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Abstract: We study Deligne products for forgetful maps between moduli spaces of
marked curves by offering a closed formula for tautological line bundles associated to
marked points. In particular, we show that the Deligne products for line bundles on the
total spaces corresponding to “forgotten” marked points are positive integral multiples
of the Weil-Petersson bundles on the base moduli spaces.

1. Introduction

Let Mg,N denote the moduli space of curves C of genus g with N ordered marked points
P1, . . . , PN , and π = πN : Cg,N → Mg,N the universal curve over Mg,N . (We are
using the language of stacks here [3].) The marked points give sections Pi : Mg,N →
Cg,N , i = 1, . . . , N of π .

The Picard group of Mg,N is known to be free of rank N + 1 [4] and has a Z-basis
given by the Mumford class λ (the line bundle whose fiber at C is detH0(C, KC ) ⊗
detH1(C, KC )−1) and the “tautological line bundles” $i := P∗

i (KN ), where KN is
the relative canonical line bundle (relative dualizing sheaf) of π [1,5]. The $i carry
metrics in such a way that their first Chern forms give the Kähler metrics on Mg,N
defined by Takhtajan-Zograf [9,10] in terms of Eisenstein series associated to punc-
tured Riemann surfaces [11,12]. There is a further interesting element % ∈ Pic(Mg,N ),
whose associated first Chern form (for a certain natural metric) gives the Kähler form
for the Weil-Petersson metric on Mg,N [11,12]; it is given in terms of λ and the $i

by the Riemann-Roch formula % = 12λ +
∑N

i=1 $i . We can also define % by the for-
mula % :=

〈
KN (P1 + · · · + PN ), KN (P1 + · · · + PN )

〉
π

, where
〈
·, ·

〉
π

: Pic(Cg,N )2 →
Pic(Mg,N ) denotes the Deligne pairing. We recall that the Deligne pairing is a bilinear
map

〈
·, ·

〉
p : Pic(Y )2 → Pic(X) which is defined for any flat morphism p : Y → X

! Partially supported by the Japan Society for the Promotion of Science.
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of relative dimension 1 and that it can be generalized to a multilinear map
〈
·, . . . , ·

〉
p :

Pic(Y )n+1 → Pic(X), the Deligne product, defined for any flat morphism p : Y → X
of relative dimension n. (The precise definitions will be given in §3.)

We are interested in computing the Deligne product explicitly for the forgetful map

πN ,m : Mg,N+m → Mg,N , (C; P1, . . . , PN+m) &→ (C; P1, . . . , PN ).

In other words, if we use λ̃, %̃, $̃ j to denote the Mumford, Weil-Petersson and tautological
line bundles onMg,N+m , respectively, then we would like to compute

〈
L1, . . . , Lm+1

〉
πN ,m

as a linear combination of $1, . . . , $N and λ (or %) on Mg,N , where each Lν is one of
$̃1, . . . , $̃N+m and λ̃ (or %̃). We have not solved this problem in general (though it is inter-
esting and perhaps not intractable), but only in the case where each Lν is one of the $̃i ,
i.e., where λ̃ (or %̃) does not appear. The formula we find expresses

〈
L1, . . . , Lm+1

〉
πN ,m

in this case as a positive linear combination of % and those $i (i = 1, . . . , N ) for which
$̃i appear among the Lν . In particular, if each of L1, . . . , Lm+1 is one of the last m line
bundles $̃N+1, . . . , $̃N+m , then

〈
L1, . . . , Lm+1

〉
πN ,m

is simply a positive integer multiple
of the Weil-Petersson class %, giving an interesting relation between the Weil-Petersson
and the tautological line bundles.

