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Abstract Associated to classical semi-simple groups and their maximal parabolics are gen-

uine zeta functions. Naturally related to Riemann’s zeta and governed by symmetries, includ-

ing that of Weyl, these zetas are expected to satisfy the Riemann hypothesis.

For simplicity, G here denotes a classical semi-simple algebraic group defined
over the field Q of rationals.

With a fixed Borel, as usual, ∆0 stands for the corresponding collection
of simple roots; W the associatd Weyl group; for a positive root α, α∨ the
corresponding coroot; and ρ := 1

2

∑
α>0 α.

Definition 1. The period for G over Q is defined by

ωG
Q (λ) :=

∑

w∈W

(
1∏

α∈∆0
〈wλ − ρ, α∨〉 ·

∏

α>0,wα<0

ξQ(〈λ, α∨〉)
ξQ(〈λ, α∨〉 + 1)

)
, Re λ ∈ C+

where C+ denotes the so-called positive chamber of a0, the space of characters
associated to (G, B), and ξQ(s) the completed Riemann zeta function.

For a fixed maximal parabolic subgroup P , it is well known that (the con-
jugation class of) P corresponds to a simple root αP ∈ ∆0. Hence ∆0\{αP} =
{β1,P , β2,P , . . . , βr−1,P }, where r = r(G) denotes the rank of G.

Definition 2. The period for (G, P ) over Q is defined by

ω
G/P
Q (λP ) :=

Res〈λ−ρ,β∨

r(G)−1,P
〉=0 · · ·Res〈λ−ρ,β∨

2,P
〉=0Res〈λ−ρ,β∨

1,P
〉=0

(
ωG

Q (λ)
)
, Re λP ≫ 0,

where with the constraint of taking residues along with (r − 1) singular hyper-
planes

〈λ − ρ, β∨
1,P 〉 = 0, 〈λ − ρ, β∨

2,P 〉 = 0, · · · , 〈λ − ρ, β∨
r(G)−1,P 〉 = 0,

there is only one variable, say a suitable zi0 , left among zi’s, re-scale it when
necessary and rename it λP .
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Clearly, there is a minimal integer I(G/P ) and finitely many factors (de-
pending on the choice of λP ),

ξQ

(
a

G/P
1 λP + b

G/P
1

)
, ξQ

(
a

G/P
2 λP + b

G/P
2

)
, · · · , ξQ

(
a

G/P
I(G/P )λP + b

G/P
I(G/P )

)
,

such that the product
[∏I(G/P )

i=1 ξQ

(
a

G/P
i λP + b

G/P
i

)]
· ωG/P

Q (λP ) admits only

finitely many singularities.

Similarly there is a minimal integer J(G/P ) and finitely many factors (de-
pending on the choice of λP ),

ξQ

(
c
G/P
1

)
, ξQ

(
c
G/P
2

)
, · · · , ξQ

(
c
G/P
J(G/P )

)
,

such that there are no factors of special ξQ values appearing at the denominators

in the product
[∏J(G/P )

i=1 ξQ

(
c
G/P
i

)]
· ωG/P

Q (λP ).

Definition 3. (i) The zeta function ξ
G/P
Q;o for (G, P ) over Q is defined by

ξ
G/P
Q;o

(
s
)

:=

[
I(G/P )∏

i=1

ξQ

(
a

G/P
i s + b

G/P
i

)
·

J(G/P )∏

j=1

ξQ

(
c
G/P
j

)]
· ωG/P

Q

(
s
)
,

Re s ≫ 0

Zeta Facts. (1) ξ
G/P
Q;o

(
s
)
, Re s ≫ 0, is a well-defined holomorphic function;

admits a unique meromorphic continuation to the whole complex s-plane; and
has only finitely many poles; and
(2) (Conjectural Functional Equation) There exists a constant cG/P ∈ Q such
that

ξ
G/P
Q;o

(
− s + cG/P

)
= ξ

G/P
Q;o

(
s
)
.

Obvious is (1). Rather complicated is (2), offering an additional symmetry.

Classical symmetry s ↔ 1−s for the standard functional equation then leads
to the following normalization.

Definition 3. (ii) The zeta function ξ
G/P
Q

(
s
)

for (G, P ) over Q is defned by

ξ
G/P
Q

(
s
)

:= ξ
G/P
Q;o

(
s +

cG/P − 1

2

)

The most remarkable property shared by all these newly introduced zetas is
the following Zeta Fact about the uniformity of their zeros.

The Riemann Hypothesis
G/P
Q .

All zeros of the zeta function ξ
G/P
Q

(
s
)

lie on the central line Re s =
1

2
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A Discovery of Zetas for (G, P )/Q

In this appendix, we expose some of the landmarks leading to the discovery of
these elegant zetas introduced in the main text associated to reductive groups
and their maximal parabolics over Q.
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A.1 High Rank Zeta Functions

A.1.1 High Rank Zeta Functions

Let F be a number field with OF the ring of integers. Denote by ∆F the
discriminant of F . Fix a positive integer r. Then by definition, an OF -lattice
Λ of rank r is a pair (P, ρ) consisting of an OF -projective module P of rank r

and a metric ρ := (ρσ:R, ρτ :C) on
(
Rr1 × Cr2

)r

=
(
Rr
)r1

×
(
Cr
)r2

. Here as

usual, we denote by r1 and r2 the number of real embeddings σ : F →֒ R and
the numbers of complex embeddings τ : F →֒ C, respectively. (Recall that by a

standard result, P is isomorphic to O⊕(r−1)
F ⊕ a for a suitable fractional ideal a

of F . Thus via the natural inclusion O⊕(r−1)
F ⊕ a →֒ F r →֒

(
Rr1 × Cr2

)r

, we

may view P as a discrete subgroup of the matrized space
(
Rr1 ×Cr2

)r

. Fix it.)

It is well known that the quotient space
(

Rr1 × Cr2

)r

/Λ is compact. Call its

volume the (co-)volume of Λ and denote it by Vol(Λ). By definition, a lattice
Λ is called semi-stable if for all OF -sublattices Λ1, we have

Vol(Λ1)
rk(Λ) ≥ Vol(Λ)rk(Λ1).

Denote by MF,r the moduli space of semi-stable OF -lattices of rank r. (For
details, see e.g., [W1-3], [Gr1,2], [St1,2].) This is the first ingredient needed to
introduce high rank zetas for F . In particular, we know the following

Fact A. ([W1-3]) (1) There is a natural decomposition MF,r = ∪T∈R>0MF,r[T ]
where, MF,r[T ] denotes the moduli space of semi-stable OF -lattices of rank r
and of volume T ;
(2) MF,r[T ] is compact; and
(3) There are natural measures dµ and dµ0 on MF,r and on MF,r[T ] respectively
such that with respect to the decomposition (1), we have dµ = dµ0 × dT

T .

The second ingredient needed is a good geo-arithmetical cohomology. For
this, we define the 0-th cohomology group H0(F, Λ) of an OF -lattice Λ to be the
the lattice Λ itself, and the 1-st cohomology group H1(F, Λ) to be the compact

quotient group
(

Rr1×Cr2

)r

/Λ. Consequently, we have the following Pontryagin

duality for them:

Topological Duality. ̂H1(F, Λ) ≃ H0(F, ωF ⊗ Λ∨).

Here for a locally compact group G, denote by Ĝ its Pontryagin dual, ωF denotes
the differential lattice, i.e., the lattice whose module part is simply the module
of differentials of F , while whose metric is the standard one on Rr1 × Cr2 . As
such, following Tate ([T] and [W]), we then can use Fourier analysis to count
our H0(F, Λ) and H1(F, Λ). For example, each element x ∈ H0(F, Λ) is counted

with the weight of Gaussian distribution
∑

σ:R e−π‖x‖2
ρσ +

∑
τ :C e−2π‖x‖2

ρτ and
accordingly define h0(F, Λ) to be the logarithm of this count. (See also [GS].)
Particularly, with such h0 and h1 for a lattice Λ, by using the above topological
duality and the Poisson summation formula, then we obtain the following

6



Fact B. ([W1-3]) Let Λ be an OF -lattice of rank r. Then
(1) (Duality) h1(F, Λ) = h0(F, ωF ⊗ Λ∨); and
(2) (Riemann-Roch Theorem) h0(F, Λ) − h1(F, Λ) = deg (Λ) − r

2 log |∆F |.
Here deg Λ denotes the Arakelov degree of Λ.
(For the reader who does not know Arakelov degree, recall then the following
weak result
Arakelov-Riemann-Roch Theorem: − log Vol (Λ) = deg (Λ) − r

2 log |∆F |.)

With all this, then we are ready to introduce the following

Definition. ([W1,3]) For an algebraic number field F and a positive integer r,
define its rank r zeta function by

ξF,r(s) :=
(
|∆F |

) r
2 s
∫

MF,r

(
eh0(F,Λ) − 1

)
·
(
e−s
)deg(Λ)

dµ(Λ), Re (s) > 1.

From the definition, by Fact A for moduli spaces and Fact B on Duality and
the Riemann-Roch for geo-arithmetic cohomologies, totologically, we have the
following

Fact C. ([W1,3]) (0) (Iwasawa) ξF,1(s)
·
= ξF (s), the completed Dedekind zeta

function;
(1) (Mero Extension) ξF,r(s) is well-defined and admits a meromorphic con-
tinuation to the whole complex s-plane;
(2) (Functional Equation) ξF,r(1 − s) = ξF,r(s); and
(3) (Singularities) There are only two singularities, i.e., simple poles at s =

0, 1 with the residue Ress=1ξF,r(s) = VolMF,r

(
|∆F |

r
2

)
.

A.1.2 Relation with Eisenstein Periods

We next give a relation between our high rank zetas and what we call Eisenstein
periods. The point here is instead of working over MF,r, we fix a volume so as
to work over the compact subspace MF,r[|∆F |r/2] and hence deduce the desired
relation via Mellin transform. This goes as follows.

From now on, for simplicity, we work over the field Q of rationals. Accord-
ingly, the rank r zeta function ξQ,r(s) of Q is given by

ξQ,r(s) =

∫

MQ,r

(
eh0(Q,Λ) − 1

)
·
(
e−s
)deg(Λ)

dµ(Λ), Re(s) > 1,

where h0(Q, Λ) := log
(∑

x∈Λ exp
(
− π|x|2

))
and deg(Λ) = − log Vol

(
Rr/Λ

)
.

Decompose according to their volumes, MQ,r = ∪T>0MQ,r[T ], and there is

a natural morphism MQ,r[T ] → MQ,r[1], Λ 7→ T
1
r · Λ. Consequently,

ξQ,r(s) =

∫

∪T >0MQ,r [T ]

(
eh0(Q,Λ) − 1

)
·
(
e−s
)deg(Λ)

dµ(Λ)

=

∫ ∞

0

T s dT

T

∫

MQ,r [1]

(
eh0(Q,T

1
r ·Λ) − 1

)
dµ(Λ).

7



But h0(Q, T
1
r · Λ) = log

(∑
x∈Λ exp

(
− π|x|2 · T 2

r

))
. By applying the Mellin

transform, we have

ξQ,r(s) =
r

2
· π− r

2 sΓ
(r

2
s
)
·
∫

MQ,r [1]

( ∑

x∈Λ\{0}

|x|−rs
)

dµ0(Λ).

Accordingly, introduce the completed Epstein zeta function for Λ by

Ê(Λ; s) := π−sΓ(s) ·
∑

x∈Λ\{0}

|x|−2s.

We then arrive at
Fact D. ([W1-3]) (Eisenstein series and high rank zetas)

ξQ,r(s) =
r

2

∫

MQ,r [1]

Ê(Λ,
r

2
s)dµ0(Λ), Re(s) > 1.

A.1.3 SL(2): A Toy Model

To indicate basic ideas clearly, we first give some details on the rank two zeta
ξQ,2(s).

Consider the action of SL(2, Z) on the upper half plane H(= SL(2, R)/SO(2)).
Then we obtain a standard ‘fundamental domain’ D = {z = x + iy ∈ H : |x| ≤
1
2 , y > 0, x2 + y2 ≥ 1}. Recall also the completed standard Eisenstein series

Ê(z; s) := π−sΓ(s) ·
∑

(m,n)∈Z2\{(0,0)}

ys

|mz + n|2s
.

