XP (s) as

XP (s) =
∑

w∈WP

QP,w(s) ·XP,w(s),

where

Xp,w :=
∏

α∈Φ+\Φ+
P

ζ̂
(
⟨λs + ρ, α∨⟩+ δα,w

)
, Qp,w(s) := CP,w · Q̃P,w(s),

with Cp,w := ζ̂ (2)|∆P∩w−1Φ+|∏
α∈Φ+

P \∆P
ζ̂
(
⟨ρ, α∨⟩+δα,w

)
, consisting of spe-

cial zeta values, and Q̃P,w(s) :=
QP (s)

qP,w(s)
, consisting of rational functions.

Let now
lp(w) :=

∑
α∈Φ+\Φ+

P

(1− δα,w).

Then, lP (w) = #
(
Φw\Φ+

P

)
, from which we get a natural decomposition of

WP by
W<

p :={w ∈WP | lp(w) < #
(
Φ+\Φ+

P

)
},

Wo
p :={w ∈WP | lp(w) = #

(
Φ+\Φ+

P

)
},

W>
p :={w ∈WP | lp(w) > #

(
Φ+\Φ+

P

)
}.

Consequently, by Prop. 5.8 of [KKS], the up-shot of this discussion, we have

XP (s) = EP (s)± EP (−cP − s). (∗∗)

where

EP (s) :=
∑

w∈W<
P

QP,w(s)XP,w(s) +
1

2

∑
w∈Wo

P

QP,w(s)XP,w(s).

Here, if Wo
P = ∅, the second term is defined to be zero. In particular,

XP (−cP − s) = XP (s).

11



Finally, introduce

ξG/P (s) :=
XP (s)

RP (s)DP (s)

where

DP (s) :=
∞∏
k=1

∞∏
h=2

ξ(ks+ h)NP (k,h−1)−MP (k,h),

RP (s) :=g.c.d.
{
QP,w : w ∈WP

}
.

Then, by (∗∗), for εP (s) :=
EP (s)

RP (s)DP (s)
,

ξG/P (s) = εP (s)± εP (−cP − s).

Moreover, by (∗), or better by [KKS, §5.2], ξG/P (s) is an entire function

obtained from ζ̂
G/P
Q (s) by changing ζ̂(s) to ξ(s) := s(s− 1) · ζ̂(s) first and

then multiplying the resulting function with the least common multiple of all
polynomials appeared in the denominators of Tw for w ∈WP . In particular,

ξG/P (s) has the same non-trivial zeros as ζ̂
G/P
Q (s) away from real axis. So

to understand distributions of zeros of ζ̂
G/P
Q (s), it suffices to treat ξG/P (s).

Step 2. Asymptotic behaviors of arg εP
(
− cP /2 +

√
−1 t

)
.

Let θP (t) be the argument of εP
(
− cP /2 + it

)
. We have

ξP
(
− cP

2
+ it

)
=

∣∣∣εP (− cP
2

+ it
)∣∣∣ · (eiθP (t) ± e−iθP (t)

)
,

since εP
(
− cP /2 + it

)
= εP

(
−cP /2−it

)
. Hence, the zeros of ξP (−cP /2+it)

correspond in one-to-one with the zeros of cos θP (t) or sin θP (t), or better,

with the solutions of either θP (t) ∈
π

2
+ π Z or θP (t) ∈ π Z. Therefore, to

understand distributions of these zeros, it suffices to obtain asymptotic be-
haviors of θP (t) when |t| → +∞. For this purpose, let

Q‡
P (s) :=

∑
w∈W‡

P

Qp,w(s) with W‡
P := {w ∈WP | lp(w) = 0}.

Then by (6.2) of [KKS, p.16],

εP (s) =
Q‡

P (s)

RP (s)
·
XP,id(s)

DP (s)
·
(
1 + rP (s)

)
and

∣∣ rp(s) ∣∣ < 1.

Since
∣∣ rp(s) ∣∣ < 1, arg

(
1 + rP (s)

)
≤ π

2 . Consequently,

θP (t) = arg
(Q‡

P (s)

RP (s)

∣∣∣
s=− cP

2
+it

)
+ argXP,id

(
− cP

2
+ it

)
+O(1).
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The first term is simply O(1), since Q‡
P (s), RP (s) are polynomials. To

treat the second term, we use the formula (9.3) of [KKS]

XP,id(s)

Dp(s)
=

∞∏
k=1

∏
h>(kcP+1)/2

ξ(ks+ h)NP (k,h−1)−NP (k,h).

Note that, when s = − cP
2 + it, Re (ks + h) = − cP

2 k + h > 1
2 . Thus, recall

that the above products are of finite type, we have, by the Stirlings formula,

arg
XP,id(s)

DP (s)

∣∣∣
s=− cP

2
+it

=
∞∑
k=1

∑
h>(kcP+1)/2

(
NP (k, h− 1)−NP (k, h)

)
×

(
arg(ks+ h)(ks+ h− 1)

∣∣
s=− cP

2
+it

+ arg π
cP
4
k−h

2
− ikt

2 + arg Γ
(
− cP

4
k +

h

2
+

ikt

2

)
+ arg ζ

(
− cP

2
k + h+ ikt

))
=

∞∑
k=1

∑
h>(kcP+1)/2

(
NP (k,h− 1)−NP (k, h)

)
×
(
O(1)− k

2
t log π +

k

2
t
(
log(

k

2
t)− 1

)
+O(

1

t
) +O(log t)

)
=

∞∑
k=1

NP

(
k,
[kcP − 1

2

] )
·
( k

2
t
(
log t− log(2πe) + log k

)
+O(log t)

)
.

