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Abstract: We obtain the asymptotic behavior of the Takhtajan-Zograf metric on the
Teichmüller space of punctured Riemann surfaces.

0. Introduction

We consider the Teichmüller space Tg,n and the associated Teichmüller curve Tg,n of
Riemann surfaces of type (g, n) (i.e., Riemann surfaces of genus g and with n > 0 punc-
tures). We will assume that 2g−2+n > 0, so that each fiber of the holomorphic projection
map π : Tg,n → Tg,n is stable or equivalently, it admits the complete hyperbolic met-
ric of constant sectional curvature −1. The kernel of the differential T Tg,n → T Tg,n

forms the so-called vertical tangent bundle over Tg,n , which is denoted by T V Tg,n . The
hyperbolic metrics on the fibers induce naturally a Hermitian metric on T V Tg,n .

In the study of the family of ∂̄k-operators acting on the k-differentials on Riemann

surfaces (i.e., cross-sections of
(
T V Tg,n

)−k ∣∣
π−1(s) → π−1(s), s ∈ Tg,n), Takhtajan

and Zograf introduced in [TZ1] and [TZ2] a Kähler metric on Tg,n , which is known as
the Takhtajan-Zograf metric. In [TZ2], they showed that the Takhtajan-Zograf metric
is invariant under the natural action of the Teichmüller modular group Modg,n and it
satisfies the following remarkable identity on Tg,n :

c1(λk, ρQ,k) = 6k2 − 6k + 1

12
· 1

π2ωWP − 1

9
ωTZ.

Here λk = det(ind ∂̄k) = ∧maxKer ∂̄k ⊗ (∧maxCoker ∂̄k)
−1 denotes the determinant line

bundle on Tg,n , ρQ,k denotes the Quillen metric on λk , and ωWP and ωTZ denote the
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Kähler forms of the Weil-Petersson metric and the Takhtajan-Zograf metric on Tg,n
respectively. In [We], Weng studied the Takhtajan-Zograf metric in terms of Arakelov
intersection, and he expressed the class of ωTZ as a rational multiple of the first Chern
class of an associated Takhtajan-Zograf line bundle over the moduli space Mg,n =
Tg,n/Modg,n . Recently, Wolpert [Wol5] gave a natural definition of a Hermitian metric
on the Takhtajan-Zograf line bundle whose first Chern form gives ωTZ.

Motivated in part by these developments, we are interested in studying the bound-
ary behavior of the Takhtajan-Zograf metric on Tg,n . Along this direction is an earlier
result of Obitsu [O1], who showed that the Takhtajan-Zograf metric is incomplete. We
are also inspired by Masur’s beautiful paper [M], which gave the asymptotic boundary
behavior of the Weil-Petersson metric on Tg := Tg,0 (see also [Wolp5] and [OW] for
recent improvements of this result).

Our main result in this paper is to give the asymptotic behavior of the Takhtajan-
Zograf metric near the boundary of Tg,n , which we describe heuristically as follows.
Near the boundary of Tg,n , the tangent space at any point in Tg,n can be roughly con-
sidered as the direct sum of the pinching directions and the non-pinching directions
(that are ‘parallel’ to the boundary). Roughly speaking, our result shows that the Tak-
htajan-Zograf metric is smaller than the Weil-Petersson metric by an additional factor of
1/| log |t || along each pinching tangential direction, i.e. it is essentially of the order of
growth 1/|t |2(log |t |)4 along the pinching direction corresponding to a pinching coor-
dinate t . Also, we show that the Takhtajan-Zograf metric extends continuously along
the non-pinching tangential directions to the “nodally-depleted Takhtajan-Zograf met-
rics” on the boundary Teichmüller spaces, which, unlike the case of the Weil-Petersson
metric, are only positive semi-definite on the boundary Teichmüller spaces. Our result
also leads immediately to an alternative proof of the above mentioned result of Obitsu
on the non-completeness of the Takhtajan-Zograf metric (see Theorem 1 for the precise
statements of our results.)

An important ingredient in the proof of our main result is to obtain certain estimates
on degenerative behavior of the Eisenstein series in the setting of holomorphic families
of degenerating punctured Riemann surfaces, which seem to be of considerable indepen-
dent interest. These estimates are largely obtained by geometrically constructing suitable
germs of comparison functions for the Eisenstein series near the nodes and punctures.
We also need to make certain adaptations from Masur’s paper [M].

This paper is organized as follows. In Sect. 1, we introduce some notation and state
our main results. In Sect. 2, we describe the behavior of the hyperbolic metrics on the
punctured Riemann surfaces upon degenerations. In Sect. 3, we recall Masur’s construc-
tion of a certain local basis of regular quadratic differentials for a degenerating family
of punctured Riemann surfaces. In Sect. 4, we derive the necessary estimates of the
Eisenstein series near the punctures and nodes of a degenerating family of punctured
Riemann surfaces. Finally we complete the proof of our main result in Sect. 5.

1. Notation and Statement of Results

1.1. For g ≥ 0 and n > 0, we denote by Tg,n the Teichmüller space of Riemann
surfaces of type (g, n). Each point of Tg,n is a Riemann surface X of type (g, n), i.e.,
X = X̄\{p1. . . . , pn}, where X is a compact Riemann surface of genus g, and the punc-
tures p1, . . . , pn of X are n distinct points in X̄ . We will always assume that 2g−2+n > 0,
so that X admits the complete hyperbolic metric of constant sectional curvature−1. By
the uniformization theorem, X can be represented as a quotient H/� of the upper half
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plane H := {z ∈ C: Im z > 0} by the natural action of Fuchsian group � ⊂ PSL(2,R)
of the first kind. � is generated by 2g hyperbolic transformations A1, B1, . . . , Ag, Bg
and n parabolic transformations P1, . . . , Pn satisfying the relation

A1 B1 A−1
1 B−1

1 · · · Ag Bg A−1
g B−1

g P1 P2 · · · Pn = Id.

Let z1, . . . , zn ∈ R∪{∞} be the fixed points of the parabolic transformations P1, . . . , Pn
respectively, which are also called cusps. The cusps z1, . . . , zn correspond to the punc-
tures p1, . . . , pn of X under the projection H → H/� 	 X respectively. For each
i = 1, 2, . . . , n, it is well-known that Pi generates an infinite cyclic subgroup of �, and
we can select σi ∈ PSL(2,R) so that σi (∞) = zi and σ−1

i Piσi is the transformation
z 
→ z + 1 on H. For each i = 1, 2, . . . , n and s ∈ C, the Eisenstein series Ei (z, s)
attached to the cusp zi is given by

Ei (z, s) :=
∑

γ∈<Pi>\�
Im(σ−1

i γ z)s, z ∈ H. (1.1.1)

If Re s > 1, then the above series is uniformly convergent on compact subsets of H.
Moreover, Ei (z, s) is invariant under �, and thus it descends to a function on X , which
we denote by the same symbol. Furthermore, it is well-known that


hyp E j = s(s − 1)E j on X, (1.1.2)

where 
hyp denotes the hyperbolic Laplacian on X (see e.g. [Ku]).
The Teichmüller space Tg,n is naturally a complex manifold of dimension 3g−3 + n.

To describe its tangent and cotangent spaces at a point X , we first denote by Q(X)
the space of holomorphic quadratic differentials φ = φ(z) dz2 on X with finite L1

norm, i.e.,
∫

X |φ| < ∞. Also, we denote by B(X) the space of L∞ measurable Bel-
trami differentials µ = µ(z) dz̄/dz on X (i.e., ‖µ‖∞ := ess. supz∈X |µ(z)| < ∞).
Let H B(X) be the subspace of B(X) consisting of elements of the form φ/ρ for some
φ ∈ Q(X). Here ρ = ρ(z) dz dz̄ denotes the hyperbolic metric on X . Elements of
H B(X) are called harmonic Beltrami differentials. There is a natural Kodaira-Serre
pairing 〈 , 〉: B(X)× Q(X)→ C given by

〈µ, φ〉 =
∫

X
µ(z)φ(z) dzdz̄ (1.1.3)

for µ ∈ B(X) and φ ∈ Q(X). Let Q(X)⊥ ⊂ B(X) be the annihilator of Q(X) under
the above pairing. Then one has the decomposition B(X) = H B(X) ⊕ Q(X)⊥. It is
well-known that one has the following natural isomorphism:

TX Tg,n 	B(X)/Q(X)⊥ 	 H B(X), and

T ∗X Tg,n 	Q(X) (1.1.4)

with the duality between TX Tg,n and T ∗X Tg,n given by (1.1.3). It should be remarked that
Bers was responsible for many of the concepts described above (see [Be]).