2. Statement of the Theorem

As just explained, we want to compute the Deligne product
〈
L1, . . . , Lm+1

〉
πN ,m

, where

each Lν belongs to the set {$̃1, . . . , $̃N+m}. It turns out to be more convenient to use
the multiplicities where the $̃i occur in {L1, . . . , Lm+1} as coordinates. We therefore
introduce the notation

TN ,m(a1, . . . , aN+m) :=
〈
$̃1, . . . , $̃1︸ ︷︷ ︸

a1

, . . . , $̃N+m, . . . , $̃N+m︸ ︷︷ ︸
aN+m

〉
πN ,m

∈ Pic(Mg,N ), (1)

where a1, . . . , aN+m ∈ Z≥0 with a1 + · · · + aN+m = m + 1. We will sometimes denote
this element by TN ,m(a1, . . . , aN ; aN+1, . . . , aN+m) or even, setting aN+i =: di , by
TN ,m(a1, . . . , aN ; d1, . . . , dm), to emphasize the different roles played by the indices
corresponding to the points which are also marked in Mg,N and to those which are
“forgotten” by the projection map πN ,m . Our main result is then:

Theorem. Let a1, . . . , aN , d1, . . . , dm ≥ 0 be non-negative integers with sum m + 1.
Then the line bundle TN ,m(a1, . . . , aN ; d1, . . . , dm) defined in (1) is given in terms of
the elements $i , % ∈ Pic(Mg,N ) by the formula

( N∏

i=1

ai !
)( m∏

j=1

d j !
)

TN ,m(a1, . . . , aN ; d1, . . . , dm)

= C1(d)

N∑

i=1

ai

(
$i − %

Ñ

)
+ C2(d)%, (2)
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where Ñ = N + 2g − 3 and the coefficients Cν(d) = Cν(Ñ , d1, . . . , dm) (ν = 1, 2)
depend only on the di and on Ñ and are given explicitly by

C1(d) =
m∑

n=0

(m − n)! (Ñ + n − 1)!
(Ñ − 1)! σn,

C2(d) =
m∑

n=0

(m − n + 1)! (Ñ + n − 2)!
Ñ (Ñ − 2)! σn (3)

with σn = σn(d1, . . . , dm) the nth elementary symmetric polynomial in the di .

Remark. 1. If Ñ = 0 or 1, then the factors 1/(Ñ − 1)! and 1/Ñ (Ñ − 2)! occurring in
the formulas for C1(d) and C2(d) are to be interpreted as Ñ/Ñ ! and (Ñ − 1)/Ñ !,
respectively.

2. The proof (or rather, the recursive description of the TN ,m on which it is based) will
show that in the formula for TN ,m(a1, . . . , aN ; d1, . . . , dm) in terms of $i and %,
all the coefficients are non-negative and integral (even though $1, . . . , $N ,% is not
a Z-basis of Pic(Mg,N )). Neither property is obvious from the formulas (2) and
(3), though one can see easily that both C1(d) and C2(d) − (m + 1 − σ1)C1(d)/Ñ ,
the coefficient of % on the right-hand side of (2), are polynomials in Ñ .

3. In Sect. 6 we will give an alternative explicit formula for the coefficients C1(d) and
C2(d).

4. Notice that, as already mentioned in the Introduction, formula (2) in the special
case when all the ai are 0 says that TN ,m(0, . . . , 0; d1, . . . , dm) is a multiple of %
alone. In other words, all Deligne products of line bundles corresponding to points
which are “forgotten” by πN ,m are positive integral multiples of the Weil-Petersson
bundle %.

3. The Deligne product

We start with some basic facts about Deligne products [2]. Let π : X → S be a flat
family of algebraic varieties of relative dimension n. Then for any n + 1 invertible
sheaves L0, . . . , Ln over X , following Deligne [2], we may introduce the Deligne prod-
uct, denoted by

〈
L0, . . . , Ln

〉
(X/S) or

〈
L0, . . . , Ln

〉
π

or simply
〈
L0, . . . , Ln

〉
, defined

uniquely by the following axioms:
(DP1)

〈
L0, . . . , Ln

〉
(X/S) is an invertible sheaf on S, and is symmetric and multi-linear

in the Li ’s.
(DP2)

〈
L0, . . . , Ln

〉
(X/S) is locally generated by the symbols

〈
t0, . . . , tn

〉
, where the ti

are sections of Li whose divisors have no common intersection, and these symbols sat-
isfy the following property: if one multiplies one of the sections ti by a rational function
f on X , where

⋂
j (=i div(t j ) = ∑

nkYk is finite over S and div( f ) has no intersection
with any Yk , then

〈
t0, . . . , f ti , . . . , tn

〉
=

( ∏

k

NormYk/S( f )nk
)
·
〈
t0, . . . , tn

〉
.