Naturally, we are led to considering the integral
∫

D
Ê(z, s)dx dy

y2 . However, this
integration diverges. Indeed, near the only cusp y = ∞, by the Chowla-Selberg
formula, Ê(z, s) has the Fourier expansion

Ê(z; s) =

∞∑

n=−∞

an(y, s)e2πinx

with

an(y, s) =

{
ξ(2s)ys + ξ(2 − 2s)y1−s, if n = 0;

2|n|s− 1
2 σ1−2s(|n|)

√
yKs− 1

2
(2π|n|y), if n 6= 0,

where ξ(s) is the completed Riemann zeta function, σs(n) :=
∑

d|n ds, and

Ks(y) := 1
2

∫∞

0 e−y(t+ 1
t
)/2ts dt

t is the K-Bessel function. Moreover,

|Ks(y)| ≤ e−y/2KRe(s)(2), if y > 4, and Ks = K−s.

So an6=0(y, s) decay exponentially, and the constant term a0(y, s), being of slow
growth, is problematic.

8



Therefore, to introduce a meaningful integration from the original ill-defined
one, we need cut off the slow growth part. There are two ways to do so: one
is geometrical and hence rather direct and simple; the other is analytical, and
hence rather technical and traditional, dated back to Rankin-Selberg.

(a) Geometric Truncation
Draw a horizontal line y = T ≥ 1 and set

DT = {z = x + iy ∈ D : y ≤ T }, DT = {z = x + iy ∈ D : y ≥ T }.

Then D = DT ∪ DT . Introduce a well-defined integration

IGeo
T (s) :=

∫

DT

Ê(z, s)
dx dy

y2
.

(b) Analytic Truncation
Define a truncated Eisenstein series ÊT (z; s) by

ÊT (z; s) :=

{
Ê(z; s), if y ≤ T ;

Ê(z, s) − a0(y; s), if y > T .

Introduce a well-defined integration

IAna
T (s) :=

∫

D

ÊT (z; s)
dx dy

y2
.

With this, from the Rankin-Selberg method, we have the following:

Fact E. (See e.g., [Z]) (Analytic Truncation=Geometric Truncation in Rank 2)

IGeo
T (s) =

ξ(2s)

s − 1
· T s−1 − ξ(2s − 1)

s
· T−s = IAna

T (s).

Each of the above two integrations has its own merit: for the geometric one,
we keep the Eisenstein series unchanged, while for the analytic one, we keep the
original fundamental domain of H under SL(2, Z) as it is.

Note that a particular nice point about the fundamental domain is that it
admits a modular interpretation. Thus it would be very nice if we could on the
one hand keep the Eisenstein series unchanged, while on the other hand offer
some integration domains which appear naturally in certain moduli problems.

This is essential the idea of introducing MF,r

(
|∆F |

r
2

)
, the first key ingredient

for high rank zetas.

(c) Arithmetic Truncation
Now we explain why the above discussion and Rankin-Selberg method have

anything to do with our high rank zeta functions. For this, we introduce yet
another truncation, the geo-arithmetic one using stability.

9



So back to the moduli space of rank 2 lattices of volume 1 over Q. Then
classical reduction theory gives a natural map from this moduli space to the
fundamental domain D above: For any lattice Λ in R2, fix x1 ∈ Λ such that
its length gives the first Minkowski minimum λ1 of Λ. Then via rotation, we
may assume that x1 = (λ1, 0). Further, from the reduction theory 1

λ1
Λ may

be viewed as the lattice of the volume λ−2
1 = y0 generated by (1, 0) and ω =

x0+iy0 ∈ D. That is to say, the points in DT constructed in (a) above are in one-
to-one corresponding to rank two lattices of volume one whose first Minkowski

minimum λ, satisfying λ−2
1 ≤ T , i.e, λ1 ≥ T− 1

2 . Set M≤ 1
2 log T

Q,2 [1] be the moduli
space of rank 2 lattices Λ of volume 1 over Q all of whose sublattices Λ1 of rank
1 have degrees ≤ 1

2 log T . With this discussion, we have the following

Fact F. ([W1-3]) (Geometric Truncation = Arithmetic Truncation)
There is a natural (quasi) one-to-one, onto morphism

M≤ 1
2 log T

Q,2 [1] ≃ DT .

In particular,
M≤0

Q,2[1] = MQ,2[1] ≃ D1.

Consequently, we have the following

Example in Rank 2. ([W1-3]) ξQ,2(s) =
ξ(2s)

s − 1
− ξ(2s − 1)

s
.

A.2 Periods

A.2.1 Arthur’s Truncation and Eisenstein Periods

Recall that the upper half plane H admits the following group theoretic inter-
pretation SL(2, Z)\SL(2, R)/SO(2). Thus for high rank zeta functions, we then
naturally shift to G = SL(n), or more generally, any split group G.

Fix a parabolic subgroup P of G with Levi decomposition P = MN , denote
by aP the complexification of the space of characters associated to P . In partic-
ular, denote by a0 the one for the Borel. Denote by ∆0 the associated collection
of simple roots. By definition, an element T ∈ a0 is said to be sufficiently regu-
lar, or sufficiently positive, and denoted by T ≫ 0 if for all α ∈ ∆0 〈α, T 〉 ≫ 0
are large enough. Fix such a T .

Let φ : G(Z)\G(R)/K → C be a smooth function where K is a maximal
compact subgroup of G(R). We define Arthur’s analytic truncation ∧T φ (for φ
with respect to the parameter T ) to be the function on G(Z)\G(R)/K given by

(
∧T φ

)
(Z) :=

∑

P :standard

(−1)rank(P )
∑

δ∈P (Z)\G(Z)

φP (δg) · τ̂P

(
HP (δg) − T

)
,

where φP :=
∫

N(R)/N(R)∩SL(n,Z)
f(xn) dn denotes the constant term of φ along

with the standard parabolic subgroup P , τ̂P is the characteristic function of the

10



so-called positive cone in aP , and HP (g) := logM mP (g) is an elelemnt in aP .
(For unknown notation, all standard, see e.g., [Ar1,2], [JLR], or [W-1,3].)

Fundamental properties of Arthur’s truncation may be summarized as:

Fact G. ([Ar1,2] &/or [OW]) For a sufficiently positive T in a0, we have

(1) ∧T φ is rapidly decreasing, if φ is an automorphic form on G(Z)\G(R)/K;

(2) ∧T ◦ ∧T = ∧T ;

(3) ∧T is self-adjoint; and

(4) ([Ar4]) ∧T 1 is a characteristic function of a compact subset of G(Z)\G(R)/K.

Denote by F(T ) the compact subset of G(Z)\G(R)/K whose characteristic
function is given by ∧T 1 by (4).

Corollary. ([W1,3]) Let T ≫ 0 be a fixed element in a0. If φ is an automorphic
form on G(Z)\G(R)/K,

∫

G(Z)\G(R)/K

∧T φ(g) dg =

∫

F(T )

φ(g) dg.

We call the above integration the Arthur periods associated to φ. In most of
applications, the following special class, called Eisenstein periods, plays a key
role.

Recall that if ϕ is an M -level automorphic form, then we may form the
associated Eisenstein series EG/P (ϕ, λ)(g) = E(ϕ, λ)(g) as follows:

E(ϕ, λ)(g) :=
∑

P (Z)\G(Z)

mP (δg)λ+ρP · φ(δg), Re λ ∈ C+
P

where C+
P denotes the positive chamber in aP . By definition, the Eisenstein

period is the integration
∫

G(Z)\G(R)/K

∧T E(ϕ, λ)(g) dg =

∫

F(T )

E(ϕ, λ)(g) dg.

(Here we use a normalization for the Eisenstein series as usual, i.e., shifting the
variable from λ to λ + ρP , so that the convergence region is simply the positive
chamber.)

A.2.2 Rankin-Selberg & Zagier Method
I: Sufficiently Positive Case

In general, it is very difficult, in fact, quite impossible, to calculate Eisenstein
period precisely. However, if the original automorphic function (in defining the
Eisenstein series used) is cuspidal, this can be evaluated. This is a result due
to Jaquet-Lapid-Rogowski (see e.g., [JLR]), which itself may be viewed as an
advanced version of the so-called Rankin-Selberg & Zagier method. (See also
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section 4.2 [W0] for our own solution, which was quite similar and was inde-
pendently written before we knew [JLR].) In particular, for constant function 1
over the Borel, and the associated Eisenstein series by E(1; λ; g), we have the
following:

Fact E′. ([JLR], [W0]) Assume that T is sufficiently positive, then the Eisensetin
period

∫
G(Z)\G(R)

∧T E(1; λ; g) dg is given by

∫

G(Z)\G(R)

∧T E(1; λ; g) dg = v
∑

w∈W

e〈wλ−ρ,T 〉

∏
α∈∆0

〈wλ − ρ, α∨〉 · M(w, λ)

where v = Vol
(
{
∑

α∈∆0
aαα∨ : 0 ≤ aα < 1}

)
, W denotes the Weyl group, ∆0

the set of simple roots, α∨ the co-root associated to α, and M(w, λ) denotes the
assosciated intertwining operator.

A.2.3 Geo-Arithmetic Truncation and Analytic Truncation

In algebraic geometry, or better in Geometric Invariant Theory, a fundamen-
tal principle, which we call the Micro-Global Principle, claims that if a point
is not GIT stable then there exists a parabolic subgroup which destroys the
corresponding stability.

Here even we do not have a proper definition of GIT stability for lattices, in
terms of intersection stability, an analogue of the Micro-Global Principle holds.
To see this, we go as follows (and for our own convenience, we adopt an adelic
language when necessary).

For g = g(Λ) ∈ G(A), denote its associated lattice by Λg, and its induced
filtration from P by

0 = Λg,P
0 ⊂ Λg,P

1 ⊂ · · · ⊂ Λg,P
|P | = Λg.

(Recall that all lattices can be obtained in this manner, and that for a fixed
lattice, its associated fiber in G(A) is compact.) Assume that P corresponds to
the partition I = (d1, d2, . . . , dn=:|P |). Consequently, we have

rk(Λi) = ri := d1 + d2 + · · · + di, for i = 1, 2, . . . , |P |.

Define the polygon pg
P = pΛg

P : [0, r] → R of Λ = Λg with respect to P by
(1) pg

P (0) = pg
P (r) = 0;

(2) pg
P is affine on [ri, ri+1], i = 1, 2, . . . , |P | − 1; and

(3) pg
P (ri) = deg

(
Λg,P

i

)
− ri ·

deg
(
Λg
)

r , i = 1, 2, . . . , |P | − 1.
Note that if the volume of Λ is assumed to be one, then (3) is equivalent to

(3)′ pg
P (ri) = deg

(
Λg,P

i

)
, i = 1, 2, . . . , |P | − 1.

Based on stability, we may introduce a more general geometric truncation
for the space of lattices. For this we start with the following easy statement:

For a fixed OF -lattice Λ,
{
Vol(Λ1) : Λ1 ⊂ Λ

}
⊂ R≥0 is discrete and bounded

from below.
As a direct consequence, we have the following

12



Fact H. ([W1,3]) (Canonical Filtration) For an OF -lattice Λ, there exists a
unique filtration, called the canonical filtration of Λ, of proper sublattices

0 = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λs = Λ

such that
(1) for all i = 1, · · · , s, Λi/Λi−1 is semi-stable; and
(2) for all j = 1, · · · s − 1,

(
Vol(Λj+1/Λj)

)rk(Λj/Λj−1)

>
(
Vol(Λj/Λj−1)

)rk(Λj+1/Λj)

.

Accordingly, for an OF -lattice Λ with the associated canonical filtration, (an
analogue of the Harder -Narasimhan-Langton filtration for vector bundles over
Riemann surfaces [HN],)

0 = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λs = Λ

define the associated canonical polygon pΛ : [0, r] → R by the following condi-
tions:

(1) pΛ(0) = pΛ(r) = 0;

(2) pΛ is affine over the closed interval [rkΛi, rkΛi+1]; and

(3) pΛ(rkΛi) = deg(Λi) − rk(Λi) · deg(Λ)
r .

Let now p, q : [0, r] → R be two polygons such that p(0) = q(0) = p(r) =
q(r) = 0. Then, we say q is bigger than p with respect to P and denote it by
q >P p, if q(ri) − p(ri) > 0 for all i = 1, . . . , |P | − 1. (See e.g., [Laf].) Introduce
also the characteristic function 1(p∗ ≤ p) by

1(pg ≤ p) =

{
1, if pg ≤ p;

0, otherwise.

Here pg denotes the canonical polygon for the lattice corresponding to g. Recall
that for a parabolic subgroup P , pg

P denotes the polygon induced by P for (the
lattice corresponding to) the element g ∈ G(A).