Here, to conclude that arg ζ
(
− cP

2
k + h+ ikt

)
= O(log |t|), we have used

the original Riemann Hypothesis when 1
2 < − cP

2 k+h < 1 and the following
classical lemma when − cP

2 k + h ≥ 1.

Lemma 14. ([Lem 9.4, T], [Lem 12.1, KKS]) Let 0 ≤ α < β < σ0, T > 10.
Let f(s) be an analytic function, real valued for real s, and regular for σ ≥ α
except at finitely many poles on the real line. If∣∣Re(f(σ + it)

)
| ≥ m > 0

and
|f(σ1 + it1)| ≤Mσ,t ∀σ1 ≥ σ, 1 ≤ t1 ≤ t.

Then, for any T different from ordinate of a zero of f(s),∣∣∣ arg f(σ + iT )
∣∣∣ ≤ π

log σ0−α
σ0−β

(
logMα,T+2 + log

1

m

)
+

3

2
π.

All this then proves the following
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Proposition 15. We have

θP (T ) = T log T · dP + T ·
(
eP − dP log(2πe)

)
+O(log T )

Step 3. Distributions of zeros for ζ̂
G/P
Q (s).

To complete our proof of Theorems 9 and 10, we use

Lemma 16. Assume that

θP (γ
G/P
n+1 )− θP (γ

G/P
n ) = C, NG/P (γG/P

n ) ∼ 1

C ′ θP (γ
G/P
n ) +O(1),

and that NG/P (T ) = C1T log T + C2T +O(log T ). Then

γG/P
n =

1

C1

n

log n

(
1+O

( 1

log n

))
; γ

G/P
n+1 −γ

G/P
n =

1

C1

1

log n
+O

( 1

log2 n

)
.

Proof. We start with the dominant term for γn = γ
G/P
n . From our as-

sumption on N = NG/P , N(γn ± 1) ∼ C1(γn ± 1) log(γn ± 1) + C2(γn ±
1) ∼ C1γn log γn. But, by definition, N(γn − 1) ≤ n ≤ N(γn + 1). Hence
n ∼ C1γn log γn and log n ∼ log γn. Consequently, γn ∼ 1

C1

n
logn . To get the

precise asymptotic behaviors, we use

N(γn ± 1) = C1(γn ± 1) log(γn ± 1) + C2(γn ± 1) +O
(
log(γn ± 1)

)
.

As above, then, we get n = C1γn log γn+O(γn), or better, since γn ∼ 1
C1

n
logn ,

C1γn log γn = n ·
(
1 +O

(
1

logn

))
. Therefore γn = 1

C1
· n
logn

(
1 +O

(
1

logn

))
.

To prove the second statement, we shift our attention to θ = θP . Then,
for T ≫ 0, ∆T > 0, we have

θ(T+∆T )− θ(T ) = C ′NG/P (T +∆T )− C ′NG/P (T )

=C ′C1T log
T +∆T

T
+ C ′C1∆T log(T +∆T ) + C ′C2∆T +O

(
log

T +∆T

T

)
=C ′C1∆T

(
log T + 1

)
+O

( 1
T

)
,

since T log
T +∆T

T
= log

(
1 +

∆T

T

)T
= O(1). In particular, by taking T =

γn and ∆T = γn+1 − γn, we get

C =θ(γn+1)− θ(γn) = C ′C1(γn+1 − γn)
(
log γn + 1

)
+O

(
1/γn

)
.

Hence γn+1 − γn ∼ C
C′C1

1
log γn

. So C = C ′C1(γn+1 − γn) log γn + O( 1
log γn

).
Therefore,

γn+1 − γn =
C

C ′C1

1

log n
+O

( 1

log2 n

)
.
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This then completes the proof of the lemma and hence also Theorems 9, 10,

since, for ζ̂
G/P
Q (s), we have C = C ′ = π.

Proof of Theorems 1 and 2. Theorem 2 is a direct consequence of Theorem
1. As for Theorem 1, note that, when P = Pn−1,1, Φ

+ =
{
ei − ej

∣∣ 1 ≤ i <
j ≤ n

}
, ρ = 1

2

∑n
i=1(n+1−2i) ei, and λP = 1

n

(
e1+ · · ·+en−1− (n−1) en

)
.

So, for i < j, ⟨λP , ei − ej⟩ = δjn. Consequently, NP (k, h) = 0 unless k ≤ 1.
This implies that eP = 0 and 2dP = NP

(
1,
[
n− 1/2

])
when n ≥ 3. By a

direct calculation, we know that then dP = 1/2. Consequently, we have,
for the k, h involved, −cP /2 k + h ≥ 1. So, for zeros of non-abelian zeta
functions, we do not really need to assume the Riemann Hypothesis as in
Step 2 above. This, together with Theorems 8(1) and 9, completes the proof
of Theorem 1 (and hence also Theorem 11).

To end this paper, from Proposition 13, we define the big Delta pair
correlation function for rank 2 zeta ζ̂Q,2(s) by

∆2,k =
(
δ2,k − 1

)
· log

(
log

γ2,k
π

)
. (3)

Motivated by GUE, we calculate the first 138,068 zeros of ζ̂Q,2(σ+ it) (with
0 ≤ t ≤ 50, 000), using a Mathematica program of Katayama-Suzuki-Weng.
As a result, we are able to obtain the following very impressive figure for
the distributions of zeros of rank 2 zeta function ζ̂Q,2(s) using ∆2,k.

Figure 1: Conjectural distributions of
Riemann zeta zeros using classical δn

Figure 2: Distributions of rank two
zeta zeros using secondary ∆2,n

For details of the first 138,068 zeros of rank 2 zeta function ζ̂Q,2(s), please
refer to our web page http://www2.math.kyushu-u.ac.jp/∼weng/zetas.html
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