(Here NormYk/S( f ) is defined as follows: Since Yk is finite over S, the function field
of Yk is a finite extension of that of S, and hence can be viewed as a finite dimensional
vector space. Since f is in the function field of X , via restriction we may view f as an
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element of the function field of Yk . Then multiplication by f defines a linear map of the
vector space of the function field of Yk over the function field of S. By definition, the
determinant of this linear map is called the norm of f with respect to Yk/S.)
(DP3) If tn is a section of Ln such that all components Dα of the divisor div(tn) =∑

α nα Dα are flat (of relative dimension n − 1) over S, then we have a canonical
isomorphism

〈
L0, . . . , Ln

〉
(X/S) )

〈
L0, . . . , Ln−1

〉
(div(tn)/S) := ⊗α

〈
L0, . . . , Ln−1

〉
(Dα/S)⊗nα .

Roughly speaking, the Deligne product may be built up as follows using the above
axioms: one first uses (DP3) to make an induction on the relative dimension so as to
reduce to special cases, say, n = 1, by using a certain choice of sections, and then shows
with the help of axiom (DP2) that this construction does not depend on the choice of
sections of line bundles and is symmetric by virtue of the Weil reciprocity law.

As a consequence of these axioms and the uniqueness, we know that the Deligne
product formalism is compatible with any base change, and that the products satisfy the
following compatibility relations with respect to compositions of flat morphisms:

Proposition 1. ([2]). Let f : X → Y and g : Y → Z be flat morphisms of relative
dimension n and m, respectively. Then:

(a) For invertible sheaves L0, . . . , Ln on X and H1, . . . , Hm on Y , we have

〈〈
L0, . . . , Ln

〉
f , H1, . . . , Hm

〉
g )

〈
L0, . . . , Ln, f ∗ H1, . . . , f ∗Hm

〉
g◦ f . (4a)

(b) For invertible sheaves L1, . . . , Ln on X and H0, . . . , Hm on Y , we have

〈〈
f ∗H0, L1 . . . , Ln

〉
f , H1, . . . , Hm

〉
g )

〈
H0, H1, . . . , Hm

〉 f∗(c1(L1)···c1(Ln))

g . (4b)

A special case of Proposition 1 which will be needed later is the formula

〈
L , f ∗H0, . . . , f ∗Hm

〉
g◦ f ) deg f (L)

〈
H0, . . . , Hm

〉
g (5)

for f , g as in the proposition with n = 1 and for any bundles L on X and H0, . . . , Hm
on Y . To get this, we use part (a) of the proposition to write the left-hand side as〈〈

L , f ∗ H0
〉

f , H1, . . . , Hm
〉
g and then part (b) to write

〈
L , f ∗H0

〉
f as deg f (L)H0.

Remark. Recall that there is a map c1 from Pic(X) to the codimension 1 part CH1(X)
of the Chow group of X . If f : X → Y is flat of relative dimension n and L0, . . . , Ln
belong to Pic(X), then the image of

〈
L0, . . . , Ln

〉
under c1 is equal to the image of the

product c1(L0) · · · c1(Ln) under the push-forward map f∗ : CHn+1(X) → CH1(Y ). At
this level, formulas (4a), (4b) and (5) are just specializations of the general projection
formula g∗( f∗(A) · B) = (g f )∗(A · f ∗(B)), valid for any flat morphisms f : X → Y
and g : Y → Z and elements A ∈ CH(X), B ∈ CH(Y ).
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4. Geometric Preparations