Fact I. ([W1,3]) (Fundamental Relation) For a fixed convex polygon p : [0, r] →
R such that p(0) = p(r) = 0, we have

1(pg ≤ p) =
∑

P : standard parabolic

(−1)|P |−1
∑

δ∈P (F )\G(F )

1(pδg
P >P p).

Remarks. (1) This is an arithmetic analogue of a result of Lafforgue ([Laf]) for
vector bundles over function fields.

13



(2) The right hand side may be naturally decomposite into two parts according
to whether P = G or not. In such away, the right hand side becomes

1G −
∑

P : proper standard parabolic

(−1)|P |−1 · · · .

This then exposes two aspects of our geometric truncation: First of all, if a
lattice is not stable, then there are parabolic subgroups which take the respon-
sibility; Secondly, each parabolic subgroup has its fix role – Essentially, they
should be counted only once each time. In other words, if more are substracted,
then we need add one fewer back to make sure the whole process is not overdone.

From (2) above, it is clear that the geo-arithmetical truncation defined using
1(pg ≤ p), or simply using stability, has the same strucrure as that for analytic
truncations. Next, we want to give a precise relation between these two trun-
cations, so that analytic methods created in the study of trace formula can be
employed in the study of our high rank zetas.

Recall that a polygon p : [0, r] → R is called normalized if p(0) = p(r) = 0.
For a (normalized) polygon p : [0, r] → R, define the associated (real) character
T = T (p) ∈ a0 of M0 (the Levi for the Borel) by the condition that

αi(T ) =
[
p(i) − p(i − 1)

]
−
[
p(i + 1) − p(i)

]

for all i = 1, 2, . . . , r − 1, where αi = ei − ei+1 ∈ ∆0 denote simple roots. As
such, one checks that

T (p) =
(
p(1) − p(0), · · · , · · · , p(i) − p(i − 1), . . . , p(r) − p(r − 1)

)
.

Set also 1(p∗P >P p) to be the characteristic function of the subset of g’s
such that pg

P >P p. Then we have the following

Fact J. ([W1,3]) (Micro Bridge) For a fixed convex normalized polygon p :
[0, r] → R, and g ∈ SLr(A), with respect to any parabolic subgroup P , we have

τ̂P

(
− H0(g) − T (p)

)
= 1

(
pg

P >P p
)
.

With this micro bridge, we are ready to expose a beautiful intrinsic relation
between our geo-arithmetic truncation using stability and analytic truncations.

Fact J. ([W1,3]) (Global Bridge) For a fixed normalized convex polygon p :
[0, r] → R, let

T (p) :=
(
p(1), p(2)− p(1), . . . , p(i)− p(i− 1), . . . , p(r− 1)− p(r− 2),−p(r− 1)

)

be the associated vector in a0. If T (p) is sufficiently positive, then

1(pg ≤ p) =
(
ΛT (p)1

)
(g).
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In particular, by Facts G, I, and J, we arrive at the following analytic inter-
pretation of the moduli space of semi-stable lattices.

Fact G-I-J. ([W1,3]) F(0) = MQ,r[1].

A.2.4 Rankin-Selberg & Zagier Method
II: Semi-stable Case

The Fact G-I-J proves to be very important: with this intrinsic relation be-
tween geo-arithmetical truncation and analytic truncation, instead of using geo-
arithemtical method to study high rank zeta functions, which is rather new and
less developed, we can equally use analytic technics and methods from trace
formula, which is more systematic and rich, to help us. As an example, we here
indicate how to evaluate the Eisenstein period

∫
MQ,r [1] E(λ;1; g) dg.

First, by Fact G-I-J, it is equal to
∫

G(Z)\G(R)/SO(n) Λ0E(λ;1; g) dg. On the

other hand, by Fact E′, we already know that when T is sufficiently positive,∫
G(Z)\G(R)/SO(n)

ΛT E(λ;1; g) dg can be evaluated. As such, then the only point

here of course is to check whether the argument used for sufficiently positive T
are still valid when T is taken to be 0.

By examining the proof, to take care of the change from sufficiently positive
T to smaller T , say T = 0, additional two main points must be checked. They
are
(1) Fact G for smaller T . This now is replaced by Fact G-I-J. Cleared.
(2) The convergences of all integrations involved in the proof. This is indeed
a very serious one. In a sense, modulo combinatorial technics, establishing
various convergences is really the technical heart of Arthur’s trace formula (in
its preliminary form as stated in [Ar1-3]). Fortunately, we can justify these
convergences when T is smaller, in particular when T = 0. Practically, this is
carried out in two steps. First, for sufficiently positive T , we follow simply the
original arguments in [Ar1-3] and [JLR]. Then for general T ≥ 0, we use the fact
that the difference for integral domains involved between sufficiently positive T
and rather small T , say, T = 0, is only up to a certain suitable compact subset in
a fundamental domain – after all, over compact subsets, integrability becomes
trivial for smooth functions. In this way, we then arrive at the following

Fact E′′. ([W1,3]) The Eisensetin period
∫
MQ,r [1] E(1; λ; g) dg is given by

∫

MQ,r [1]

E(1; λ; g) dg = v
∑

w∈W

1∏
α∈∆0

〈wλ − ρ, α∨〉 · M(w, λ)
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A.2.5 Intertwining Operator: Gindikin-Karpelevich Formula

To go further, we need write down also the intertwining operator M(w, λ). This
is now well known – by the Gindikin-Karpelevich formula, we have
Fact K. (See e.g., [La3]) For every split, semi-simple group G, its associated
intertwinging operator acting on constant function 1 over the Borel is given by

M(w, λ) =
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

) .

Here ξ(s) is the completed Riemann zeta with Γ-factor, namely, ξ(s) = π− s
2 Γ( s

2 )ζ(s)
with ζ(s) =

∑∞
n=1 n−s the standard Riemann zeta function.

A.2.6 Periods for G over Q: Weyl Symmetry

By Facts E′′, K, for sufficiently positive T , the associated Eisenstein period

ω
SL(n),T
Q (λ) :=

∫

SL(n,Z)\SL(n,R)/SO(n)

∧T E(1; z1, z2, . . . , zn; M) dµ(M)

is given by the following

Fact L. ([W1,3]) Up to a constant factor,

ω
SL(n),T
Q (λ) =

∑

w∈W

e〈wλ−ρ,T 〉

∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

) .

With this, by a close look at the right hand side, we conclude that now we
may take even T = 0, even the right hand only makes sense for sufficiently
positive T ≫ 0. This then leads to

Definition 1. The period for G over Q is defined by

ωG
Q (λ) :=

∑

w∈W

(
1∏

α∈∆0
〈wλ − ρ, α∨〉 ·

∏

α>0,wα<0

ξQ(〈λ, α∨〉)
ξQ(〈λ, α∨〉 + 1)

)
, Reλ ∈ C+

where C+ denotes the standard positive Weyl chamber of a0, the space of char-
acters associated to (G, B), and ξQ(s) the completed Riemann zeta function.

Certainly this is exact the definition 1 in the main text. As such, the most
notable point in this definition is the huge symmetry created by the Weyl group.

A.3 New Zetas for SL(n)/Q

A.3.1 Epstein, Koecher, Siegel Zetas and Siegel-Eisenstein Series

The reason why we care about Eisenstein periods
∫
MQ,r [1]

E(λ;1; g) dg, which

are of several variables, is that this period can be evaluated and that Epstein
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zetas E(Λg, s) appeared in the study of high rank zetas are residues of Eisenstein
series E(1; λ; g):

ξQ,r(s) =
r

2

∫

MQ,r [1]

Ê(Λg,
r

2
s) dg

where Ê(Λg, s) = π−sΓ(s) · E(Λg, s). To explain this, we go as follows.
Let R := {diag(±1, . . . ,±1)}\SL(n, Z) and Qr the standard parabolic sub-

group associated to the partition n = r+1+1+· · ·+1, that is, the parabolic sub-

group Pr,1,...,1 consisting of matrices in SL(n, Z) of the form





H
1 ∗
0

. . .

1





with H = H(r), |H | = 1. Define the associated Siegel zeta functions by

ξ∗r (Y ; sr, . . . , sn−1) :=
∑

N∈Qr\R

n−1∏

v=r

|Y [N ]v|−sv

for all 1 ≤ r ≤ n−1, where, as usual, Y [N ] := N t ·Y ·N and for a size n matrix
A = (aij)

n
i,j=1, Av denotes the matrix Av = (aij)

v
i,j=1 . Then, from [D], we have

the following
Lemma 1. ([D]) There exists a constant c depending only on r such that

Ressr= r+1
2

ξ∗r (Y ; sr, . . . , sn−1) = cr · ξ∗r+1(Y ; sr+1 +
r

2
, sr+2, . . . , sn−1).

(Please correct a misprint in [D] for this formula.) Consequently, taking r = 1
and repeating this process, we obtain the following

Ressn−1=1 · · ·Ress2=1Ress1=1

(
ξ∗1 (Y ; s1, s2, . . . , sn−1)

)
= |Y |−n−1

2 ,

up to a constant factor.
Similarly, for the standard parabolic group P = Pn1,n2,...,nq

corresponding
to the partition n = n1 +n2 + · · ·+ nq, define the associated Siegel’s Eisenstein
series by

EP (s|Y ) :=En1,n2,...,nq
(s|Y )

:=
∏

(Aj∗)=A∈Γn/P,Aj∈Z
n×Nj

q∏

j=1

|Y [Aj ]|−sj , Resj >
nj + nj+1

2

where s = (s1, s2, . . . , sq) and Nj = n1 + n2 + · · · + nj . Define also Koecher’s
zeta function by

Zm,n−m(X, s) :=
∑

A∈Zn×m/GL(m,Z),rkA=m

|X [A]|−s, Re(s) >
n

2
.
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Lemma 2. (See e.g. [Te]) (1) En1,n2,...,nq
(s|Y ) and Zm,n−m(X, s) are well-

defined in the above indicated regions and admit meromorphic continuation to
the whole parameter spaces; and
(2) They satisfy the following relations (see e.g. [Te]):

|Y |−s · En−1,1(1; s|Y −1) = E1,n−1(1; s|Y ) = Z1,n−1(Y ; s)/Z1,0(I; s)

and

Zn,0(X, s) = |X |−s ·
n−1∏

j=0

ζ(2s − j).

In parallel, for a positive definite Y with |Y | = 1 and s = (s1, s2, . . . , sn),
introduce as usual the power function

p−s(Y ) :=

n∏

j=1

|Yj |−sj .

Then the associated Siegel’s Eisenstein series for the Borel B = P1,1,...,1 is
defined as

E(n)(s|Y ) :=
∑

γ∈Γn/P1,1,...,1

p−s(Y ), Resj > 1, j = 1, 2, . . . , n − 1.

Lemma 3. We have

ξ∗1(Y ; s1, s2, . . . , sn−1) = E(n)(s1, s2, . . . , sn|Y ),

and
E(n)(s|Y −1) = E(n)(s

∗|Y )

where s∗ := (sn−1, sn−2, . . . , s2, s1,−(s1 + s2 + · · · + sn)). Consequently,

ξ∗1(Y −1; t1, t2, . . . , tn−1) = ξ∗1 (Y ; tn−1, . . . , t2, t1).

Thus, in particular, for the Siegel Eisenstein series corresponding to the
maximal parabolic subgroup Pn−1,1, i.e., for

En−1,1(s1, s2|Y ) :=En−1,1(1; s1, s2|Y )

:=
∑

(A1∗)=A∈Γn/Pn−1,1,A1∈Zn×(n−1)

|Y [A1]|−s1 |Y [A]|−s2 ,

we have, by Lemma 3,

En−1,1(s, t|Y ) =|Y |−t ·
∑

(A1∗)=A∈Γn/Pn−1,1

|Y [A1]|−s

=|Y |−t ·
∑

A∈Γn/Pn−1,1

|Y [A]n−1|−s = ξ∗n−1(Y, s).
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Here, we used the fact that the group involved is SL(n).

Consequently, by Lemmas 1 and 2, we obtain the following
Fact M. (1) ξ∗n−1(Y ; s) and E(Λ; s) are related by

ξ∗n−1(Y
−1; s) =

1

ζ(2s)
·
∑

x∈Zn\{0}

|Y [x]|−s =
1

ζ(2s)
· E
(
Λ(g);

s

n/2

)

where Y := gt · g and Λ denotes the lattice (Zn; ρ(g)) with the metric ρ(g) on
Rn induced by the positive definite matrix Y = gt · g; and
(2) ξ∗1 (Y ; s1, s2, . . . , sn−1) = E(n)(s1, s2, . . . , sn|Y ).