The Weil-Petersson metric gWP and the Takhtajan-Zograf metric gTZ on Tg,n (the
latter being introduced in [TZ1] and [TZ2]) are defined as follows (see e.g. [IT,Wolp2]
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and the references therein for background materials on gWP): for X ∈ Tg,n and µ,
ν ∈ H B(X), one has

gWP(µ, ν) =
∫

X
µν̄ρ,

gTZ(µ, ν) =
n∑

i=1

g(i)(µ, ν), where

g(i)(µ, ν) =
∫

X
Ei (·, 2)µν̄ρ, i = 1, 2, . . . , n (1.1.5)

(see (1.1.1)). It follows from results in [A2,Ch,Wolp1,TZ2,O1] that the metrics gWP,

g(i), gTZ are all Kählerian and non-complete. Note that gTZ is well-defined only when
n > 0. Moreover, each g(i) is intrinsic to the corresponding cusp pi in the sense that if
an element γ in the Teichmüller modular group Modg,n carries the cusp pi to another
cusp p j , then γ also carries g(i) to g( j). To facilitate subsequent discussion, we will
call g(i) the Takhtajan-Zograf cuspidal metric on Tg,n associated to the cusp zi (or the
puncture pi ).

The moduli space Mg,n of Riemann surfaces of type (g, n) is obtained as the quotient
of Tg,n by the Teichmüller modular group Modg,n , i.e., Mg,n 	 Tg,n/Modg,n (see e.g.
[N]). As such, Mg,n is naturally endowed with the structure of a complex V -manifold
([Ba]). The metrics gWP and gTZ (but not each individual g(i) unless n = 1) are invariant
under Modg,n and thus they descend to Kähler metrics on (the smooth points of) Mg,n ,
which we denote by the same names and symbols.

1.2. To facilitate the ensuing discussion, we consider some related pseudo-metrics on
the associated boundary Teichmüller spaces of Tg,n .

As in [M] (in the case of Tg,0), we denote by δγ1,...,γm Tg,n the boundary Teichmüller
space of Tg,n arising from pinching m distinct points. Take a point X0 ∈ δγ1,...,γm Tg,n .
Then X0 is a Riemann surface with n punctures p1, . . . , pn and m nodes q1, . . . , qm .
Observe that Xo

0 := X\{q1, . . . , qm} is a non-singular Riemann surface with n + 2m
punctures. Each node qi corresponds to two punctures on Xo

0 (other than p1, . . . , pn).
Denote the components of Xo

0 by Sα, α = 1, 2, . . . , d. Each Sα is a Riemann surface of
genus gα and with nα punctures, i.e., Sα is of type (gα, nα). It will be clear in Sect. 1.3
that we will only need to consider the case where 2gα − 2 + nα > 0 for each α, so that
each Sα also admits the complete hyperbolic metric of constant sectional curvature −1.
It is easy to see that

∑d
α=1(3gα − 3 + nα) + m = 3g− 3 + n. With respect to the disjoint

union Xo
0 = ∪d

α=1Sα , one easily sees that δγ1,...,γm Tg,n is a product of lower dimensional
Teichmüller spaces given by

δγ1,...,γm Tg,n = Tg1,n1 × Tg2,n2 × · · · × Tgd ,nd (1.2.1)

with each Sα ∈ Tgα,nα , α = 1, 2, . . . , d. Recall that the punctures of Sα arise from
either the punctures or the nodes of X0, and for simplicity, they will be called old cusps
and new cusps of Sα respectively. Denote the number of old cusps (resp. new cusps)
of Sα by n′α (resp. n′′α), so that nα = n′α + n′′α . We index the punctures of Sα such that
{pα,i }1≤i≤n′α denotes the set of old cusps, and {pα,i }n′α+1≤i≤nα denotes the set of new
cusps. For each α and i , we denote by g(α,i) the Takhtajan-Zograf cuspidal metric on
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Tgα,nα with respect to the puncture pα,i (cf. (1.1.5)). Now we define a pseudo-metric
ĝTZ,α on Tgα,nα by summing the g(α,i)’s over the old cusps, i.e.,

ĝTZ,α :=
∑

1≤i≤n′α

g(α,i). (1.2.2)

If none of the punctures of Sα are old cusps, then ĝTZ,α is simply defined to be zero
identically. As such, ĝTZ,α is positive definite precisely when Sα possesses at least one
old cusp. Note that by contrast, the Takhtajan-Zograf metric gTZ,α on Tgα,nα is given by
gTZ,α :=∑

1≤i≤nα g(α,i), and gTZ,α is always positive definite.

Definition 1.2.1. The nodally depleted Takhtajan-Zograf pseudo-metric ĝTZ,(γ1,...,γm )

on δγ1,...,γm Tg,n is defined to be the product pseudo-metric of the ĝTZ,α’s on the Tgα,nα ’s,
i.e.,

(
δγ1,...,γm Tg,n, ĝTZ,(γ1,...,γn)

)
=

d∏

i=1

(
Tgα,nα , ĝTZ,α) . (1.2.3)

1.3. Let Mg,n be the moduli space of Riemann surfaces of type (g, n) as in (1.1),
and let Mg,n denote the Knudsen-Deligne-Mumford stable curve compactification of
Mg,n ([DM][KM,Kn]). Like Mg,n , Mg,n admits a V -manifold structure, which we
describe as follows. Similar description for Mg (i.e., when n = 0) can be found in [M]
or [Wolp3].

Take a point X0 ∈ Mg,n\Mg,n . Then X0 is a stable Riemann surface with n punc-
tures p1, . . . , pn and m nodes q1, . . . , qm for some m > 0. Thus we may regard X0
as a point in δγ1,...,γm Tg,n (cf. (1.2)). Write X0\{q1, . . . , qm} = ∪1≤α≤d Sα and write
δγ1,...,γm Tg,n = ∏d

α=1 Tgα,nα with each component Sα ∈ Tgα,nα as in Sect. 1.2. Note
that since X0 is stable, each Sα admits the complete hyperbolic metric of constant sec-
tional curvature −1. Also, for some 0 < r < 1, each node q j in X0 admits an open
neighborhood

N j = {(z j , w j ) ∈ C
2: |z j |, |w j | < r, z j · w j = 0} (1.3.1)

so that N j = N 1
j ∪ N 2

j , where N 1
j = {(z j , 0) ∈ C

2: |z j | < r} and N 2
j = {(0, w j ) ∈

C
2: |w j | < r} are the coordinate discs in C

2. Without loss of generality, we will assume
that r is independent of j , upon shrinking r if necessary. For each α, we choose 3gα −
3 + nα linearly independent Beltrami differentials ν(α)i , 1 ≤ i ≤ 3gα−3 + nα , which are
supported on Sα\ ∪n

j=1 N j , so that their harmonic projections form a basis of TSαTgα,nα

(cf. (1.1.4)). For simplicity, we rewrite {v(α)i }1≤α≤d,1≤i≤3gα−3+nα as {vi }1≤i≤3g−3+n−m .
Then one has an associated local coordinate neighborhood V of X0 in δγ1,...,γm Tg,n
with holomorphic coordinates τ = (τ1, . . . , τ3g−3+n−m) such that X0 corresponds to
0. Shrinking and reparametrizing V if necessary, we may assume V 	 
3g−3+n−m ,
where 
 = {z ∈ C: |z| < 1} denotes the unit disc in C. For a point τ ∈ V , one has
the associated Beltrami differential µ(τ) = ∑3g−3+n−m

i=1 τi vi and a quasi-conformal
homeomorphism wµ(τ): X0 → Xτ onto a Riemann surface Xτ satisfying

∂wµ(τ)

∂ z̄
= µ(z)∂w

µ(τ)