We now apply the Deligne product to universal curves over moduli spaces. As in §1, we
denote by KN the relative canonical line bundle of π = πN : Cg,N → Mg,N , by Pi

(1 ≤ i ≤ N ) the N sections of π and by $i = P∗
i (KN ) the i th tautological line bundle

on Mg,N . We write Li (1 ≤ i ≤ N + 1) for the line bundles on Cg,N defined in the same
way, where Cg,N is identified with Mg,N+1. Also for convenience, we denote the bundle
OCg,N (Pi ) (1 ≤ i ≤ N ) simply by Pi . The following properties can be found in [6,7].
(Deligne products are not used in Knudsen’s original papers, but the verbatim change is
rather trivial. See e.g., [11,12].)

Proposition 2. ([6]) With the above notations, we have

(a)
〈
Pi , P j

〉
π

) O (i, j = 1, . . . , N , i (= j);
(b)

〈
KN (Pi ), Pi

〉
π

) O (i = 1, . . . , N );
(c) Li ) π∗$i + Pi (i = 1, . . . , N );
(d) L N+1 ) KN (P1 + · · · + PN ).

The next proposition, which is a slight extension of Proposition 2, contains all the
geometric information which we will need to compute the Deligne products in (1). We
use the same notations as above, but also denote by π ′ = πN−m,m the forgetful map from
Mg,N to Mg,N−m for some m ≥ 0 and use ξ1, . . . , ξm to denote m general elements of
Pic(Cg,N ).

Proposition 3. With the above notations, we have

(a)
〈
Pi , P j , ξ1, . . . , ξm

〉
π ′◦π

) O (i, j = 1, . . . , N , i (= j);
(b)

〈
Pi , Li , ξ1, . . . , ξm

〉
π ′◦π

) O (i = 1, . . . , N );
(c)

〈
Pi , L N+1

〉
π

) O (i = 1, . . . , N );
(d) degπ

(
L N+1

)
= 2g − 2 + N .

Proof. Since the sections Pi and P j are disjoint for i (= j , the pull-back of O(Pi ) to P j is
trivial (Prop. 2(a)). Therefore axiom (DP3) from §3 implies (a). Next, we use Prop. 2(c)
to write

〈
Li , Pi , ξ1, . . . , ξm

〉
π ′◦π

)
〈
π∗$i , Pi , ξ1, . . . , ξm

〉
π ′◦π

+
〈
Pi , Pi , ξ1, . . . , ξm

〉
π ′◦π

.

By (DP3), the first term equals
〈
$i , ξ1

∣∣
Pi

, . . . , ξm
∣∣
Pi

〉
π ′ (actually multiplied by degπ (Pi ),

but the relative degree of a section is 1), while the second term is −
〈
$i , ξ1

∣∣
Pi

, . . . , ξm
∣∣
Pi

〉
π ′

by Prop. 2(b) (adjunction formula). This proves (b). Part (c) follows from Prop. 2(d),
since

〈
Pi , KN (Pi )

〉
π

vanishes by the adjunction formula and all
〈
Pi , P j

〉
π

with j (= i
vanish by (a). Part (d) also follows from Prop. 2(d) by taking the relative degree of both
sides. We also mention the stronger statement that

〈
L N+1, Li

〉
π

) (2g − 2 + N ) $i for
i = 1, . . . , N . The proof of this is similar to the other parts of the proposition, but we
omit it since this result will not be used in the sequel. -.

5. The Recursion Formula for TN,m

In this section, we use the results of §4 to give a recursion formula and initial data for
the line bundles (1) which determine them completely in Pic(Mg,N ). These recursions
will be solved in §6.

The recursion formula which we will prove for the TN ,m is as follows.