In particular,

E(Λ(g); s) = Restn−2=1, tn−3=1, ..., t2=1, t1=1ξ
∗
1 (Y ; ns− n−2

2 , tn−2, tn−3, . . . , t2, t1).

A.3.2 Langlands’ Eisenstein and Siegel’s Eisenstein

To apply Fact E′′ directly, we still need write Siegel’s Eisenstein series introduced
using classical language in terms of Langlands’ Eisenstein series introduced using
a language which is more convenient for theoretical purpose. The point of course
is about the power function p and the function mB. For this, write a positive
definite Y (with |Y | = 1) as Y = a[n] with a = diag(a1, a2, . . . , an) and n
upper triangular unipotent (with diagonal entries 1). Then ai = |Yi|/|Yi−1|, i =
1, 2, . . . , n. Consequently, by definition,

p−s(Y ) =

n∏

j=1

|Yj |−sj

=|Y1|−(s1+s2+···+sn)
(
|Y2|/|Y1|

)−(s2+s3+···+sn)

· · ·
(
|Yn−1|/|Yn−2|

)−(sn−1+sn)

·
(
|Yn|/|Yn−1|

)−sn

=a
−(s1+s2+···+sn)
1 a

−(s2+s3+···+sn)
2 · · · a−(sn−1+sn)

n−1 ·
(
a1a2 · · · an−1

)−sn

=a
−(s1+s2+···+sn−1)
1 a

−(s2+s3+···+sn−1)
2 · · · a−sn−1

n−1

since
∏n

j=1 aj = |Y | = 1.

On the other hand, if Y = gtg with T (g) = diag(t1, t2, . . . , tn), then we have
aj = t2j and

mB(g)λ+ρB = T (g)λ+ρB

where as usual, we let λ = (z1, z2, . . . , zn) ∈ Cn,
∑n

j=1 zj = 0 so that

ρ = ρB =
(n − 1

2
,
n − 1

2
− 1, . . . , 1 − n − 1

2
,−n − 1

2

)
.

Hence, by a direct calculation, we get

mB(g)λ+ρB

=t
−[(n−1)+(2z1+z2+···+zn−1)]
1 · t−[(n−2)+(z1+2z2+···+zn−1)]

2 · · · t−[1+(z1+z2+···+2zn−1)]
n−1 .
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Recall also that the Langlands Eisenstein series associated to the constant
function 1 on the Borel B = P1,1,...,1 (related to SL(n)/B) is given by

E(1; λ)(g) :=
∑

γ∈SL(n,Z)/P1,1,...,1=B

mB(δg)λ+ρB .

So if we make the variable transformation from λ to s by






2s1 = 1 + (z1 − z2)

2s2 = 1 + (z2 − z3)

· · · · · ·
2sn−1 = 1 + (zn−1 − zn)

Then we arrive at the
Fact M′. (1) E(1; λ)(g) = E(n)(s|Y ),
where λ = (z1, z2, . . . , zn) with

∑n
j=1 zj = 0 and s = (s1, s2, . . . , sn−1) satisfying






2s1 = 1 + (z1 − z2)

2s2 = 1 + (z2 − z3)

· · · · · ·
2sn−1 = 1 + (zn−1 − zn).

(2) Introduce the variable s via 2ns− n + 1 = z1 − z2,, we have

E
(
Λ(g); s

)
= Resz2−z3=1Resz3−z4=1 · · ·Reszn−1−zn=1E(1; z1, z2, . . . , zn)(g).

A.3.3 New Zetas: Genuine but Different

Recall that, by Fact D, high rank zetas are given by

ξQ,r(s) =

∫

MQ,r [1]

Ê(Λ;
r

2
s) dµ0(Λ).

Thus by Facts G-I-J and M, to offer a close formula, it suffices to evaluate the
integration
∫

F(0)

Resz2−z3=1 · · ·Resz3−z4=1 · · ·Reszr−1−zr=1

(
E(1; z1, z2, . . . , zr)(g)

)
dµ(g).

Thus, if we were able to freely make an interchange between
(i) the operation of taking integration

∫
F(0) and

(ii) the operation of taking residues Resz2−z3=1 · · ·Resz3−z4=1 · · ·Reszr−1−zr=1,
it would be sufficient for us to evaluate

Resz2−z3=1 · · ·Resz3−z4=1 · · ·Reszr−1−zr=1

(∫

F(0)

E(1; z1, z2, . . . , zr)(g) dµ(g)
)
,
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or better, to evaluate the expression

Resz2−z3=1 · · ·Resz3−z4=1 · · ·Reszr−1−zr=1(
∑

w∈Ω

1∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

)
)

where λ = (z1, z2, . . . , zr) with z1 + z2 + · · · + zr = 0, since by Fact G,

∫

F(T )

E(1; z1, z2, . . . , zr)(g) dµ(g)

=

∫

SL(r,Z)\SL(r,R)/SO(r)

ΛT E(1; z1, z2, . . . , zr)(g) dµ(g)

=
∑

w∈Ω

e〈wλ−ρ,T 〉

∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

)

by Fact L.
Unfortunately, this interchange of orders of two operations is not allowed

in general. As examples, one can observe this by working on SL(n) and by
comparing the poles for the resulting expressions. (For details, see the remark
at the end of A.3.4 below.)

On the other hand, even with the existence of such discrepancies, the func-
tion

Resz2−z3=1 · · ·Resz3−z4=1 · · ·Reszr−1−zr=1(
∑

w∈W

1∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

)
)

proves to be extremely natural and nice. This then leads to

Definition 2. The single variable period Z
SL(r)
Q (z1) associated to SL(r) over

Q is defined by

Z
SL(r)
Q (z1) :=Resz2−z3=1 · · ·Resz3−z4=1 · · ·Reszr−1−zr=1

(
∑

w∈W

1∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

)
)

,

where λ = (z1, z2, . . . , zr) with z1 + z2 + · · · + zr = 0.
Clearly, there are some factors ξ(ax+ b)’s left in the denominator even after

all cancelations made. To clear them, we make the following observations:
(i) there is a minimal integer I(SL(r)) and finitely many factors

ξ
(
a

SL(r)
1 z1 + b

SL(r)
1

)
, ξ
(
a

SL(r)
2 z1 + b

SL(r)
2

)
, · · · , ξ

(
a

SL(r)
I(SL(r))λP + b

SL(r)
I(SL(r))

)
,
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such that the product
[∏I(SL(r))

i=1 ξ
(
a

SL(r)
i z1 + b

SL(r)
i

)]
·ZSL(r)

Q (z1) admits only

finitely many singularities.
(ii) there is a minimal integer J(SL(r)) and finitely many factors

ξ
(
c
SL(r)
1

)
, ξ
(
c
SL(r)
2

)
, · · · , ξ

(
c
SL(r)
J(SL(r))

)
,

such that there are no factors of special ξ values appearing at the denominators

in the product
[∏J(SL(r))

i=1 ξ
(
c
SL(r)
i

)]
· ZSL(r)

Q (z1).

Definition 3. The zeta function ξ
SL(r)
Q;o for SL(r) over Q is defined by

ξ
SL(r)
Q;o

(
s
)

:=

[
I(SL(r))∏

i=1

ξ
(
a

SL(r)
i s + b

SL(r)
i

)
·

J(SL(r))∏

j=1

ξ
(
c
SL(r)
j

)]
· ZSL(r)

Q

(
s
)
,

Re s ≫ 0

Clearly, Definitions 2 and 3 here are special cases of Definitions 2 and 3 in
the main text. In fact here implicitly the maximal parabolic subgroup Pr−1,1 is
used.

Remark. We remind the reader that the version with parameter T is in fact
also very important. In rank two case, one can show that for T non-negative,
the associated period also satisfies the functional equation and the RH. For
general cases, the structure is more complicated on one hand, and beautiful

on the other: Say the functional equation for ξ
SL(n)/Pm,n−m;T
Q is related with a

different function ξ
SL(n)/Pn−m,m;T
Q (for a different maximal parabolic subgroup),

based on another type of symmetry between Em,n−m for Y and En−m,n for
Y −1 stated above (for classical Siegel Eisenstein series). However, when T = 0,

ξ
SL(n)/Pm,n−m;0
Q is essentially the function ξ

SL(n)/Pn−m,m;0
Q . All this then leads

to the functional equation for ξ
SL(n)/Pm,n−m

Q (s).

A.3.4 Functional Equation and the Riemann Hypothesis
Just as high rank zetas, we certainly expect that these new zetas introduced

in the previous subsection satisfy the functional equation and an analogue of
the Riemann Hypothesis. For this we have the following

Conjecture. (Functional Equation) There exists a constant cSL(r) depend-
ing on r only such that

ξ
SL(r)
Q;o

(
cSL(r) − s

)
= ξ

SL(r)
Q;o

(
s
)
.

To make the functional equation canonical, i.e., reflecting the standard sym-
metry s ↔ 1 − s for the standard functional equation, we make the following
normalization.
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Definition 3′ The zeta function ξ
SL(r)
Q

(
s
)

for SL(r) over Q is defned by

ξSL(r);Q

(
s
)

:= ξ
SL(r)
Q;o

(
s +

cSL(r) − 1

2

)

As such then we have the following

Conjecture′. (Functional Equation) ξSL(r);Q(1 − s) = ξSL(r);Q(s).

The most remarkable property shared by all these newly introduced zetas is
the following Zeta Fact about the uniformity of their zeros. That is to say, we
expect the following

The Riemann Hypothesis
G/P
Q .

All zeros of the zeta function ξSL(r);Q(s) lie on the central line Re s =
1

2

Remark. Examples with SL(3) shows that ξQ,r(s) is not the same as ξSL(r);Q(s)
in general. (In fact, while ξQ,3(s) has only two singularities at s = 0, 1, ξSL(3);Q(s)

has four singularities at s = 0, 1
3 , 2

3 , 1, by the precise formula listed in Appendix
B.) We detect such a discrepancy only quite later, indeed, not even until the
first version of this paper was written on Dec. 4, 2007: so quite some time, we
wrongly believed that ξQ,r(s) are ξSL(r);Q(s) are the same.

After making these conjectures, or more correctly, after making the RH for
high rank zetas open, (with the mistake mentioned in the remark above,) we felt
that more examples should be provided at least numerically. This then led to
the problem of finding precise expressions for ‘ξQ,r(s)’ with r = 4, 5. For quite
some time, we could not make an advance. However, this was changed with the
short visit of Henry Kim in the summer of 2007, who brought us the paper of
Diehl [D]. With [D], being compatible with our old approach for rank 3 zeta
by taking residues in [W3], we were afterwards able to see the structure for the
zetas, modulo a few mistakes. Accordingly, we did some painful calculations:
a) For rank 4, totally 24×6 = 144 cases were discussed, from which we obtained
the final zeta consisting of 12 terms;
b) For rank 5, totally 120 × 10 = 1200 cases were discussed, from which we
obtained the final zeta consisting of 28 terms.

For details, see Appendix B: Examples. Based on all these calculations, we
are able to exposes the following

Fact N. (1) (Functional Equation≤5)

ξSL(r);Q(1 − s) = ξSL(r);Q(s) when r = 2, 3, 4, 5;

(2) ([LS], [S]) (Riemann HypothesisSL(2,3);Q)

All zeros of ξSL(2);Q(s) and ξSL(3);Q(s) lie on the central line Re(s) = 1
2 .
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A.4 Zetas for (G, P )/Q

A.4.1 From SL to Sp: Analytic Method Adopted & Periods Chosen

For quite sometime, we want to use geo-arithmetic method to find an analogue
of high rank zetas for other reductive groups. The first natural target is Sp.
However, this proves to be very difficult, since for the completed theory, we
should start with what might be called principal lattices associated to Sp and
establish all the Sp properties corresponding to Facts listed above for SL.

Fortunately, for the purpose of finding corresponding zeta functions ξSp(2n);Q(s)
for Sp, with our success for SL discussed above and the paper of Diehl [D], which
in fact deals with Sp instead of SL, we realize that instead of the approach us-
ing geo-arithmetic method, an alternative way using pure analytic methods is
sufficient. This goes as follows.