∂z
. (1.3.2)
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The mapwµ(τ) is conformal on each N j , j = 1, . . . ,m, so that we may regard N j ⊂ Xτ
for each j . Then for each t = (t1, . . . , tm) with each |t j | < r , we obtain a new Riemann
surface Xt,τ for Xτ by removing the disks {z j ∈ N 1

j : |z j | < |t j |} and {w j ∈ N 2
j : |w j | <

|t j |} and identifying z j ∈ N 1
j with w j = t j/z j ∈ N 2

j , j = 1, . . . ,m. Then one obtains
a holomorphic family of noded Riemann surfaces {Xt,τ } parametrized by the coordi-
nates (t, τ ) = (t1, . . . , tm, τ1, . . . , τ3g−3+n−m) of 
m(r)× V 	 
m(r)×
3g−3+n−m ,
where
m(r) denotes the m-fold Cartesian product of the disc
(r) = {z ∈ C: |z| < r}
in C. Moreover, the Riemann surfaces Xt,τ with (t, τ ) ∈ (
∗(r))m × V are of type
(g, n), where
∗(r) = 
(r)\{0}. The coordinates t = (t1, . . . , tm)will be called pinch-
ing coordinates, and τ = (t1, . . . , t3g−3+n−m) will be called boundary coordinates. For

1 ≤ j ≤ m, let α j denote the simple closed curve |z j | = |w j | = |t j | 1
2 on Xt,τ . Shrinking


m(r) and V if necessary, it is known that the universal cover of (
∗(r))m×V is naturally
a domain in Tg,n and the corresponding covering transformations are generated by a Dehn
twist about the α j ’s. Since Dehn twists are elements of Modg,n , the Modg,n-invariant
metrics gWP and gTZ descend to metrics on (
∗(r))m×V , which we denote by the same
symbols and names. It is well-known that each X0 ∈Mg,n\Mg,n admits an open neigh-
borhood Û in Mg,n together with a local uniformizing chart χ :U 	 
m(r)× V → Û
for some 
m(r)× V as described above, where χ is a finite ramified cover. Obviously
the metrics gWP and gTZ on (
∗(r))m × V ⊂ U may also be regarded as extensions of
the pull-back of the corresponding metrics on the smooth points of Û ∩Mg,n via the
map χ .

1.4. Before we state our main result, we first need to make the following definition.

Definition 1.4.1. Let X0 be a Riemann surface with n punctures p1, . . . , pn and m nodes
q1, . . . , qm. A node qi is said to be adjacent to punctures (resp. a puncture p j ) if the
component of X0\{q1, . . . , qi−1, qi+1, . . . , qm} containing qi also contains at least one
of the p j ’s (resp. the puncture p j ). Otherwise, it is said to be non-adjacent to punctures
(resp. the puncture p j ).

Now we are ready to state our main result in the following

Theorem 1. For g ≥ 0 and n > 0, let X0 ∈ Mg,n\Mg,n be a stable Riemann surface
with n punctures p1, . . . , pn and m nodes q1, . . . , qm arranged in such a way that qi
is adjacent (resp. non-adjacent) to punctures for 1 ≤ i ≤ m′ (resp. m′ + 1 ≤ i ≤ m).
Let Û be an open neighborhood of X0 in Mg,n, together with a local uniformizing
chart ψ :U 	 
m(r)× V → Û , where V 	 
3g−3+n−m is a domain in the boundary
Teichmüller space δγ1,...,γm Tg,n corresponding to X0 and with each γi corresponding
to qi . Let (s1, . . . , s3g−3+n) = (t1, . . . , tm, τ1, . . . , τ3g−3+n−m) = (t, τ ) be the pinching
and boundary coordinates of U, and let the components of the Takhtajan-Zograf metric
gTZ be given by

gTZ
i j̄
= gTZ

(
∂

∂si
,
∂

∂s j

)
, 1 ≤ i, j ≤ 3g − 3 + n, (1.4.1)

on U∗ := (
∗(r))m × V ⊂ U. Then the following statements hold:

(i) For each 1 ≤ j ≤ m and any ε > 0, one has

lim sup
(t,τ )∈U∗→(0,0)

|t j |2(− log |t j |)4−εgTZ
j j̄
(t, τ ) = 0. (1.4.2)
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(ii) For each 1 ≤ j ≤ m′ and any ε > 0, one has

lim inf
(t,τ )∈U∗→(0,0)

|t j |2(− log |t j |)4+εgTZ
j j̄
(t, τ ) = +∞. (1.4.3)

(iii) For each 1 ≤ j, k ≤ m with j �= k, one has

∣∣gTZ
j k̄
(t, τ )

∣∣ = O

(
1

|t j | |tk | (log |t j |)3(log |tk |)3
)

as (t, τ ) ∈ U∗ → (0, 0).

(1.4.4)
(iv) For each j , k ≥ m + 1, one has

lim
(t,τ )∈U∗→(0,0)

gTZ
j k̄
(t, τ ) = ĝTZ,(γ1,...,γm )

j k̄
(0, 0). (1.4.5)

(v) For each j ≤ m and k ≥ m + 1, one has

∣
∣gTZ

j k̄
(t, τ )

∣
∣ = O

(
1

|t j |(− log |t j |)3
)

as (t, τ ) ∈ U∗ → (0, 0). (1.4.6)

Here in (1.4.5), ĝTZ,(γ1,...,γm )

j k̄
denotes the ( j, k)th component of the nodally depleted

Takhtajan-Zograf pseudo-metric on δγ1,...,γm Tg,n (cf. Definition 1.2.1).

Remark 1.4.2. (i) Theorem 1(i) is equivalent to the following statement: For each
1 ≤ j ≤ m and any ε > 0, there exists a constant C1,ε > 0 (depending on ε) such that

gTZ
j j̄
(t, τ ) ≤ C1,ε

|t j |2(− log |t j |)4−ε for all (t, τ ) ∈ U∗. (1.4.7)

Similarly, Theorem 1(ii) is equivalent to the following statement: For each 1 ≤ j ≤ m′
and any ε > 0, there exists a constant C2,ε > 0 (depending on ε) such that

gTZ
j j̄
(t, τ ) ≥ C2,ε

|t j |2(− log |t j |)4+ε for all (t, τ ) ∈ U∗. (1.4.8)

(ii) In view of Theorem 1(i) and (ii), it is natural to ask the following question: Does the
stronger estimate

gTZ
j j̄
(t, τ ) ∼ 1

|t j |2(− log |t j |)4 hold for 1 ≤ j ≤ m′ and (t, τ ) ∈ U∗? (1.4.9)

The methods of this paper does not seem to generalize easily to answer this question.

2. The Hyperbolic Metric

2.1. In Sect. 2, we are going to give some uniform estimates for the family of hyper-
bolic metrics near the punctures and nodes of degenerating Riemann surfaces. For a
degenerating family of compact Riemann surfaces (i.e. n = 0), Wolpert [Wolp3] has
developed from the prescribed curvature equation results which are stronger than what
is described in this section. Since the estimates in the form that we need in our ensuing
discussion were discussed explicitly only in the case when n = 0 in [M] and [Wolp3],
we include here the modifications arising from the punctures for the convenience of the
reader. Throughout this article, hyperbolic metrics will always be normalized to be of
constant sectional curvature −1. First we have
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Lemma 2.1.1. Let S be a hyperbolic punctured Riemann surface with hyperbolic metric
ρ. Let 
∗(r) = {z ∈ C: |z| < r} (with r > 0) be a punctured coordinate neighborhood
of a puncture p of S with the origin 0 corresponding to p. Write ρ = ρ(z) dz ⊗ dz̄ on

∗(r). Then one has

lim
z→0

|z|2 (log |z|)2 ρ(z) = 1.