L. Weng, D. Zagier

Proposition 4. (String Equation) For m ≥ 0 and any integers a1, . . . , aN+m ≥ 0, we
have

TN ,m+1(a1, . . . , aN+m, 0) =
N+m∑

i=1

TN ,m(a1, . . . , ai − 1, . . . , aN+m),

with the convention that TN ,m+1(a1, . . . , aN+m) = 0 if any ai < 0.

Recall that the indices ai with i > N in TN ,m(a1, . . . , aN+m) play a different role
than the ai with i ≤ N and that we also use the notations d j for aN+ j (1 ≤ j ≤ m) and
TN ,m(a1, . . . , aN ; d1, . . . , dm) for TN ,m(a1, . . . , aN+m). Proposition 4 lets us reduce the
calculation of these bundles by induction to the case when every di is strictly positive. (If
any d j is zero, we can put it in the last position, because TN ,m is symmetric in the d’s.)
But since

∑N
i=1 ai +

∑m
j=1 d j = m+1, this can only happen if (d1, . . . , dm) = (1, . . . , 1)

or (2, 1, . . . , 1). There are therefore only two initial cases which have to be considered.
The values of TN ,m in these two cases are given by the following:

Proposition 5. The line bundles TN ,m(a1, . . . , aN ; d1, . . . , dm) in the two cases when
all the di are strictly positive are given by the formulas

TN ,m(1, 0, . . . , 0︸ ︷︷ ︸
N−1

; 1, . . . , 1︸ ︷︷ ︸
m

) = (Ñ + m)!
Ñ ! $1 (m ≥ 0)

and

TN ,m(0, . . . , 0︸ ︷︷ ︸
N

; 2, 1, . . . , 1︸ ︷︷ ︸
m−1

) = (Ñ + m)!
(Ñ + 1)! % (m ≥ 1),

where Ñ = N + 2g − 3.

Proposition 5 in turn can be deduced by induction over m from the special cases

TN ,0(1, 0, . . . , 0︸ ︷︷ ︸
N−1

; ) = $1, TN ,1(0, . . . , 0︸ ︷︷ ︸
N

; 2) = %

(the first of which is trivial because the Deligne product is simply the identity map, and
the second by the very definition of %) and from the following companion result to
Proposition 4.

Proposition 6. (Dilaton Equation) For m ≥ 0 and any integers a1, . . . , aN+m ≥ 0, we
have

TN ,m+1(a1, . . . , aN+m, 1) = (N + m + 2g − 2) TN ,m(a1, . . . , aN+m).

The proofs of Propositions 4 and 6 are similar to one another and will be given together.
For convenience, we use the abbreviated notation

〈
S◦k1

1 , S◦k2
2 , . . . , S◦kn

n
〉

f to denote the
Deligne product

〈
S1, . . . , S1︸ ︷︷ ︸

k1

, S2, . . . , S2︸ ︷︷ ︸
k2

, . . . , Sn, . . . , Sn︸ ︷︷ ︸
kn

〉
f
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for any line bundles Si and any integers ki ≥ 0. We also replace the “N” of §4 by
“N + m” and use the same conventions as there, i.e., $i (1 ≤ i ≤ N + m) denotes the
i th tautological line bundle on Mg,N+m and Li (1 ≤ i ≤ N + m + 1) the i th tautological
line bundle on Mg,N+m+1, while π and π ′ denote the projections from Mg,N+m+1 to
Mg,N+m and from Mg,N+m to Mg,N , respectively. Finally, we set M = N + m. With
these notations, the two formulas to be proved become

〈
L◦a1

1 , . . . , L◦aM
M

〉
π ′◦π

=
M∑

i=1

〈
$
◦a1
1 , . . . , $

◦(ai −1)
i , . . . , $

◦aM
M

〉
π ′ (6)

(with the usual convention that
〈
· · · , $◦(ai −1)

i , · · ·
〉
= 0 if ai = 0) and

〈
L◦a1

1 , . . . , L◦aM
M , L M+1

〉
π ′◦π

= (2g − 2 + M)
〈
$
◦a1
1 , . . . , $

◦aM
M

〉
π ′ . (7)