Let G = Sp(2n) with G(R) = Sp(2n, R) the symplectic group of degree n
over R. For any Z ∈ S = Sn, the Siegel upper half space of rank n, write
Z = X +

√
−1Y according to its real and imaginary parts. By definition,

Y = Im Z > 0 and Zt = Z is symmetric. For an M =

(
A B
C D

)
∈ Sp(2n, R),

as usual, set M〈Z〉 := (AZ + B) · (CZ + D)−1 and write Y (M) := ImM〈Z〉.
Note that the action is transitive and the stablizer in Sp(2n, R) for

√
−1I is

given by Sp(2n, R) ∩ SO(2n). Consequently, we obtain a natural isomorphism
Sp(2n, R)/SO(2n) ∩ Sp(2n, R) ≃ Sn.

Introduce also Γn :=
{
diag(±1,±1, · · · ,±1)

}
\Sp(2n, Z) the Siegel modular

group, and B = Pn :=
{(∗ ∗

0 ∗

)
∈ Γ

}
the associated maximal parabolic

subgroup.
Fix Z ∈ S, define then the associated Siegel-Maaβ Eisenstein series, or

better, the Siegel-Epstein zeta function by

En(Z; s) :=
∑

γ∈B\Γ

|Y |−s

‖CZ + D‖−2s
.

Motivated by our study on high rank zetas associated to SL(n), for suffi-
ciently positive T , we define a principal period for Sp(n) over Q by

ζT
Sp(n),Q(s) :=

∫

Γ\Sn

∧T En(Z; s) dµ(Z).

This is then a function on s depending also on the parameter T . It is then
an open problem whether we can evaluate this expression at T = 0 since the
corresponding Fact G-I-J for Sp is still missing. Assume that the answer to this
is affirmative, then

ζSp(n),Q(s) := ζ0
Sp(n),Q(s) := ζT

Sp(n),Q(s)|T=0

may be viewed as an Sp-analogue of the high rank zeta functions, call it the
principal zeta function for Sp(n) over Q.
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As for the case of SL(n), it is, for the time being, very difficult, in fact,
quite impossible, to offer a precise formula for the Eisenstein period ζT

Sp(n),Q(s).

However, motivated by our study for SL(n), we want to introduce an analogue
for the new type of zeta functions ξSL(r);Q(s). For this (a bit changed yet very
meaningful) purpose, we make the following preparations.

a) Siegel Eisenstein series. As usual, corresponding to the partition n = r +

1+1+· · ·+1, introduce the standard parabolic subgroup Pr :=
{(A ∗

0 B

)
∈ Γ
}

where A =





Ht

1 0

∗ . . .

1




, B =





H−1

1 ∗
0

. . .

1




with H = H(r), |H | =

1. Accordingly, define the associated Siegel Eisenstein series by

Er(Z; sr, . . . , sn) :=
∑

γ∈Pr\Γ

n∏

v=r

|Y (γ)v)|−sv .

It is known that these Siegel Eiesnetsin series are naturally related to the Siegel
zeta functions associated to the standard parabolic subgroup Qr of SL(n),
used already in our study for zetas associated to SL(n). Recall that, if R :=
{diag(±1, . . . ,±1)}\SL(n, Z) and Qr is the standard parabolic subgroup asso-
ciated to the partition n = r + 1 + 1 + · · · + 1, then the associated Siegel zeta
functions are defined by

ξ∗r (Y ; sr, . . . , sn−1) :=
∑

N∈Qr\R

n−1∏

v=r

|Y [N ]v|−sv

for all 1 ≤ r ≤ n − 1.

Lemma 1. ([D]) We have
(i)

Er(Z; sr, . . . , sn) =
∑

γ∈B\Γ

|Y (γ)|−sn · ξ∗r
(
Y (γ); sr, . . . , sn−1

)
;

(ii) There exists a constant c depending only on r such that

Ressr= r+1
2

ξ∗r (Y ; sr, . . . , sn−1) = crξ
∗
r+1(Y ; sr+1 +

r

2
, sr+2, . . . , sn−1).

Consequently,

Ressn−1=1 · · ·Ress2=1Ress1=1

(
ξ∗1(Y ; s1, s2, . . . , sn−1)

)
= |Y |−n−1

2
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up to a constant factor. Therefore, up to constant factors,

Ressn−1=1 · · ·Ress2=1Ress1=1Er(Z; sr, . . . , sn)

=
∑

γ∈B\Γ

|Y (γ)|−sn · Ressn−1=1 · · ·Ress2=1Ress1=1ξ
∗
r (Y (γ); sr, . . . , sn−1)

=
∑

γ∈B\Γ

|Y (γ)|−sn · |Y (γ)|−n−1
2 = En(Z; sn +

n − 1

2
).

b) Siegel Eisenstein series and Langlands Eisenstein series. As for the
case of SL(n), we next write the classical Siegel Eisenstein series in terms
of Langlands’ language. This is given by the following formula: Let λ =
(z1, z2, . . . , zn) ∈ a0, then by defintion,

aλ(Z) =
n∏

v=1

a−zv
v with av = |Yv|/|Yv−1|.

Thus, the so-called power function

p−s(Y ) :=

n∏

µ=1

|Yµ|−sµ

is given by

n∏

µ=1

|Yµ|−sµ =p−s(Y ) = aλ(Y ) =
n∏

v=1

a−zv
v

=|Y1|−z1+z2 |Y2|−z2+23 · · · |Yn−1|−zn−1+zn |Yn|−zn .

That is to say, we need make the following change of variables

s1 = z1 − z2, s2 = z2 − z3, . . . , sn−1 = zn−1 − zn, sn = zn.

Consequently, we obtain the following
Fact M′′. (1) E(1; λ; Y ) = E1(Z; s1, s2, . . . , sn), and
(2) Up to a suitable constant factor,

En(Z, zn +
n − 1

2
)

=Reszn−1−zn=1 · · ·Resz2−z3=1Resz1−z2=1E(1; z1, z2, . . . , zn; Y ).

In particular, when n = 2, i.e, for Sp(4), we have

Resz1−s=1E(1; z1, s; Y ) = En(Z, s +
1

2
).

c) The Sigel-Maaβ-Eisenstein period. Note that the constant function
one on the Borel is cuspidal, by the result of [JLR] cited above, and using
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the corresponding Gindikin-Karpelevich formula for the associated intertwining
operator, we have the following:

Fact E(3). Up to a constant factor,
∫

Sp(n,Z)\Sn

∧T E(1; λ; M) dµ(M)

=
∑

w∈W

e〈wλ−ρ,T 〉

∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

) .

With all this, we are now ready to introduce our new zeta for Sp(2n): first
define (not-yet-normalized) zeta as the residue

Reszn−1−zn=1,··· ,z2−z3=1,z2−z1=1

∑

w∈W

1∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

) ,

since 〈ρ, α∨〉 = 1 for all α ∈ ∆0, where λ = (z1, z2, . . . , zn) ∈ a0, corresponding
to Definition 2; then, make certain normalizations following Definition 3. As
such, we finally obtain a new series natural zetas ξSp(2n),Q(s) for Sp(2n) over

Q, which in fact coincide with ξ
Sp(2n)/Pn

Q (s) defined in the main text.
As concrete examples, we worked out all the details for n = 2. Similarly, we

have the functional equation

ξSp(4),Q(1 − s) = ξSp(4),Q(s).

For details, see Appendix B below.
In summary, what we have done for Sp is as follows:

(i) First, motivated by our study for high rank zeta functions associated to
SL(n), we introduce a principal zeta for Sp(2n) by evaluating the integration

∫

Sp(2n,Z)\Sn

∧T En(Z; s) dµ(Z)

at T = 0: in assuming that Fact G-I-J for Sp can be established, even in the
integration T is supposed to be sufficiently positive, an evaluation at T = 0 is
allowed;
(ii) By b), we know that, up to constant factors,

En(Z; zn) = Reszn−1−zn=1,··· ,z2−z3=1,z2−z1=1E(1; z1, z2, . . . , zn−1, zn+
n − 1

2
; Y ).

So it suffices to evaluate
∫

Sp(2n,Z)\Sn

Reszn−1−zn=1,··· ,z2−z3=1,z2−z1=1

(
∧T E(1; z1, z2, . . . , zn−1, zn +

n − 1

2
; Y )

)
dµ(Y );
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(iii) Even an interchange of
∫

Sp(2n,Z)\Sn
and Reszn−1−zn=1,··· ,z2−z3=1,z2−z1=1 is

not allowed, we, motivated by our success for SL(n), still decide to study the
period

Reszn−1−zn=1,··· ,z2−z3=1,z2−z1=1∫

Sp(2n,Z)\Sn

(
∧T E(1; z1, z2, . . . , zn−1, zn +

n − 1

2
; Y )

)
dµ(Y );

(iv) Now by c), for sufficiently positive T ,
∫

Sp(2n,Z)\Sn
∧T E(1; λ; Y ) dµ(Y ) is

simply
∑

w∈W

e〈wλ−ρ,T 〉

∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

) .

(v) Evaluate the latest period at T = 0 using the expression appeared in the
right hand side and further take the residue. This then leads to the not yet
normalized new zeta function for Sp(2n) over Q:

Reszn−1−zn=1,··· ,z2−z3=1,z2−z1=1

( ∑

w∈W

1∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

)
)
.

(vi) Suitably normalized, we obtain a new type of zeta function ξSp(2n)Q(s) for
which we have the following

Conjecture. (1) (Functional Equation) ξSp(2n);Q(1 − s) = ξSp(2n);Q(s);

(2) (The Riemann Hypothesis Sp(2n);Q)

All zeros of the zeta function ξSp(2n);Q(s) lie on the central line Re s =
1

2
.

Up to this point, the importance of the period

ωG
Q (λ) :=

∑

w∈W

( 1∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

)
)

has been fully realized and the huge symmetry induced from the Weyl group W
is noticed.

A.4.2 G2: Maximal Parabolics Discovered

The success of introducing natural zetas for Sp(n) which are supposed to satis-
fying the Riemann Hypothesis proves to be very crucial. Passing this point, we
then seriously try to find natural zetas for other types of classical groups.

Practically, to be able to find such zetas, we still need solve two main tech-
nical problems:

1) how to introduce an analog of Epstein zeta function for other groups? Such
a function should at least satisfy the property that it can be obtained as the
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residue along certain singular hyperplanes of the (relative) Eisenstein series
EG/B(1; λ)(g) associated to constant function one on the Borel; and

2) what are singular hyperplanes along which the residues should be taken?

However, by reviewing what has been done for SL(n) and Sp(2n), for the
purpose of introducing zetas, we realize that the completed theory for (1) is not
really needed absolutely: What matters (for introducing our new zetas) is not
Epstein type zeta, but the period

ωG
Q (λ) :=

∑

w∈W

1∏
α∈∆0

〈wλ − ρ, α∨〉 ·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

) .

With (1) solved, we then shift to (2). At the very beginning, we had no
idea on how to deal it – to solve this problem we first need understand where
are singularities for EG/B(1; λ)(g); more importantly, even if knowing the sin-
gularities, we still need figure out along which singular hyperplanes we take the
residues, as there are many many possible choices.

As such, at this preliminary stage of our study, we decide to be more prac-
tical. That is, not try to solve the problem completely, but try to work with
examples with the hope to expose hidden structures: After all, the most impor-
tant points are to introduce new zetas, and once introduced to check whether
they satisfy the functional equation and further the Riemann Hypothesis.

For such a limited practical purpose, then clearly, among all classical groups,
we need test these groups which are with relatively smaller ranks and with
reasonable smaller sizes of Weyl groups. By looking at Bn, Dn, E6,7,8, F4 and
G2, it is obvious why we decide to focus on G2 – G2, being exceptional and
interesting, is of rank two and with only 12 Weyl elements. This is extremely
nice: rank two should make our study more like to be successful – after all, the
period

ωG2

Q (z1, z2) =
∑

w∈W

1

〈wλ − ρ, α∨
short〉 · 〈wλ − ρ, α∨

long〉
·

∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

)

is a function with two variables (z1, z2) = λ ∈ a0, where ∆0 := {αshort, αlong}
with αshort the short root and αshort the long root. Consequently, we only need
find a single singular line az1 + bz2 + c = 0.

At this point, then by recall what has happened for SL and Sp, we con-
clude that in fact all singular hyper-planes appeared there are factors of the
denominator of the term in ωG

Q (λ) corresponding to the identity Weyl element
Id. Applying this to G2, we are led to

1

〈wλ − ρ, α∨
short〉 · 〈wλ − ρ, α∨

long〉
.