Proof. First recall from (1.1) that we may write S = H/�, where H = {Z = X + iY ∈
C: Y > 0} and� ⊂ PSL(2,R). Moreover, upon conjugation by an element in PSL(2,R)
if necessary, we may assume that the puncture p corresponds to the cusp ∞ and the
subgroup �∞ of � fixing ∞ is generated by the transformation Z 
→ Z + 1. It is
well-known that for some R > 0, one has γ A ∩ A = ∅ for some γ ∈ �∞\�, where
A = {Z = X + iY ∈ H: Y > R} (cf. e.g. [FK, p. 216] or Remark-Definition 2.1.2(ii)
below). It follows that the function

w(Z) = e2π i Z (2.1.1)

on A descends to the coordinate function on the punctured coordinate neighborhood

∗(r0) = {w ∈ C: 0 < |w| < r0} of p in S with p corresponding to the origin 0, where
0 < r0 = e−2πR < 1. Being descended from the hyperbolic metric d Z ⊗ d Z̄/Y 2 on H,
one easily sees that

ρ = dw ⊗ dw̄

|w|2(log |w|)2 on 
∗(r0). (2.1.2)

Now, if z is any coordinate function of S near p with z(p) = 0. Then w can be regarded
as a holomorphic function of z near p with w(0) = 0 and C := w′(0) �= 0. By Taylor’s
theorem, we have

w = Cz + O(z2) and w′(z) = C + O(z)

as z → 0. Together with (2.1.2), it follows that ρ is given in terms of z near p by

ρ = |w′(z)|2dz ⊗ dz̄

|w(z)|2(log |w(z)|)2 =
|C + O(z)|2dz ⊗ dz̄

|z|2|C + O(z)|2(log |z| + log |C + O(z)|)2 ,

and upon letting z → 0, Lemma 2.1.1 follows immediately. ��
Remark-Definition 2.1.2. (i) For simplicity, a local holomorphic coordinate function w
of a hyperbolic Riemann surface S defined near a puncture p with w(p) = 0 will be
said to be standard if it is descended from the Euclidean coordinate function on H via
(2.1.1) (so that the hyperbolic metric ρ of S satisfies (2.1.2) near p). If S has nodes, such
a definition will also be applied to the punctures of S \ {nodes} (instead of S). As seen
above, such standard coordinate functions always exist near the punctures of S.
(ii) It follows from the collar lemma for non-compact surfaces (cf. e.g. [Bu, Theorem
4.4.6, p.111-112] that we may always take R = 1

2 (and thus ro = e−π ) in the proof of
Lemma 2.1.1.

Notation as in §1. Let X0 ∈ Mg,n\Mg,n be a Riemann surface with n punctures
p1, . . . , pn and m nodes q1, . . . , qm , and let Û be an open neighborhood of X0 in Mg,n

together with a local uniformizing chart χ :U → Û , where U 	 
m(r)×V = {(t, τ ) =
(t1, . . . , tm, τ1, . . . , τ3g−3+n−m): t ∈ 
m(r), τ ∈ V } and V 	 
3g−3+n−m is an open
coordinate neighborhood of X0 in δγ1,...,γm Tg,n as in (1.3). Let X := {Xt,τ }(t,τ )∈U be
the corresponding family of Riemann surfaces parametrized by U with X0 = X(0,0),
and let π :X → U denote the holomorphic projection map. Fix a puncture pi of X0.
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Shrinking U if necessary, it is easy to see that there exists an open coordinate subset
Wi = 
∗(R) × U of X such that π |Wi is given by the projection onto the second fac-
tor, and each point (0, (t, τ )) corresponds to the puncture on Xt,τ associated to pi (in
particular, (0, (0, 0)) corresponds to pi itself). Shrinking R and V if necessary, we will
assume without loss of generality that R is independent of i , and each Wi ⊂⊂ W ′

i for
some similarly defined open coordinate subset X of the form

W ′
i = 
∗(R′)×U ′ with U ′ = 
m(r ′)× V ′, V ′ 	 
3g−3+n−m(δ) (2.1.3)

for some 0 < R < R′ < 1, 0 < r < r ′ < 1 and δ > 1. For each (t, τ ) ∈ U , we denote
the hyperbolic metric on Xt,τ by ρt,τ , and we denote Wi,t,τ := Wi ∩ Xt,τ 	 
∗(R) and
W ′

i,t,τ := W ′
i ∩ Xt,τ 	 
∗(R′). We also write

ρt,τ = ρt,τ (zi )dzi ⊗ dz̄i = ρ(zi , t, τ )dzi ⊗ dz̄i on W ′
i,t,τ . (2.1.4)

Then it follows from a result of Bers [Be] that the function ρ(zi , t, τ ) on W ′
i is locally

uniformly continuous in all the variables.

Proposition 2.1.3. (i) For each 1 ≤ i ≤ n, there exist constants C1,C2 > 0 such that
for all (t, τ ) ∈ U, one has

C1

|zi |2(log |zi |)2 ≤ ρt,τ (zi ) ≤ C2

|zi |2(log |zi |)2 on Wi,t,τ . (2.1.5)

(ii) (Strengthened version of (i)) If, in addition, zi is a standard local holomorphic
coordinate function for X0 (cf. Remark-Definition 2.1.2), then the inequality in (2.1.5)
remains valid with the constants C1,C2 replaced by positive continuous functions
C1,t,τ , C2,t,τ (depending on t, τ ) respectively and satisfying

C1,t,τ , C2,t,τ → 1 as (t, τ )→ (0, 0). (2.1.6)

Proof. For simplicity, we will drop the subscript i , so that W = Wi , Wt,τ = Wi,t,τ ,
W ′

t,τ = W ′
i,t,τ , z = zi , etc. First we remark that it is well-known (and follows also from

the arguments in Lemma 2.1.1) that (2.1.5) holds for a fixed punctured Riemann surface;
in other words, there exist constants C1,0,0, C2,0,0 > 0 such that

C1,0,0

|z|2(log |z|)2 ≤ ρ0,0(z) ≤ C2,0,0

|z|2(log |z|)2 on W ′
0,0 	 
∗(R′). (2.1.7)

For each (t, τ ) ∈ U ′, since ρt,τ is of constant sectional curvature−1, it follows that one
has


0 log ρ(z, t, τ ) = 2ρ(z, t, τ ) on 
∗(R′), (2.1.8)

where 
0 := ∂2/∂x2 + ∂2/∂y2 (with z = x + iy) is the Euclidean Laplacian. Consider
the continuous function

f (z, t, τ ) = log
ρ(z, t, τ )

ρ0,0(z)
on W ′ 	 
∗(R′)×U ′. (2.1.9)

We extend f to a function on 
(R′)×U ′ by letting

f (0, t, τ ) = 0 for all (t, τ ) ∈ U ′. (2.1.10)
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Then it follows from Lemma 2.1.1 that for fixed (t, τ ) ∈ U ′, f (z, t, τ ) is continuous in
the variable z ∈ 
(R′). By applying the Mean Value Theorem to the real exponential
function, one easily sees that for (t, τ ) ∈ U ′ and z ∈ 
∗(R),


0 f (z, t, τ ) =2
(
ρ(z, t, τ )− ρ0,0(z)

)
(by (2.1.8), (2.1.9))

=2
(

elog ρ(z,t,τ ) − elog ρ0,0(z)
)

=2eη f (z, t, τ ) (2.1.11)

for some real number η = η(z, t, τ ) between log ρ(z, t, τ ) and log ρ0,0(z). By the max-
imum principle, it follows from (2.1.10) and (2.1.11) that for each (t, τ ) ∈ U ′, one
has

max
z∈
̄(R)

f (z, t, τ ) ≤ max{ 0, max
z∈∂
(R) f (z, t, τ )}, (2.1.12)

where 
̄(R) = {z ∈ C: |z| ≤ R} and ∂
(R) = {z ∈ C: |z| = R}. By applying the
above arguments to the function − f , one also easily sees that for each (t, τ ) ∈ U ′,

min
z∈
̄(R)

f (z, t, τ ) ≥ min{ 0, min
z∈∂
(R) f (z, t, τ )}. (2.1.13)

Observe also that f (z, 0, 0) = 0 for all z ∈ 
(R′). Together with the uniform continuity
of f (z, t, τ ) on the compact set ∂
(R)×U ⊂ W ′, where U 	 
̄m(r)× 
̄3g−3+n−m ⊂
U ′, it follows readily that there exists positive continuous functions C1,t,τ , C2,t,τ on U
(which can be taken to be the exponential of the right-hand side of (2.1.13) and (2.1.12)
respectively) such that C1,0,0 = C2,0,0 = 1 and

C1,t,τ ρ0,0(z) ≤ ρ(z, t, τ ) ≤ C2,t,τ ρ0,0(z) for all (t, τ ) ∈ U and z ∈ 
∗(R),
(2.1.14)

which, together with (2.1.7), lead to Proposition 2.1.3(i). Proposition 2.1.3(ii) is an
immediate consequence of (2.1.14). ��

2.2. Next we consider the behavior of the family of hyperbolic metrics near the nodes.
Let U = 
m(r) × V be as in Sect. 2.1, and fix a node q j of X0, where 1 ≤ j ≤ m.
Then it follows readily from Sect. 1.3 (and with slight abuse of notation (cf. (1.3.1)) that
there exists a local coordinate neighborhood N j = 
m+1(r) × V of q j in X such that
for fixed (t, τ ) ∈ U with t = (t1, . . . , tm), the set N j,t,τ := N j ∩ Xt,τ is given by

N j,t,τ ={(t1, . . . , t j−1, z j , w j , t j+1, . . . , tm, τ ) ∈ N j : z jw j = t j ,
|t j |
r
< |z j | < r}

={(t1, . . . , t j−1, z j , w j , t j+1, . . . , tm, τ ) ∈ N j : z jw j = t j ,
|t j |
r
< |w j | < r}.