To prove these equations, we proceed as follows. Using Prop. 2(c), Prop. 3(b) and
then Prop. 2(c) again (all of them with N replaced by M), we obtain

〈
L◦a1

1 , ξ1, . . . , ξr
〉
π ′◦π

=
〈
L1,

(
π∗$1 + P1

)◦(a1−1)
, ξ1, . . . , ξr

〉
π ′◦π

=
〈
L1,

(
π∗$1

)◦(a1−1)
, ξ1, . . . , ξr

〉
π ′◦π

=
〈(
π∗$1

)◦a1, ξ1, . . . , ξr
〉
π ′◦π

+
〈
P1,

(
π∗$1

)◦(a1−1)
, ξ1, . . . , ξr

〉
π ′◦π

for any line bundles ξ1, . . . , ξr in Pic(Cg,M ), where a1 + r = m + 2. Now if there are a2
indices i with ξi = L2, then we can do the same with L2 as we did with L1. This gives
four terms a priori, but one of them is

〈
P1,

(
π∗$1

)◦(a1−1)
, P2,

(
π∗$2

)◦(a2−1)
, . . .

〉
π ′◦π

and this vanishes by Prop. 3(a). Continuing, we find
〈
L◦a1

1 , . . . , L◦aM
M , L◦a

M+1
〉
π ′◦π

=
〈(
π∗$1

)◦a1, . . . ,
(
π∗$M

)◦aM , L◦a
M+1

〉
π ′◦π

+
M∑

i=1

〈
Pi ,

(
π∗$1

)◦a1, . . . ,
(
π∗$i

)◦(ai −1)
, . . . ,

(
π∗$M

)◦aM , L◦a
M+1

〉
π ′◦π

(8)

for any ai , a ≥ 0. We have to evaluate this in two cases, when a = 0 and when a = 1.
If a = 0, then the first term in (8) vanishes, because each of the arguments of the

Deligne product is a pull-back under π . For the second term, we note that
〈
Pi ,π

∗ξ1, . . . ,π
∗ξm+1

〉
π ′◦π

=
〈
ξ1, . . . , ξm+1

〉
π ′

for any ξ1, . . . , ξm+1 ∈ Pic(Mg,M ). (This follows from (DP3), because Pi is a section
of π .) This gives Eq. (6) and hence Proposition 4 (string equation).

If a = 1, then the second term of (8) vanishes, because
〈
Pi ,π

∗ξ1, . . . ,π
∗ξm, L M+1

〉
π ′◦π

=
〈〈

Pi , L M+1
〉
π
, ξ1, . . . , ξm

〉
π ′ = 0

for any ξ1, . . . , ξm ∈ Pic(Mg,M ), by Prop. 1 (a) and Prop. 3 (c). The first term in (8) is
equal to the right-hand side of (7) by Eq. (5) and Prop. 3 (d). This proves Eq. (7) and
hence Proposition 6 (dilaton equation).
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6. Proof of the Main Theorem

Since the recursion formula and initial values given in Propositions 4 and 5 determine
the elements TN (a1, . . . , aN+m) ∈ Pic(Mg,N ) uniquely, we can prove Theorem 1 by
showing that the elements TN (a1, . . . , aN+m) defined by (2) and (3) satisfy these three
equations. A direct proof of this is possible, but rather complicated, involving a series
of lemmas about elementary symmetric polynomials and multinomial coefficients. This
proof can be simplified considerably by a judicious use of generating functions, but
remains quite complicated. A much simpler proof is obtained using the following trick.
By the substitution t = x/(1 + x) and Euler’s formula for the beta integral (or simply
by integration by parts and induction on α and β) we see that

∫ ∞

0

xα dx
(x + 1)α+β+2 =

∫ 1

0
tα(1 − t)β dt = α! β!