Now it is crystal clear that we should do – There are two possibilities for the
choice of a single singular line:
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(1) 〈wλ − ρ, α∨
short〉 = 0 or

(2) 〈wλ − ρ, α∨
long〉 = 0.

In this way, then we obtain two new zetas for G2. Now recall that by Lie the-
ory, there is a one-to-one and onto correspondence between maximal parabolic
subgroups and simple roots, it is then only natural for us to name the corre-

sponding zeta functions ξ
G2/Plong

Q (s) and ξ
G2/Pshort

Q (s) respectively, where Pshort

and Plong correspond to αlong and αshort respectively. The precise calculation is
carried out in Appendix B. In particular, the result confirms that we have the
functional equation

ξ
G2/Plong

Q (1 − s) = ξ
G2/Plong

Q (s) and ξ
G2/Pshort

Q (1 − s) = ξ
G2/Pshort

Q (s).

A.4.3 Zetas for (G, P )/Q: Singular Hyper-planes Found

With the discovery of importance played by the period ωG
Q (λ) in our study

of zeta functions, and the success of the discussion on G2, we next want to
systematically understand how singular hyperplanes are chosen in the process
of taking residues. For this we go back to examine the examples of SL(n), Sp(2n)
and G2.
a) For SL(n), a rank (n − 1) group, as usual,

∆0 = {e1 − e2, e2 − e3, . . . , en−1 − en},

with

λ = (z1, z2, . . . , zn) ∈ a0 ⊂ Cn,
n∑

i=1

zi = 0,

where ei’s are the standard ON basis for Cn. In the definition of ξSL(n),Q(s),
the (n − 2)-singular hyperplanes are chosen to be

z1 − z2 = 1, z2 − z3 = 1, . . . , zn−2 − zn−1 = 1;

b) For Sp(2n), a rank n group, as usual,

∆0 = {e1 − e2, e2 − e3, . . . , en−1 − en, 2en}

with λ = (z1, z2, . . . , zn) ∈ a0 = Cn. In the definition of ξSp(2n),Q(s), the
(n − 1)-singular hyperplanes are chosen to be

z1 − z2 = 1, z2 − z3 = 1, . . . , zn−1 − zn = 1;

c) For G2, a rank two group, as usual

∆0 = {αshort, αlong}.

In this case, we decided to use λ = z1(2αshort + αlong) + z2(αshort + αlong). As
said above, two different choices of a single singular line are chosen: z1 − z2 = 1
and z2 = 0.
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As such, by looking at these singular hyperplanes more carefully, we conclude
that
a) For SL(n), they are given by

〈wλ − ρ, e1 − e2〉 = 0, 〈wλ − ρ, e2 − e3〉 = 0, . . . , 〈wλ − ρ, en−2 − en−1〉 = 0,

or better, are given by

〈wλ − ρ, α∨〉 = 0, α ∈ ∆\{en−1 − en};

b) For Sp(2n), they are given by

〈wλ − ρ, e1 − e2〉 = 0, 〈wλ − ρ, e2 − e3〉 = 0, . . . , 〈wλ − ρ, en−1 − en〉 = 0,

or better, are given by

〈wλ − ρ, α∨〉 = 0, α ∈ ∆\{2en};

c) For G2, easily with the choice λ = z1(2αshort +αlong)+ z2(αshort +αlong), the
line z1 − z2 = 1 corresponds to 〈λ− ρ, α∨

short〉 = 0, while line z2 = 1 corresponds
to 〈λ − ρ, α∨

long〉 = 0. Or better put, the line z1 − z2 = 1 is given by

〈λ − ρ, α∨〉 = 0, α ∈ ∆0\{αlong};

while the line z2 = 1 is given by

〈λ − ρ, α∨〉 = 0, α ∈ ∆0\{αshort}.

Recall now that, to introduce new zetas, we are determined to use

ωG
Q (λ) =

∑

w∈W

(
1∏

α∈∆0
(〈λ, w−1α∨〉 − 1)

·
∏

α>0,wα<0

ξ
(
〈λ, α∨〉

)

ξ
(
〈λ, α∨〉 + 1

)
)

,

a special period governed by huge symmetries. Recall also that, for finding
singular hyper-planes, our success for SL and Sp led to the term corresponding
to w = 1:

1∏
α∈∆0

(〈λ, α∨〉 − 1)
· 1 =

1∏
α∈∆0

(〈λ, α∨〉 − 1)
.

With such a focus, it is then not too difficult for us to detect that
all (r− 1)-singular hyperplanes are taken from the total r-factors in the denom-
inator of this term, where r is the rank of the group.
Once this is observed, then it is extremely clear what we have done so far: a
special choice of the (r−1)-singular hyperplanes correspond to a fixed choice of
certain special maximal parabolic subgroup. More precisely, for a fixed standard
maximal parabolic subgroup P , by Lie theory, there exists a single simple root
αP such that P corresponding to ∆0\{αP}. As such, the (r − 1) singular
hyperplanes chosen may be understood as these given by 〈λ − ρ, α∨〉 = 0 for
α ∈ ∆0, α 6= αP .
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Upon this point, we are quite sure how a new type of zetas for (G, P ) should
be introduced. And more importantly, we understand the importance of the role
played by the symmetry. This then leads to Definition 2 of periods of (G, P )/Q:

ω
G/P
Q (s) := Res{〈λ−ρ,α∨〉=0 : α∈∆0\{αP }}

(
ωG

Q (λ)
)

where αP is the simple root corresponds to the maximal parabolic P . With suit-
able normalization as done in Definition 3, we then finally obtain our new zetas

ξ
G/P
Q (s) for (G, P ) over Q, whose importance can be read from the following

Conjecture. (1) (Functional Equation) ξ
G/P
Q (1 − s) = ξ

G/P
Q (s);

(2) (The Riemann Hypothesis
G/P
Q )

All zeros of the zeta function ξ
G/P
Q (s) lie on the central line Re s =

1

2
.

To support this new approach, we start working on more examples (for these
new zetas) associated to other type of standard maximal subgroups (of SL(3),
SL(4), Sp(4) and G2). The details are given in Appendix B.

A.5 Conclusion Remarks

A.5.1 Analogue of High Rank Zetas

We here propose an approach aiming at introducing genuine zeta functions for
(G, P )/F , as a natural generalization of high rank zeta functions.

Denote by AF the adelic ring of F . Let G be a reductive group defined over
F , and P a maximal parabolic subgroup. Then for the constant function 1 on
P , we form the relative Eisenstein series E(1; λG/P ; g) = EG/P (1; λG/P ; g). For
a fixed sufficiently positive T ∈ a0, the space of characters of the Borel B of G,
introduce a single variable period

ωT
G/P ;F (λG/P ) :=

∫

ZG(AF )G(F )\G(AF )

ΛT EG/P (1; λG/P ; g) dµ(g).

We expect that
An analogue of Fact G-I-J for G-principal lattices exists.

If so, then it makes sense to introduce

ωG/P ;F (λ) :=ωT
G/P ;F (λ)|T=0

=

∫

FG(0)⊂ZG(AF )G(F )\G(AF )

EG/P (1; λG/P ; g) dµ(g).

In particular, from ωG/P ;F (λ), a suitable normalization will then finally lead to
an analogue of high rank zetas for (G, P )/F .
Questions. (1) Is it possible to get EG/P (1; λG/P ; g) from EG/B(1; λ; g), the
relative Eisenstein series associated to the constant function 1 on the Borel, by
taking residues along with suitable rank(G) − 1 singular hyper-planes?
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(2) Can we take these singular hyper-planes simply as 〈λ − ρ, α∨〉 = 0, α ∈
∆0\{αP }?
(3) Is it possible to introduce a completed Eisenstein series ÊG/P (1; λG/P ; g)

from EG/P (1; λG/P ; g) so that the resulting zeta function admits only finite
many singularities, satisfies a simple functional equation, and the Riemann Hy-
pothesis?

A.5.2 T -version

In our discussion above, by adapting an analytic method, we can extend our
discussion for periods defined originally for sufficiently positive T to these for
T = 0. This makes the theory more canonical and elegant. However the use
of T -version proves to be quite helpful – as example for SL(3, 4, 5) shows, such
a T -version can be used to help us to understand the additional symmetry for
our new zeta functions. For example, we know that

ξ
SL(3)/P2,1

Q (s) = ξ
SL(3)/P1,2

Q (s), ξ
SL(4)/P3,1

Q (s) = ξ
SL(4)/P1,3

Q (s),

and

ξ
SL(5)/P4,1

Q (s) = ξ
SL(5)/P1,4

Q (s), ξ
SL(5)/P2,3

Q (s) = ξ
SL(5)/P3,2

Q (s).

On surface, these relations may be viewed as a reflection of the symmetry be-
tween the Eisenstein series Er−m,m associated to the maximal parabolic Pr−m,m

and the Eisenstein series Em,r−m associated to the maximal parabolic Pm,r−m.
(See A.3.1 for details.) More deeply, it roots into the symmetry between Pr−m,m

and Pm,r−m for maximal parabolic subgroups of SL(r).
Put this in concrete term, for SL(3), we can further introduce T -version

zeta functions ξ
SL(3)/P2,1;T
Q (s) and ξ

SL(3)/P1,2;T
Q (s), analogues of ξ

SL(3)/P2,1

Q (s)

and ξ
SL(3)/P1,2

Q (s) respectively, starting from the T -version period ω
SL(3);T
Q (λ)

in A.2.6. Then one checks that with T ∈ C · ρ, i.e., with T specialized as points
on the line spanned by ρ, we have

ξ
SL(3)/P2,1;T
Q (1 − s) = ξ

SL(3)/P1,2;T
Q (s).

This is then the root of the equality

ξ
SL(3)/P2,1

Q (s) = ξ
SL(3)/P1,2

Q (s).

We expect that holds for all zetas related to (SL(r), Pr−m,m)/Q.
Along with this line, then we also expect that the symmetry, or better, the

duality, between type Bn and Cn groups will have similar impact to our new
zetas. In a sense, various symmetries are the main reason why our new zetas
satisfy the functional equations and the Riemann Hypothesis.

We end this T -version discussion by pointing out that the Riemann Hypoth-

esis does not hold for ξ
SL(3)/P2,1;T
Q (s) if T is not 0. So our new zetas ξ

G/P
Q (s),

being specialization of T -version zetas ξ
G/P ;T
Q (s) to the ground zero and hence

delicate, are quite canonical, hence absolutely beautiful.
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A.5.3 Where Lead To

It is hard to predict, being new and rich. In general terms, two aspects are
worth being mentioned. One is for the zetas themselves, the other is for possible
applications.

For zetas themselves, the first and the up-most task is then concentrated on
the (proof of) functional equations and the corresponding Riemann Hypothesis.
Examples listed in Appendix B for SL(2, 3, 4, 5), Sp(4) and G2 show that the
associated zetas satisfy the Functional Equation. This is beautiful, reflecting
additional symmetry, and supposedly doable even expected to be very compli-
cated. On the other hand, for the Riemann Hypothesis associated to new zetas,
responding to our inquires ([W4]), Suzuki first made several crucial numerical
tests on zeros of zetas ξSL(4);Q(s), ξSL(5);Q(s) and ξSp(4);Q(s) ([S2]). Shortly af-
ter, in January 2008, he was able to theoretically verify the Riemann Hypothesis

for zetas ξSp(4);Q(s) and ξ
G2/P
Q (s) ([S3, 4]), by strengthening a method used for

establishing the RH of ξSL(2);Q(s) ([LS]) and of ξSL(3);Q(s) ([S]). (In fact, this
method can also be used to show that outside a certain finite box, all zeros of

ξ
Sp(4)/P2e2

Q (s) lie on the line Re (s) = 1
2 as well.)

The third is about a generalization to all reductive groups. Even physically,
this can be done simply since all the framework works in this generality. But we
are somehow a bit hesitated feeling that time is not ripe to make such a move,
even we know that, up to a constant factor,

ξ
G1×G2/P1×G2

F (s) = ξ
G1/P1

F (s)
and that the RH holds for all rank 2 groups (modulo the finite box mentioned

above for ξ
Sp(4)/P2e2

Q (s)).