(2.2.1)

When t j �= 0, one can identify N j,t,τ as an annulus via coordinate projections as

N j,t,τ ↔ {z j ∈ C: |t j |
r
< |z j | < r} ↔ {w j ∈ C: |t j |

r
< |w j | < r}. (2.2.2)

Note that when t j = 0, N j,t,τ consists of two open coordinate discs of radius r corre-
sponding to the cases when |z j | < r , w j = 0 and when |w j | < r , z j = 0 respectively.
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In terms of the coordinates t, τ and either z j or w j , we may also write N j = N 1
j ∪ N 2

j ,
where

N 1
j := {(z j , t, τ ) ∈ 
(r)×U

∣
∣ |t j | 1

2 ≤ |z j | < r}, and

N 2
j := {(w j , t, τ ) ∈ 
(r)×U

∣∣ |t j | 1
2 ≤ |w j | < r}. (2.2.3)

For each (t, τ ) ∈ U , we also denote

N 1
j,t,τ := N 1

j ∩ Xt,τ 	 {z j ∈ C: |t j | 1
2 ≤ |z j | < r}, and

N 2
j,t,τ := N 2

j ∩ Xt,τ 	 {w j ∈ C: |t j | 1
2 ≤ |w j | < r}. (2.2.4)

Recall also from Sect. 2.1 that, shrinking r if necessary, we will assume without loss of
generality that each N j ⊂⊂ N ′j for some similarly defined local coordinate neighbor-

hood N ′j = 
m+1(r ′)× V of q j in X with r < r ′ < 1, and thus we have corresponding

similarly defined sets N 1,′
j , N 2,′

j , N 1,′
j,t,τ , N 2,′

j,t,τ , etc. For (t, τ ) ∈ U ′ with t j �= 0, we
define the function on N j,t,τ given by

ρ∗j,t,τ (z j ) :=
(

π

|z j | log |t j |csc
π log |z j |

log |t j |
)2

(2.2.5)

via the first identification of (2.2.2). Observe that the expression for ρ∗j,t,τ actually does
not depend on τ or tk for k �= j . It is also easy to see that ρ∗j,t,τ is given by a similar
expression in terms of the coordinatew j . For (t, τ ) ∈ U ′ with t j = 0, we define ρ∗j,t,τ by

ρ∗j,t,τ (z j ) = 1

|z j |2(log |z j |)2 on the z j -coordinate disc, (2.2.6)

and by a similar expression on thew j -coordinate disc. Then it is well-known and easy to
see that the ρ∗j,t,τ ’s glue together to form a continuous function on N ′j (with singularity
along the complex analytic subset z j = w j = 0 of complex codimension two), which
we denote by ρ∗j . Moreover, for each (t, τ ) ∈ U with t j �= 0,

ρ∗j,t,τ := ρ∗j,t,τ (z j )dz j ⊗ dz̄ j = ρ∗j,t,τ (w j )dw j ⊗ dw̄ j (2.2.7)

is the restriction of the complete hyperbolic metric on the annulus {z j ∈ C: |t j | < |z j | <
1}(⊃ N ′j,t,τ ); when t j = 0, similar statements also hold for the two corresponding punc-
tured coordinate discs. For fixed (t, τ ) ∈ U ′ with t j �= 0, we write

ρt,τ = ρt,τ (z j )dz j ⊗ dz̄ j = ρt,τ (w j )dw j ⊗ dw̄ j on N ′j,t,τ . (2.2.8)

Proposition 2.2.1. (i) For each 1 ≤ j ≤ m, there exist constants C3,C4 > 0 such that
for all (t, τ ) ∈ U with t j �= 0, one has

C3ρ
∗
j,t,τ (z j ) ≤ ρt,τ (z j ) ≤ C4ρ

∗
j,t,τ (z j ) on N ′j,t,τ . (2.2.9)

A similar inequality also holds for the coordinatew j . In particular, there exist constants
C5,C6 > 0 such that for all (t, τ ) ∈ U with t j �= 0, one has

C5

|z j |2(log |z j |)2 ≤ ρt,τ (z j ) ≤ C6

|z j |2(log |z j |)2 on N 1
j,t,τ . (2.2.10)

A similar inequality (with z j replaced by w j ) also holds for the region N 2
j,t,τ .
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(ii) (Strengthened version of (i)) If, in addition, z j andw j are standard local holomorphic
coordinate functions for X0 (cf. Remark-Definition 2.1.2), then the inequalities in (2.2.9)
and (2.2.10) remain valid with the constants C3,C4,C5,C6 replaced by positive con-
tinuous functions C3,t,τ , C4,t,τ , C5,t,τ , C6,t,τ (depending on (t, τ ) ∈ U (with t j �= 0))
respectively and satisfying

C3,t,τ , C4,t,τ , C5,t,τ , C6,t,τ → 1 as (t, τ )→ (0, 0). (2.2.11)

Proof. The proof of (i) for Tg,n with n > 0 is the same as the case of Tg,0 given in [M, p.
632]. Next we recall Bers’ result [Be] which implies that ρ(z j , t, τ ) is locally uniformly
continuous in all variables at points where z j �= 0. Then the proof of (ii) follows from
this result and a simple adaptation of that of (i) in a manner similar to Proposition 2.1.3,
which will be left to the reader. ��

3. Regular Quadratic Differentials and the Weil-Petersson Metric

3.1. To facilitate the ensuing discussion, we recall in this section Masur’s construction
in [M] of a certain local basis of regular quadratic differentials for a degenerating family
of punctured Riemann surfaces. The concept of regular quadratic differentials dates back
to earlier works of Bers (see e.g. [Be]). Since only the case of a degenerating family
of compact Riemann surfaces was explicitly discussed in [M], we will indicate briefly
the necessary modifications arising from the punctures of the Riemann surfaces for the
convenience of the reader. Similar to [M, p. 627], we first have

Definition 3.1.1. (a) Let X be a Riemann surface with possibly both punctures and
nodes, and denote the smooth part of X by Xo. For k = 1, 2, a regular k-differential φ
on X is a holomorphic section of K k

Xo such that (i) φ has at most a simple pole at each
puncture of X; and (ii) φ has at most a pole of order k at each of the two punctures of
Xo associated to a node of X; moreover, the residues of φ at each such pair of punctures
are equal if k = 2 and opposite if k = 1. Here we recall that the residue of φ = φ(z)dzk

at a point z = 0 is given locally by the residue of the abelian differential φ(z)zk−1dz.
(b) For k = 1, 2, a regular k-differential on a family of Riemann surfaces with punc-
tures and nodes is a holomorphic function element on the total space which restricts to
a regular k-differential on each fiber.

We remark that when X has no punctures, the above definition is standard and well-
known (see e.g. [M, §4]). When X has no nodes, the space of regular 2-differential on
X coincides with the space of integrable holomorphic quadratic differentials on X .