(α + β + 1)!
for any integers α, β ≥ 0. Hence, if we define a polynomial F(x) = Fd1,...,dm (x) by

F(x) =
m∏

j=1

(
x + d j

)
=

m∑

n=0

σn xm−n, σn = σn(d1, . . . , dm),

then we have
∫ ∞

0

F(x) dx

(x + 1)Ñ+m+1
=

m∑

n=0

σn
(m − n)! (Ñ + n − 1)!

(Ñ + m)! = (Ñ − 1)!
(Ñ + m)! C1(d) (9a)

and
∫ ∞

0

x F(x) dx

(x + 1)Ñ+m+1
=

m∑

n=0

σn
(m − n + 1)! (Ñ + n − 2)!

(Ñ + m)! = Ñ (Ñ − 2)!
(Ñ + m)! C2(d)

(9b)

with Cν(d) = Cν(Ñ ; d1, . . . , dm) as in Eq. (3) (or the first remark after Theorem 1 if Ñ
is 0 or 1). In particular, we have

C1(Ñ ; 1, . . . , 1︸ ︷︷ ︸
m

) = (Ñ + m)!
(Ñ − 1)!

∫ ∞

0

dx

(x + 1)Ñ+1
= (Ñ + m)!

Ñ ! ,

C2(Ñ ; 1, . . . , 1︸ ︷︷ ︸
m

) = (Ñ + m)!
Ñ (Ñ − 2)!

∫ ∞

0

x dx

(x + 1)Ñ+1
= (Ñ + m)!

Ñ · Ñ ! ,

C2(Ñ ; 2, 1, . . . , 1︸ ︷︷ ︸
m−1

) = (Ñ + m)!
Ñ (Ñ − 2)!

∫ ∞

0

x (x + 2) dx

(x + 1)Ñ+2
= 2 (Ñ + m)!

(Ñ + 1)! ,

so Eq. (2) in the two cases when all di are strictly positive reduces to

TN ,m(1, 0, . . . , 0︸ ︷︷ ︸
N−1

; 1, . . . , 1︸ ︷︷ ︸
m

)

= C1(Ñ ; 1, . . . , 1)
(
$1 − %

Ñ

)
+ C2(Ñ ; 1, . . . , 1)% = (Ñ + m)!

Ñ ! $1
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and

TN ,m(0, . . . , 0︸ ︷︷ ︸
N

; 2, 1, . . . , 1︸ ︷︷ ︸
m−1

)

= 1
2! C2(Ñ ; 2, 1, . . . , 1)% = (Ñ + m)!

(Ñ + 1)! %,

in accordance with the initial values in Proposition 5.
To prove the recursion formula of Proposition 4 (string equation), we will show that

it is equivalent to a pair of recurrences for the coefficients Cν(d) (Eq. (11) below) and
then prove these recurrences using the integral representation (9). Denote the right-hand
side of (2) by tN ,m(a1, . . . , aN+m) or tN ,m(a1, . . . , aN ; d1, . . . , dm), with d j = aN+ j for
1 ≤ j ≤ m. Since we want TN ,m(a1, . . . , aN+m) = tN ,m(a1, . . . , aN+m)/

∏N+m
i=1 ai !, we

have to prove the recursion

tN ,m+1(a1, . . . , aN+m, 0) =
N+m∑

i=1

ai tN ,m(a1, . . . , ai − 1, . . . , aN+m).

(The extra factor ai in front of tN ,m(a1, . . . , ai − 1, . . . , aN+m) comes from the change
in

∏N+m
i=1 ai ! when ai is decreased by 1.) Now again separating the ai (1 ≤ i ≤ N ) and

the d j = aN+ j (1 ≤ j ≤ m), we can write this out more explicitly as

tN ,m+1(a1, . . . , aN ; d1, . . . , dm, 0)

=
N∑

i=1

ai tN ,m(a1, . . . , ai − 1, . . . , aN ; d1, . . . , dm)

+
m∑

j=1

d j tN ,m(a1, . . . , aN ; d1, . . . , d j − 1, . . . , dm). (10)