For applications, an obvious is about the relation between new zetas and
the classical Riemann zeta function. Problems likely to be asked here are: what
should be the relations between their zeros? This can be put more precisely, for
example, as: if we just consider a series, e.g., the series for SL(r)/Pr−1,1, or a
collection, e.g., the collection of rank r groups, what should be the sequence of
the n-th zeros for a fixed n? what about the distributions of these zeros, the
gaps between ordered pairs of zeros? etc. For this, a related interesting point
should be mentioned: the completed Riemann zeta function can be written as
a difference between two entire functions which both satisfy the RH. This is a
new structure emerged in our understanding of ξSL(3);Q(s). (See also [S3] for
ξSp(4);Q(s).)

We end this appendix by proposing a bit indirect, but quite speculating use
of our new zetas. We call this a ‘wonderful idea’ – the final gold is to replace the
original Riemann Hypothesis in the study of distribution of primes, of classical
problems such as the Goldbach conjecture, etc., with the RH for our zetas, some
of which have been established.
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[Iw] K. Iwasawa, Letter to Dieudonné, April 8, 1952, in Zeta Functions in Ge-
ometry, Advanced Studies in Pure Math. 21 (1992), 445-450

[JLR] H. Jacquet, E. Lapid & J. Rogawski, Periods of automorphic forms. J.
Amer. Math. Soc. 12 (1999), no. 1, 173–240

35



[Ki] H. Ki, All but finitely many non-trivial zeros of the approximations of the
Epstein zeta function are simple and on the critical line. Proc. London Math.
Soc. (3) 90 (2005), no. 2, 321–344.

[KW] H.H. Kim & L. Weng, Volume of truncated fundamental domains, Proc.
AMS, Vol. 135 (2007) 1681-1688

[Laf] L. Lafforgue, Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson.
Asterisque No. 243 (1997)

[LS] J. Lagarias & M. Suzuki, The Riemann Hypothesis for certain integrals of
Eisenstein series, Journal of Number Theory, 118(2006) 98-122

[L1] S. Lang, Algebraic Number Theory, Springer-Verlag, 1986

[L2] S. Lang, Introduction to Arakelov theory, Springer Verlag, 1988

[La1] R. Langlands, On the functional equations satisfied by Eisenstein series,
Springer LNM 544, 1976

[La2] R. Langlands, the volume of the fundamental domain for some arith-
metical subgroups of Chevalley groups, in Algebraic Groups and Discontinuous
Subgroups, Proc. Sympos. Pure Math. 9, AMS (1966) pp.143–148

[La3] R. Langlands, Euler products, Yale Math. Monograph, Yale Univ. Press,
1971

[Mi] H. Minkowski, Geometrie der Zahlen, Leipzig and Berlin, 1896

[MW] C. Moeglin & J.-L. Waldspurger, Spectral decomposition and Eisenstein
series. Cambridge Tracts in Math, 113. Cambridge University Press, 1995

[M] D. Mumford, Geometric Invariant Theory, Springer-Verlag, (1965)

[NS] M.S. Narasimhan & C.S. Seshadri, Stable and unitary vector bundles on a
compact Riemann surface. Ann. of Math. (2) 82 1965

[Ne] J. Neukirch, Algebraic Number Theory, Grundlehren der Math. Wis-
senschaften, Vol. 322, Springer-Verlag, 1999

[RR] S. Ramanan & A. Ramanathan, Some remarks on the instability flag.
Tohoku Math. J. (2) 36 (1984), no. 2, 269–291.

[Ser] J.-P. Serre, Algebraic Groups and Class Fields, GTM 117, Springer (1988)

[Sie] C.L. Siegel, Lectures on the geometry of numbers, notes by B. Friedman,
rewritten by K. Chandrasekharan with the assistance of R. Suter, Springer-
Verlag, 1989.

[St1] U. Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischer Formen,
Arch. Math. (Basel) 27 (1976), no. 6, 604–610

[St2] U. Stuhler, Zur Reduktionstheorie der positiven quadratischen Formen. II,
Arch. Math. (Basel) 28 (1977), no. 6, 611–619

36



[S] M. Suzuki, A proof of the Riemann Hypothesis for the Weng zeta function
of rank 3 for the rationals, pp.175-200, in Conference on L-Functions, World
Sci. 2007

[S2] M. Suzuki, private communications, Oct.-Dec., 2007

[S3] M. Suzuki, The Riemann hypothesis for Weng’s zeta function of Sp(4) over
Q, with an appendix [W5], preprint, 2008

[SW] M. Suzuki & L. Weng, Zeta functions for G2 and their zeros, preprint,
2008

[T] J. Tate, Fourier analysis in number fields and Hecke’s zeta functions, Thesis,
Princeton University, 1950

[Te] A. Terras, Harmonic analysis on symmetric spaces and applications II,
Springer-Verlag, 1988

[Ve] A.B. Venkov, On the trace formula for SL(3, Z), J Soviet Math., 12 (1979),
384-424

[We] A. Weil, Basic Number Theory, Springer-Verlag, 1973

[W-3] L. Weng, Analytic truncation and Rankin-Selberg versus algebraic trun-
cation and non-abelian zeta, Algebraic Number Theory and Related Topics,
RIMS Kokyuroku, No.1324 (2003), 7-21.

[W-2] L. Weng, Rank Two Non-Abelian Zeta and its Zeros,
available at http://xxx.lanl.gov/abs/math.NT/0412009

[W-1] L. Weng, Automorphic Forms, Eisenstein Series and Spectral Decompo-
sitions, Arithmetic Geometry and Number Theory, 123-210, World Sci. 2006

[W0] L. Weng, Non-abelian zeta function for function fields, Amer. J. Math 127
(2005), 973-1017

[W1] L. Weng, Geometric Arithmetic: A Program, in Arithmetic Geometry and
Number Theory, pp. 211-390, World Sci. (2006)

[W2] L. Weng, A Rank two zeta and its zeros, J of Ramanujan Math. Soc, 21
(2006), 205-266

[W3] L. Weng, A geometric approach to L-functions, in Conference on L-
Functions, pp. 219-370, World Sci (2007)

[W4] L. Weng, Zetas for SL(4), SL(5), Sp(4), and G2 over Q, private notes to
Suzuki, Oct.-Dec. 2007

[W5] L. Weng, Zeta function for Sp(2n), Appendix to [S3], preprint, 2008

[Z] Zagier, D. The Rankin-Selberg method for automorphic functions which are
not of rapid decay. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 415–437
(1982)

37

http://xxx.lanl.gov/abs/math.NT/0412009


B Examples

We here list zetas ξ
G/P
Q for G = SL(2, 3, 4, 5), Sp(4) and G2. Consequence, all

these zetas satisfy the FE ξ
G/P
Q (1 − s) = ξ

G/P
Q (s). (Detailed calculations were

given in version 2007 of this paper, but are omitted here as zetas for SL(2, 3),
Sp(4) and G2 are now available in [W1, 3, 4] and [SW] respectively).

Contents

B.1 SL(n)

B.1.1 SL(2)

B.1.2 SL(3)

B.1.3 SL(4)

B.1.4 SL(5)

B.2 Sp(4)

B.3 G2

B.4 T -version for SL(3)

B.1 SL(n)

B.1.1 SL(2)

A degenerate case, since P = B, the Borel. We have

ξ
SL(2)/B
Q (s) = ξQ,2 : (s) =

ξQ(2s)

s − 1
− ξQ(2s − 1)

s
(1)

It is the first natural example exposed that satisfies the RH ([W1,2,3], [LS]).

B.1.2 SL(3)

Two maximal parabolic subgroups P , corresponding to partitions 3 = 2 + 1 =
1 + 2. They share the same zetas:

ξ
SL(3)/P
Q (s) =ξQ(2) · 1

3s − 3
· ξQ(3s)

− ξQ(2) · 1

3s
· ξQ(3s − 2)

+
1

3
· 1

3s − 3
· ξQ(3s − 1)

− 1

3
· 1

3s
· ξQ(3s − 1)

+
1

2
· 1

3s − 1
· ξQ(3s − 2)

− 1

2
· 1

3s − 2
· ξQ(3s)

(2)
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Contradicting to the claim in Ch. 9 of [W3], by examining poles, this example

shows that ξQ,r(s) 6= ξ
SL(r)/Pr−1,1

Q (s). So high rank zetas ξF,r(s) are different
from the zetas for (SL(r), Pr−1,1)/Q. The RH is confirmed ([S]).

B.1.3 SL(4)

Three maximal parabolic subgroups P , corresponding to partitions 4 = 3 + 1 =
2 + 2 = 1 + 3. Denote the corresponding maximal parabolic subgroups by
P3,1, P2,2, P1,3 respectively. We now know that P1,3 and P3,1 share the same
zetas, while the zeta for P2,2 is different. More precisely, they read as follows:

ξ
SL(4)/P3,1

Q (s) =ξ
SL(4)/P1,3

Q (s)

=
1

4s − 4
ξ(2)ξ(3) · ξ(4s) − 1

4s
ξ(2)ξ(3) · ξ(4s − 3)

+
1

4

1

4s − 2
· ξ(4s) − 1

4

1

4s − 2
· ξ(4s − 3)

+
1

3

[ 1

4s − 1
+

1

4s − 2

]
ξ(2) · ξ(4s − 3)

− 1

3

[ 1

4s − 2
+

1

4s − 3

]
ξ(2) · ξ(4s)

+
1

2

1

(4s)(4s − 3)
· ξ(4s − 1)

+
1

2

1

(4s − 1)(4s − 4)
· ξ(4s − 2)

− 1

(4s)(4s − 4)
ξ(2) · ξ(4s − 1)

− 1

(4s)(4s − 4)
ξ(2) · ξ(4s − 2)

(3)

and

ξ
SL(4)/P2,2

Q (s) :=
1

2s − 3
ξ(2)2 · ξ(2s)ξ(2s + 1) − 1

2s + 1
ξ(2) · ξ(2s − 2)ξ(2s − 1)

+
1

2s − 1
· 1

4
· ξ(2s)ξ(2s + 1) − 1

2s − 1
· 1

4
· ξ(2s − 2)ξ(2s − 1)

+
1

(2s)2(2s − 3)
· ξ(2s − 1)2 − 1

(2s − 2)2(2s + 1)
· ξ(2s)2

− 1

2s − 2
ξ(2) · ξ(2s)ξ(2s + 1) +

1

2s
ξ(2) · ξ(2s − 2)ξ(2s − 1)

+
1

(2s − 2)(2s)
· ξ(2s − 1)ξ(2s)

− 2

(2s − 3)(2s + 1)
ξ(2) · ξ(2s − 1)ξ(2s)

(4)
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B.1.4 SL(5)

Four maximal parabolic subgroups correspond to the partitions 5 = 4 + 1 =
3 + 2 = 2 + 3 = 1 + 4. Denote the associated standard maximal parabolic
subgroups by P4,1, P3,2, P2,3, P1,4 respectively. Then we know that the zeta for
P4,1 is the same as that for P1,4, while the zeta for P3,2 is the same as that for
P2,3.