Let X0 ∈Mg,n \Mg,n be a Riemann surface with punctures p1, . . . , pn and nodes
q1, . . . , qm , and let Û be an open neighborhood of X0 in Mg,n with a local uniformizing
chartψ :U 	 
m(r)×V → Û , where V 	 
3g−3+n−m is a domain in a suitable bound-
ary Teichmüller space δγ1,...,γm Tg,n as in Sect. 1.3. Also, we let π :X = {Xt,τ }(t,τ )∈U →
U be the corresponding degenerating family of Riemann surfaces associated to a choice
of Beltrami differentials ν1, . . . , ν3g−3+n−m on X0 as in Sect. 1.3. As in the case of Mg,0
in [M, p. 625-626] and for each 1 ≤ i ≤ 3g − 3 + n −m, the coordinate tangent vector
∂/∂τi at (t, τ ) = (t1, . . . , tm, τ1, . . . , τ3g−3+n−m) ∈ U is identified with the Beltrami
differential

νi

1− |µ(τ)|2 ·
w
µ(τ)
z

w̄
µ(τ)
z̄ ◦ (wµ(τ))−1

on Xt,τ , (3.1.1)
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wherewµ(τ) is as in Sect. 1.3, and like the νi ’s, it is easily seen to be of compact support
away from the punctures and nodes of Xt,τ . In addition, for each 1 ≤ j ≤ m, the tangent
vector ∂/∂t j at (t, τ ) ∈ U is identified with the Beltrami differential

∂

∂t j
(t, τ )↔ 1

2t j log |t j |
z j

z̄ j

d z̄ j

dz j
= 1

2t j log |t j |
w j

w̄ j

dw̄ j

dw j
(3.1.2)

supported on N j,t,τ ⊂ Xt,τ , where N j,t,τ is as in (2.2.1) (cf. [M, p. 626]). Recall from
(2.2) the open coordinate neighborhood N j = 
m+1(r) × V of each node q j of X0 in
X with the corresponding decomposition N j = N 1

j ∪ N 2
j given in (2.2.3). Recall also

from (2.1) the open coordinate neighborhood Wi = 
∗(R)×U of each puncture pi of
X0 in X . It is also clear from the constructions in (1.3) that X \ (∪n

i=1{Wi }∪∪m
j=1{N j })

can be covered by a finite number of coordinate neighborhoods {A�}1≤�≤�o of X , where
each A� is of the form

A� = 
(r�)×U with A�,t,τ := A� ∩ Xt,τ = 
(r�)× {(t, τ )} (3.1.3)

for each (t, τ ) ∈ U . Here, �o ∈ Z
+, and 
(r�) = {z� ∈ C | |z�| < r�} with r� > 0.

For each non-empty subset J ⊂ {1, 2, . . . ,m}, let B(J ) = {(t, τ ) ∈ U
∣
∣ t j = 0 for all

j ∈ J }, and let T (J ) = {∂/∂t j
∣
∣ 1 ≤ j ≤ m, j /∈ J }∪{∂/∂τ�

∣
∣ 1 ≤ � ≤ 3g−3+n−m}.

Let U∗ 	 (
∗(r))m × V ⊂ U be as in Theorem 1. Shrinking U if necessary, one has

Proposition 3.1.2. ([M]). There exist regular 2-differentials φk = φk(z, t, τ )dz2,
k = 1, 2, . . . , 3g − 3 + n, on X = {Xt,τ }(t,τ )∈U satisfying the following properties:
(i) At each (t, τ ) ∈ U∗, {φk}1≤k≤3g−3+n forms a basis of regular 2-differentials on Xt,τ
dual to the ordered set of tangent vectors

{∂/∂t j }1≤ j≤m ∪ {∂/∂τ�}1≤�≤3g−3+n−m

via the identifications (3.1.1), (3.1.2) and with respect to the pairing in (1.1.3).
(ii) For each non-empty subset J ⊂ {1, 2, . . . ,m}, φk ≡ 0 on B(J ) for each k ∈ J , and
{φk}k∈{1,...,3g−3+n}\J is dual to the ordered set T (J ) on B(J ) with respect to the pairing
in (1.1.3).
(iii) For each 1 ≤ k, j ≤ m, one has, on N 1

j ,

φk(z j , t, τ ) = − tk
π

[
δk j

z2
j

+ a−1(z j , t, τ ) +
1

z2
j

∞∑

�=1

(
tk
z j

)�
tκ(�)j a�(t, τ )

]

, (3.1.4)

where δk j is the Kronecker symbol, each integer κ(�) ≥ 0, a−1 has at most a simple
pole at z j = 0, and a� (� ≥ 1) is holomorphic. In particular, there exist constants
C1, C2, C3 > 0 such that on N 1

j , one has

⎧
⎪⎪⎨

⎪⎪⎩

C1
|t j |
|z j |2 ≤ |φ j (z j , t, τ )| ≤ C2

|t j |
|z j |2 if 1 ≤ j ≤ m,

|φk(z j , t, τ )| ≤ C3
|tk |
|z j | if 1 ≤ k �= j ≤ m.

(3.1.5)

Similar expressions hold on N 2
j with respect to the (w j , t, τ )-coordinates.
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(iv) For each m + 1 ≤ k ≤ 3g − 3 + n and 1 ≤ j ≤ m, one has, on N 1
j ,

φk(z j , t, τ ) = φk(z j , 0, 0) +
1

z2
j

∞∑

�=1

(
t j

z j

)�
t κ̃(�)j b�(t, τ ) +

∞∑

�=−1

z�j c�(t, τ ), (3.1.6)

where each integer κ̃(�) ≥ 0, φk(z j , 0, 0) has at most a simple pole at z j = 0, and
b�, c� are holomorphic with c�(0, 0) = 0. In particular, there exists a constant C4 > 0
such that on N 1

j , one has

|φk(z j , t, τ )| ≤ C4

|z j | if m + 1 ≤ k ≤ 3g − 3 + n and 1 ≤ j ≤ m. (3.1.7)

Similar expressions hold on N 2
j with respect to the (w j , t, τ )-coordinates.

(v) For each 1 ≤ i ≤ n, one has, on Wi = 
∗(R)×U,

φk(zi , t, τ ) =

⎧
⎪⎨

⎪⎩

− tk
π

dk(zi , t, τ )

zi
if 1 ≤ k ≤ m,

dk(zi , t, τ )

zi
if m + 1 ≤ k ≤ 3g − 3 + n,

(3.1.8)

where each dk(zi , t, τ ) is holomorphic on Wi . In particular, there exist constants C5,

C6 > 0 such that on Wi , one has

|φk(zi , t, τ )| ≤

⎧
⎪⎨

⎪⎩

C5
|tk |
|zi | if 1 ≤ k ≤ m,

C6

|zi | if m + 1 ≤ k ≤ 3g − 3 + n.
(3.1.9)

(vi) For each 1 ≤ � ≤ �o and 1 ≤ k ≤ 3g − 3 + n, φk(z�, t, τ ) is holomorphic on
A� = 
(r�)×U. Moreover, for 1 ≤ k ≤ m, one has, on A�,

φk(z�, t, τ ) = − tk
π

ek(z�, t, τ ) (3.1.10)

for some holomorphic function ek(z�, t, τ ). In particular, upon shrinking r� if necessary,
there exist constants C7, C8 > 0 such that on A�, one has

|φk(z�, t, τ )| ≤
{

C7|tk | if 1 ≤ k ≤ m,
C8 if m + 1 ≤ k ≤ 3g − 3 + n.

(3.1.11)

Proof. The proof in the general case when n > 0 follows mutatis mutandis from the
discussions of the case when n = 0 in [M, §4, §5 and §7], to which we refer the reader
for details. Here we only indicate the necessary modifications arising from the punc-
tures. By adjoining n points to each fiber Xt,τ corresponding to the punctures, one has
an associated family of compact Riemann surfaces π̄ : X̄ → U , where the punctures
of the Xt,τ ’s correspond to n non-intersecting holomorphic sections of π̄ , which we

denote by σ (p)1 , . . . , σ
(p)
n . Applying the arguments of [M, Lemma 4.3], one can produce

a regular 1-differential ψ = ψ(z, t, τ )dz and 2g − 2 disjoint holomorphic sections
σ1 . . . , σ2g−2 of the family π̄ : X̄ → U such that each σi (t, τ ) is a zero of ψ(z, t, τ )dz
and each σi (t, τ ) misses the nodes and the punctures of Xt,τ . Then using ψ and the
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2g− 2 + n disjoint sections σ1, . . . , σ2g−2, σ
(p)
1 , . . . , σ

(p)
n , one can produce the desired

regular 2-differentials by following the arguments in [M, §5 and §7]. Finally we remark
that (3.1.5) (resp. (3.1.7)) follows readily from (3.1.4) (resp. (3.1.6)) and the inequality

|t j | 1
2 ≤ |z j | < r which holds on N 1

j (cf. (2.2.3)). ��

3.2. Next we recall the well-known result of Masur [M] on the asymptotic behavior of
the Weil-Petersson metric gWP on Tg,n . It should be remarked that this result has been
improved recently by Wolpert [Wolp5] and Obitsu-Wolpert [OW], where information
on higher order terms are obtained. Masur’s original result will be sufficient for our
purpose. As in Sect. 3.1, since only the case when n = 0 was explicitly discussed in
[M], we will indicate briefly the modifications needed for the case when n > 0 for the
convenience of the reader.