We can write the definition of tN ,m(a1, . . . , aN ; d1, . . . , dm) in an abbreviated notation
as

tN ,m(a1, . . . , aN ; d1, . . . , dm) = C1(d)

N∑

k=1

ak $̂k + C2(d)%,

where Cν(d) = Cν(Ñ ; d1, . . . , dm) as before (Ñ does not change when we change m
by 1, so can be omitted from the notation) and where $̂k is the element $k − %/Ñ of
Pic(Mg,N ) ⊗ Q. Then the left-hand side of (10) equals

C1(d, 0)

N∑

i=1

ak $̂k + C2(d, 0)%,

while the right-hand side equals
N∑

i=1

ai

[
C1(d)

N∑

k=1

(
ak − δki

)
$̂k + C2(d)%

]

+
m∑

j=1

d j

[
C1(d1, . . . , d j − 1, . . . , dm)

N∑

k=1

ak $̂k + C2(d1, . . . , d j −1, . . . , dm)%

]
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=
N∑

k=1

[
C1(d)

( N∑

i=1

ai − 1
)

+
m∑

j=1

d j C1(d1, . . . , d j − 1, . . . , dm)

]
ak $̂k

+
[

C2(d)

( N∑

i=1

ai

)
+

m∑

j=1

d j C2(d1, . . . , d j − 1, . . . , dm)

]
%.

Comparing these two expressions, and recalling that
∑N

i=1 ai = m + 2−σ1(d) (because
the sum of all the indices a1, . . . , aN , d1, . . . , dm, 0 in Eq. (10) must equal m + 2), we
find that the theorem will follow from the two identities:

C1(d, 0) =
(
m + 1 − σ1

)
C1(d) +

m∑

j=1

d j C1(d1, . . . , d j − 1, . . . , dm), (11a)

C2(d, 0) =
(
m + 2 − σ1

)
C2(d) +

m∑

j=1

d j C2(d1, . . . , d j − 1, . . . , dm). (11b)

To prove the first of these, we use Eq. (9a). Replacing d = (d1, . . . , dm) by (d, 0) =
(d1, . . . , dm, 0) increases m by 1 and replaces the polynomial F(x) by x F(x), whereas
replacing d by (d1, . . . , d j − 1, . . . , dm) leaves m unchanged and replaces F(x) by
F(x)(x +d j −1)/(x +d j ). Therefore substituting (9a) into (11a) and dividing both sides
by (Ñ + m)!/(Ñ − 1)! gives

(Ñ + m + 1)

∫ ∞

0

x F(x) dx

(x + 1)Ñ+m+2

=
∫ ∞

0

[
m + 1 +

m∑

j=1

d j

(
−1 +

x + d j − 1
x + d j

)]
F(x) dx

(x + 1)Ñ+m+1

as the identity to be proved. But this is immediate by integration by parts, since the expres-
sion in square brackets equals 1 +

∑m
j=1

x
x+d j

= 1 + x F ′(x)
F(x) . The proof of Eq. (11b) is

exactly the same, using (9b) instead of (9a), with F(x) replaced by x F(x). This com-
pletes the proof of the theorem.

7. Final Remark

A formula very similar to Eq. (2) (in the case when all ai = 0) appears in §4.6 of [8],
but in a somewhat different situation: the formula there is for the moduli space of curves
of genus 1 with N marked points and deals with the Gromov-Witten invariants, which
are integers, whereas our formula is for arbitary genus (although in the final result the
genus does not appear except in the shift from N to Ñ ) and gives the Deligne products,
which take values in Pic(Mg,N ). Both proofs are based on the string and dilaton equa-
tions, which are valid in both contexts. This suggests a possible common generalization.
Our situation concerns codimension one cycles, while Gromov-Witten invariants have
to do with zero-dimensional cycles. It therefore seems reasonable to ask whether (2)
and the equation in [8] are special cases of a more general result valid for intermediate
dimensions, for which the string and dilaton equations still hold.
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