More precisely, the new zeta functions ξ
SL(5)/P4,1

Q (s) = ξ
SL(5)/P1,4

Q (s) are
given by

ξ
SL(5)/P4,1

Q (s) = ξ
SL(5)/P1,4

Q (s) = ξSL(5);Q(s) :=
[ 1

5s − 5
ξ(5s) − 1

5s
ξ(5s − 4)

]
ξ(2)ξ(3)ξ(4)

+
1

4

{[ 1

5s− 1
ξ(5s − 4) − 1

5s − 4
ξ(5s)

]

+
[ 1

5s − 3
ξ(5s − 4) − 1

5s − 2
ξ(5s)

]}
ξ(2)ξ(3)

+
1

9

[ 1

5s − 2
ξ(5s) − 1

5s − 3
ξ(5s − 4)

]
ξ(2)

+
1

6

{[ 1

5s− 3
ξ(5s) − 1

5s − 2
ξ(5s − 4)

]

+
[ 1

5s − 2
ξ(5s) − 1

5s − 3
ξ(5s − 4)

]}
ξ(2)

+
{1

3

[ 1

5s(5s− 4)
ξ(5s − 1) +

1

(5s − 5)(5s − 1)
ξ(5s − 3)

]

+
1

2

[ 1

(5s − 1)(5s − 5)
ξ(5s − 2) +

1

(5s − 4)(5s)
ξ(5s − 2)

]

+
1

3

[ 1

(5s − 2)(5s − 5)
ξ(5s − 3) +

1

(5s − 3)(5s)
ξ(5s − 1)

]}
ξ(2)

+
1

8

[ 1

5s − 3
ξ(5s − 4) − 1

5s − 2
ξ(5s)

]

+
1

4

[ 1

5s − 2
ξ(5s − 4) − 1

5s − 3
ξ(5s)

]
ξ(2)2

− 1

4

[ 1

(5s − 3)(5s)
ξ(5s − 1) +

1

(5s − 2)(5s − 5)
ξ(5s − 3)

]

−
[ 1

(5s)(5s − 5)
ξ(5s − 1) +

1

(5s)(5s − 5)
ξ(5s − 3)

]
ξ(2)ξ(3)

− 1

4

1

(5s − 1)(5s − 4)
ξ(5s − 2) − 1

(5s)(5s − 5)
ξ(5s − 2)ξ(2)2

(5)

(which, as well as the next one, is quite complicated to obtain: totally 1200
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cases should be discussed from which further residues should be taken,) and

ξ
SL(5)/P3,2

Q (s + 1) := ξ
SL(5)/P3,2

Q;o (s) = ξ
SL(5)/P2,3

Q;o (s)

=:
1

5s
ξ(2)2ξ(3) · ξ(5s + 4)ξ(5s + 5) +

1

4(5s + 2)
ξ(2) · ξ(5s + 4)ξ(5s + 5)

+
1

(5s + 4)2(5s)
ξ(2) · ξ(5s + 2)ξ(5s + 3) − 1

2(5s + 1)
ξ(2)ξ(3) · ξ(5s + 4)ξ(5s + 5)

− 1

3(5s + 1)
ξ(2)2 · ξ(5s + 4)ξ(5s + 5) − 1

3(5s + 2)
ξ(2)2 · ξ(5s + 4)ξ(5s + 5)

− 1

4(5s + 2)(5s + 4)
· ξ(5s + 3)ξ(5s + 4) +

1

3(5s + 3)
ξ(2)2 · ξ(5s + 1)ξ(5s + 2)

− 1

2(5s + 1)(5s + 3)(5s + 4)
· ξ(5s + 2)ξ(5s + 3) +

1

8(5s + 2)
· ξ(5s + 1)ξ(5s + 2)

− 1

(5s + 1)2(5s + 5)
ξ(2) · ξ(5s + 3)ξ(5s + 4) − 1

6(5s + 3)
ξ(2) · ξ(5s + 1)ξ(5s + 2)

− 1

2(5s)(5s + 3)2
· ξ(5s + 2)2 − 1

4(5s + 2)(5s + 3)
· ξ(5s + 2)ξ(5s + 4)

+
1

2(5s + 4)
ξ(2)ξ(3) · ξ(5s + 1)ξ(5s + 2) +

1

2(5s)(5s + 4)
ξ(2) · ξ(5s + 2)ξ(5s + 3)

+
1

2(5s + 1)(5s + 4)
ξ(2) · ξ(5s + 2)ξ(5s + 3) +

1

6(5s + 2)
ξ(2) · ξ(5s + 4)ξ(5s + 5)

+
1

6(5s + 3)
ξ(2) · ξ(5s + 4)ξ(5s + 5) +

1

2(5s + 1)(5s + 4)
ξ(2) · ξ(5s + 3)ξ(5s + 4)

+
1

(5s + 1)2(5s + 4)2
· ξ(5s + 3)2 +

1

3(5s + 2)(5s + 4)
ξ(2) · ξ(5s + 2)ξ(5s + 4)

− 1

8(5s + 3)
· ξ(5s + 4)ξ(5s + 5) − 1

6(5s + 2)
ξ(2) · ξ(5s + 1)ξ(5s + 2)

− 1

4(5s + 3)
ξ(2) · ξ(5s + 1)ξ(5s + 2) +

1

2(5s + 1)(5s + 5)
ξ(2) · ξ(5s + 3)ξ(5s + 4)

+
1

2(5s + 2)2(5s + 5)
· ξ(5s + 4)2 − 1

(5s)(5s + 5)
ξ(2)ξ(3) · ξ(5s + 2)ξ(5s + 4)

− 1

(5s)(5s + 5)
ξ(2)2 · ξ(5s + 3)ξ(5s + 4) − 1

(5s + 1)(5s + 2)(5s + 5)
ξ(2) · ξ(5s + 4)2

+
1

3(5s + 1)(5s + 3)
ξ(2) · ξ(5s + 2)ξ(5s + 4)

+
1

2(5s + 1)(5s + 2)(5s + 4)
· ξ(5s + 3)ξ(5s + 4)

− 1

4(5s + 1)(5s + 3)
· ξ(5s + 2)ξ(5s + 3) − 1

(5s + 5)
ξ(2)2ξ(3) · ξ(5s + 1)ξ(5s + 2)

− 1

(5s)(5s + 5)
ξ(2)2 · ξ(5s + 2)ξ(5s + 3) +

1

(5s)(5s + 3)(5s + 4)
ξ(2) · ξ(5s + 2)2

+
1

3(5s + 4)
ξ(2)2 · ξ(5s + 1)ξ(5s + 2)

(6)41



B.2 Sp(4)

Two maximal parabolic subgroups corresponding to simple roots {e1 − e2} and
{2e2} respectively. Their zetas read as follows:

ξ
Sp(4)/Pe1−e2

Q (s) =
1

s − 2
ξ(2) · ξ(s + 1)ξ(2s) − 1

s + 1
ξ(2) · ξ(s − 1)ξ(2s − 1)

− 1

2s − 2
· ξ(s + 1)ξ(2s) +

1

2s
· ξ(s − 1)ξ(2s − 1)

− 1

(2s − 2)(s + 1)
· ξ(s)ξ(2s) − 1

(2s)(s − 2)
· ξ(s)ξ(2s − 1)

(7)
and

ξ
Sp(4)/P2e2

Q (s) =
1

2s− 3
ξ(2) · ξ(2s + 1) − 1

2s + 1
ξ(2) · ξ(2s − 2)

− 1

2(2s − 1)
· ξ(2s + 1) +

1

2(2s − 1)
· ξ(2s − 2)

− 1

(2s + 1)(2s − 2)
· ξ(2s) − 1

(2s)(2s − 3)
· ξ(2s − 1).

(8)

The RH for ξ
Sp(4)/P1

Q (s) is confirmed ([S2]), whose method, a generalization of
([S] and/or [SW]), can also be used to show that outside a finite box, all zeros

of ξ
Sp(4)/P2

Q (s) lie on the line Re(s) = 1
2 .

B.3 G2

Two maximal parabolic subgroups corresponding to the long and the short root
respectively. Their zetas read as follows:

ξ
G2/Plong

Q (s) =
1

s − 2
ξ(2) · ξ(s + 1)ξ(2s)ξ(3s)

− 1

s + 1
ξ(2) · ξ(s − 1)ξ(2s − 1)ξ(3s − 2)

− 1

2s− 2
· ξ(s + 1)ξ(2s)ξ(3s) +

1

2s
· ξ(s − 1)ξ(2s − 1)ξ(3s − 2)

− 1

(3s)(2s − 2)
· ξ(s)ξ(2s)ξ(3s − 1)

− 1

(3s − 1)(s − 2)
· ξ(s)ξ(2s − 1)ξ(3s − 2)

− 1

(3s − 3)(2s)
· ξ(s)ξ(2s − 1)ξ(3s − 1)

− 1

(3s − 2)(s + 1)
· ξ(s)ξ(2s)ξ(3s)

(9)
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and

ξ
G2/Pshort

Q (s) =
1

s − 3
ξ(2) · ξ(s + 2)ξ(2s) − 1

s + 2
ξ(2) · ξ(s − 2)ξ(2s − 1)

+
1

2s − 2
· ξ(s − 2)ξ(2s − 1) − 1

2s
· ξ(s + 2)ξ(2s)

− 1

s(s − 3)
· ξ(s − 1)ξ(2s − 1) − 1

(s − 1)(s + 2)
· ξ(s + 1)ξ(2s)

− 1

(2s − 2)(s + 1)
· ξ(s)ξ(2s) − 1

(2s)(s − 2)
· ξ(s)ξ(2s − 1)

(10)

The RH for ξ
G2/P
Q (s) is confirmed by Suzuki ([SW]).

B.4 T -Version for SL(3)

In this subsection, we indicate how functional equation for our zetas can be
obtained from a general T -construction. For simplicity, we consider only G =
SL(3).

By definition,

ωG;T
Q (s) =

∑

w∈W

(
〈wλ − ρ, T 〉∏

α∈∆0
〈wλ − ρ, α∨〉 ·

∏

α>0,wα<0

ξ(〈λ, α∨〉)
ξ(〈λ, α∨〉 + 1)

)
.

In particular, for G = SL(3), we may take λ = (z1, z2, z3) with z1 + z2 + z3 = 0,
T = (x, y,−x − y), ρ = (1, 0,−1) and W = S3 with w ∈ W = S3 acts via the
corresponding permutation on lower indices.

Thus by taking residue along z1−z2 = 1 and assuming z2 = t, z1 = t+1, z3 =
−2t− 1, we get, using the tables in subsection B.1.2,

ω
SL(3)/P1,2;T
Q (t) =

1

3t
ξ(2) · ξ(3t + 3) · e3tx+3ty+4x+2y

− 1

2

1

3t + 1
· ξ(3t + 3) · e(3t+3)(x+y)

+
1

2

1

3t + 2
· ξ(3t + 1) · e−3tx + 0

− 1

3t + 3
ξ(2) · ξ(3t + 1) · e−3ty+x−y

− 1

3t

1

3t + 3
· ξ(3t + 2) · e−3tx+x+2y.

Similarly, by taking residue along z2 − z3 = 1 and assuming z3 = s, z2 =
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s + 1, z1 = −2s − 1, we get, using the tables in subsection B.1.2,

ω
SL(3)/P2,1;T
Q (t) = − 1

3s + 3
ξ(2) · ξ(3s + 1) · e−3sx+x+2y + 0

− 1

2

1

3s + 1
· ξ(3s + 3) · e(3s+3)(x+y)

+
1

2

1

3s + 2
· ξ(3s + 1) · e−3sx

− 1

3s

1

3s + 3
· ξ(3s + 2) · e3sx+3sy+4x+2y

+
1

3s
ξ(2) · ξ(3s + 3) · e−3sy+x−y.

Clearly, there is no functional equation at this stage. However, if we set y = 0
in T = (x, y,−x−y) so that T = (x, 0,−x), that is to say, T = xρ ∈ C ·ρ sitting
on the line spanned by ρ, then we have

ω
SL(3)/P1,2;xρ
Q (t) =

1

3t
ξ(2) · ξ(3t + 3) · e3tx+4x

− 1

2

1

3t + 1
· ξ(3t + 3) · e(3t+3)x

+
1

2

1

3t + 2
· ξ(3t + 1) · e−3tx

− 1

3t + 3
ξ(2) · ξ(3t + 1) · ex

− 1

3t

1

3t + 3
· ξ(3t + 2) · e−3tx+x

and

ω
SL(3)/P2,1;xρ
Q (t) = − 1

3s + 3
ξ(2) · ξ(3s + 1) · e−3sx+x

− 1

2

1

3s + 1
· ξ(3s + 3) · e(3s+3)x

+
1

2

1

3s + 2
· ξ(3s + 1) · e−3sx

− 1

3s

1

3s + 3
· ξ(3s + 2) · e3sx+4x

+
1

3s
ξ(2) · ξ(3s + 3) · ex

In particular, we have the functional equation

ω
SL(3)/P1,2;xρ
Q (−1 − s) = ω

SL(3)/P2,1;xρ
Q (x)
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Or put it in a better form, we set

ξ
SL(3)/P1,2

Q;T (s) :=
1

3s − 3
ξ(2) · ξ(3s) ·T3s+1 − 1

3s
ξ(2) · ξ(3s − 2) ·T

− 1

2

1

3s− 2
· ξ(3s) · T3s +

1

2

1

3s − 1
· ξ(3s − 2) ·T−3s+3

− 1

3s − 3

1

3s
· ξ(3t − 1) · T−3s+4

(11)

and

ω
SL(3)/P2,1

Q;T (t) = − 1

3s
ξ(2) · ξ(3s − 2) ·T−3s+4 +

1

3s − 3
ξ(2) · ξ(3s) ·T

− 1

2

1

3s − 2
· ξ(3s) ·T3s +

1

2

1

3s − 1
· ξ(3s − 2) · T−3s+3

− 1

3s − 3

1

3s
· ξ(3s − 1) ·T3s+1

(12)

Then we get

ξ
SL(3)/P1,2

Q;T (1 − s) = ξ
SL(3)/P2,1

Q;T (s) (13)

This exposes a new symmetry for our zetas.
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