Proposition 3.2.1. ([M]). For g ≥ 0 and n > 0, let X0 ∈ Mg,n\Mg,n with local uni-
formizing chart ψ :U 	 
m(r) × V → Û , where V 	 
3g−3+n−m ⊂ δγ1,...,γm Tg,n,
U∗ 	 (
(r)∗)m × V ⊂ U, and corresponding local coordinates

(s1, . . . , s3g−3+n) = (t1, . . . , tm, τ1, . . . , τ3g−3+n−m) = (t, τ )

be as in Theorem 1. Denote the components of the Weil-Petersson metric gWP by

gWP
i j̄
= gWP

(
∂

∂si
,
∂

∂s j

)
, 1 ≤ i, j ≤ 3g − 3 + n,

on U∗. Then the following statements hold:
(i) For each 1 ≤ j ≤ m, one has

0 < lim inf
(t,τ )∈U∗→(0,0)

|t j |2(− log |t j |)3gWP
j j̄
(t, τ )

≤ lim sup
(t,τ )∈U∗→(0,0)

|t j |2(− log |t j |)3gWP
j j̄
(t, τ ) <∞. (3.2.1)

(ii) For each 1 ≤ j, k ≤ m with j �= k, one has

∣∣gWP
jk̄
(t, τ )

∣∣ = O

(
1

|t j | |tk | (log |t j |)3(log |tk |)3
)

as (t, τ ) ∈ U∗ → (0, 0). (3.2.2)

(iii) For each j, k ≥ m + 1, one has

lim
(t,τ )∈U∗→(0,0)

gWP
jk̄
(t, τ ) = gWP

jk̄
(0, 0), (3.2.3)

where gWP
jk̄
(0, 0) denotes the ( j, k)th component of the Weil-Petersson metric on the

boundary Teichmüller space δγ1,...,γm Tg,n at X0.
(iv) For each 1 ≤ j ≤ m and k ≥ m + 1, one has

∣∣gWP
jk̄
(t, τ )

∣∣ = O

(
1

|t j |(− log |t j |)3
)

as (t, τ ) ∈ U∗ → (0, 0). (3.2.4)
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Proof. The proof in the general case when n > 0 follows mutatis mutandis from the
arguments for the case when n = 0 in [M, §7, proof of Theorem 1] with [M, Prop. 7.1]
replaced by Proposition 3.1.2. For 1 ≤ i ≤ n and (t, τ ) ∈ U , let Wi,t,τ be as in (2.1). We
remark that the only extra integral estimates needed are those on the Wi,t,τ ’s as follows:

∫

Wi,t,τ

φkφ�

ρt,τ
=

{
O(|tk ||t�|) if 1 ≤ k, � ≤ m,
O(|tk |) if 1 ≤ k ≤ m and m + 1 ≤ � ≤ 3g − 3 + n,

(3.2.5)

as (t, τ )→ (0, 0), and for m + 1 ≤ k, � ≤ 3g − 3 + n,

lim
(t,τ )→(0,0)

∫

Wi,t,τ

φkφ�

ρt,τ
=

∫

Wi,0,0

φkφ�

ρ0,0
. (3.2.6)

The estimates in (3.2.5) and the limit in (3.2.6) follow readily from a straightforward
calculation using Proposition 2.1.3(i), Proposition 3.1.2 and the dominated convergence
theorem. ��

4. Estimates on the Eisenstein Series

In this section, we are going to obtain some estimates on the Eisenstein series E(z, s) in
the setting of holomorphic families of degenerating punctured Riemann surfaces, which
will be needed for ensuing discussion in §5. We should clarify that by an Einsenstein
series, we will mean here the real-analytic (non-holomorphic) series as in (1.1.1) or [Ku]
rather than more customary holomorphic ones. Our approach is geometrical in nature,
and it consists largely of constructing suitable germs of comparison functions for the
Eisenstein series near the nodes and punctures. Starting from Sect. 4.2, we will restrict
our discussions to E(z, 2), although most of our discussions will also be valid for E(z, s)
with Re s > 1.

4.1. First we extend the definition of Eisenstein series to the case of punctured Riemann
surfaces with nodes.

Let X be a stable connected Riemann surface with n punctures p1, . . . , pn and m
nodes q1, . . . , qm . Then Xo := X \ {q1, . . . , qm} is a smooth punctured Riemann sur-
face with n + 2m punctures, and we denote the connected components of X◦ by Sα ,
α = 1, . . . , d (cf. Sect. 1.2). We denote the new punctures by pn+1, . . . , pn+2m . Each
old or new puncture pi , 1 ≤ i ≤ n + 2m, of X◦ is a puncture of a unique Sα(i) for some
1 ≤ α(i) ≤ d.

Definition 4.1.1. For 1 ≤ i ≤ n + 2m and s ∈ C with Re s > 1, the Eisenstein series
Ei (·, s) on X attached to pi is defined by

Ei (z, s) =
{

Ei,Sα(i) (z, s) if z ∈ Sα(i),
0 if z ∈ X \ Sα(i),

(4.1.1)

where Ei,Sα(i) (·, s) is the corresponding Eisenstein series on Sα(i) attached to pi given
as in (1.1.1).
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In the case when X has no nodes, it is well known that for 1 ≤ i, j ≤ n and in terms
of the Euclidean coordinate Z = X + iY on H with p j corresponding to ∞ (as in the
proof of Lemma 2.1.1), there exists some constant c > 0 such that

Ei (Z , s) = δi j Y
s + φi j (s)Y

1−s + o(e−cY ) as Y →∞, (4.1.2)

where δi j is the Kronecker symbol, (φi j (s)) is a symmetric n × n matrix (cf. e.g. [Ku]
and [Wolp4, p.260]). In this section, we are going to give a variant version of (4.1.2)
for a Riemann surface X with nodes. For a point z ∈ X◦, we denote by injrad(z) the
injectivity radius of X◦ at z with respect to the complete hyperbolic metric on X◦.

Proposition 4.1.2. Notation as above. Fix an integer 1 ≤ i ≤ n + 2m, and let s ∈ C be
a fixed number with Re s > 1.
(i) Let zi be a standard local holomorphic coordinate function around p (cf. Remark-
Definition 2.1.2 (i) and (ii)). Then for any ε > 0, there exists a constant Cs,ε > 0
(depending only on s, ε and indpendent of X) such that

∣∣Ei (zi , s)−
(
− log |zi |

2π

)s ∣∣ ≤ Cs,ε on 
∗(e−2πeε ) := {zi ∈ C
∣∣ 0 < |zi | < e−2πeε }.

(4.1.3)
(ii) For any κ > 0, there exists a constant C ′s,κ > 0 (depending only on s and κ) such
that

|Ei (z, s)| ≤ C ′s,κ for any z ∈ X◦ with injrad(z) ≥ κ. (4.1.4)

(iii) For 1 ≤ i �= j ≤ n + 2m, one has

Ei (z, s)→ 0 as z → p j . (4.1.5)

Proof. We remark that to prove (i), (ii) and (iii), it follows readily from (4.1.1) that we
may assume without loss of generality that X◦ is connected with pi (and possibly p j )
as one of its punctures. To prove (i), we recall from (1.1) that we may write X◦ = H/�,
where � is a Fuchsian group which uniformizes X with∞ corresponding to pi , and the
infinite cyclic subgroup �∞ ⊂ � generated by Z → Z + 1, Z ∈ H, corresponds to the
parabolic transformations of � fixing pi . Let C∞ := {Z ∈ C | Im Z ≥ 1} be a horoball
around∞ in H. As mentioned in Remark-Definition 2.1.2(ii), it follows from the collar
lemma for non-compact surfaces ([Bu, Theorem 4.4.6, p.112]) that C∞ descends under
the projection map

zi = e2π i Z (4.1.6)

to the punctured coordinate neighborhood 
∗(e−2π ) := {zi ∈ C
∣∣ 0 < |zi | < e−2π }

around pi . Let ε > 0 be a given constant. We recall from [Ku, Sect. 1.3] (cf. also [O
p.146]) the following integral representation for the Eisenstein series: For Z ∈ H, one
has

�ε(s)Ei (Z , s) =
∑

γ∈�∞\�

∫∫

B(γ Z ,ε)
Y ′s−2 d X ′dY ′, where (4.1.7)

�ε(s) : =
∫∫

B(i,ε)
Y ′s−2 d X ′dY ′. (4.1.8)
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Here Z ′ = X ′ + iY ′ denotes the Euclidean coordinate function on H, and B(Z ′, ε)
denotes the hyperbolic geodesic ball in H of radius ε and with center at Z ′. From (4.1.7),
we have

�ε(s)Ei (Z , s) =
∫∫

B(Z ,ε)
Y ′s−2d X ′dY ′ +

∑

γ∈�∞\�
γ �=id

∫∫

B(γ Z ,ε)
Y ′s−2d X ′dY ′

= �ε(s)(Im Z)s +
∑

γ∈�∞\�
γ �=id

∫∫

B(γ Z ,ε)
Y ′s−2d X ′dY ′, (4.1.9)

where the second line is obtained by making the change of variable Z ′′ = (Im Z)−1 ·
(Z ′ −Re Z) in the first integral of the first line and then invoking the definition of�ε(s)
in (4.1.8). (Note that the above change of variable corresponds to a hyperbolic isometry
on H.) Next we find an absolute bound for the last term of (4.1.9) by adapting the proof
of Theorem 2.1.2 in [Ku, p.12]. Let Cε∞ := {Z ∈ C | Im Z ≥ eε}, which is easily
seen to descend under the map in (4.1.6) to the punctured coordinate neighborhood

∗(e−2πeε ) (⊂ 
∗(e−2π )) in (4.1.3). It is easy to see that for any Z ∈ Cε∞ and γ ∈ �,
one has

B(Z , ε) ⊂ C∞, and B(γ Z , ε) = γ (B(Z , ε)) ⊂ γ (C∞) = Cγ (∞), (4.1.10)

where Cγ (∞) denotes the corresponding horoball around the cusp γ (∞), which is
isometric to C(∞) via γ . By the collar lemma mentioned above, all the horoballs Cγ (∞),
γ ∈ �∞ \ �, are mutually disjoint. It follows that all the hyperbolic geodesic balls
B(γ Z , ε), id �= γ ∈ �∞\�, are mutually disjoint, and thus they may be considered to
be disjoint subsets of

{Z ∈ H | − 1 ≤ Re Z ≤ 2, 0 < Im Z ≤ eε}, (4.1.11)

after we choose suitable representatives in the coset decomposition of �∞\�. Together
with (4.1.9), it follows that for any Z ∈ Cε∞, one has

∣∣�ε(s)
∣∣ ∣∣Ei (Z , s)− (Im Z)s

∣∣ ≤
∫∫

−1≤X ′≤2
0≤Y ′≤eε

∣∣Y ′s−2∣∣ d X ′dY ′

= 3

Re s − 1
eε(Re s−1). (4.1.12)

Observe from (4.1.8) that
∣∣�ε(s)

∣∣ = ∫∫
B(i,ε) Y ′Re s−2 d X ′dY ′ > 0 and it depends

only on s and ε. By descending the inequality in (4.1.12) on Cε∞ to the corresponding
inequality on 
∗(e−2πeε ) via the map in (4.1.6), one easily sees that (4.1.3) holds with
the constant given by

Cs,ε = 3
∣∣�ε(s)

∣∣(Re s − 1)
eε(Re s−1), (4.1.13)

and this finishes the proof of (i). Next we proceed to give the proof of (ii), which is
similar to that of (i). Let p:H → X◦ denote the covering space projection. Let z ∈ X◦
be a point with injrad(z) ≥ κ , and fix a point Z ∈ H such that p(Z) = z. With �∞ ⊂ �
and other notations as in (i) above, it is easy to see that injrad(p(Z ′)) ≥ κ

2 for any
Z ′ ∈ B(γ Z , κ2 ) and any γ ∈ �∞\�. For any Z ′ ∈ H, it is easy to calculate that the
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hyperbolic length of the horizontal line segment from Z ′ to Z ′+1 is 1
Im Z ′ , which implies

readily that injrad(p(Z ′)) ≤ 1
Im Z ′ (since p(Z ′) = p(Z ′ + 1)). Hence we have

Im Z ′ ≤ 2

κ
for all Z ′ ∈ B(γ Z ,

κ

2
), γ ∈ �∞\�. (4.1.14)

The condition injrad(z) ≥ κ also implies readily that the geodesic balls B(γ Z , κ2 ),
γ ∈ �∞\�, are mutually disjoint, and thus similar to (4.1.11), they may be regarded as
disjoint subsets of

{Z ∈ H | − 1 ≤ Re Z ≤ 2, 0 < Im Z ≤ 2

κ
}. (4.1.15)

Together with (4.1.7) and (4.1.8) (and with ε = κ
2 ), it follows as in (4.1.12) that one has

∣∣�κ
2
(s)

∣∣ ∣∣Ei (Z , s)
∣∣ ≤

∫∫

−1≤X ′≤2
0≤Y ′≤ 2

κ

∣∣Y ′s−2∣∣d X ′dY ′

= 3

(Re s − 1)
·
(

2

κ

)Re s−1

. (4.1.16)

By descending the above inequality to Xo, one easily sees that (4.1.4) holds with the
constant given by

C ′s,κ =
3

∣
∣�κ

2
(s)

∣
∣(Re s − 1)

·
(

2

κ

)Re s−1

, (4.1.17)

and this finishes the proof of (ii). Finally one easily sees that (4.1.5) is a direct conse-
quence of (4.1.2), and this finishes the proof of Proposition 4.1.1. ��

4.2. Upper bound of Ei,t,τ near a node. Notation as in §1. Let X0 ∈ Mg,n\Mg,n be
a Riemann surface with n punctures at p1, . . . , pn and m nodes at q1, . . . , qm , and let
Û be an open neighborhood of X0 in Mg,n together with a local uniformizing chart
χ :U → Û , where U 	 
m(r) × V = {(t, τ ) = (t1, . . . , tm, τ1, . . . , τ3g−3+n−m): t ∈

m(r), τ ∈ V }, and V 	 
3g−3+n−m is an open coordinate neighborhood of X0 in
δγ1,...,γm Tg,n as in (1.3). Let X := {Xt,τ }(t,τ )∈U be the corresponding family of Rie-
mann surfaces parametrized by U with X0 = X(0,0). Let U∗ 	 (
∗(r))m × V ⊂ U
be as in Theorem 1. For each 1 ≤ i ≤ n and (t, τ ) ∈ U , we denote the Eisenstein
series with S = 2 on Xt,τ associated to the puncture corresponding to pi by Ei,t,τ (à
la Definition 4.1.1 when some t j = 0). It is well-known that {Ei,t,τ }(t,τ )∈U∗ form a
continuous family of functions on {X(t,τ )}(t,τ )∈U∗ . The following proposition follows
from previous work of Obitsu [O2]:

Proposition 4.2.1. ([O2]). For each i = 1, . . . , n, Ei,t,τ converges uniformly on com-
pact subsets of X0 \ {p1, . . . , pn, q1, . . . , qm} to Ei,0,0 as (t, τ ) ∈ U∗ → (0, 0).

Here, it is easy to see that a compact set K ⊂ X0 \ {p1, . . . , pn, q1, . . . , qm} can
be extended to a neighborhood of the form K × U in the total space of {Xt,τ }(t,τ )∈U ,
shrinking U if necessary. Therefore, Ei,t,τ may be regarded as a function on K for (t, τ )
sufficiently close to (0, 0).
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For a fixed integer i with 1 ≤ i ≤ n, we are going to give a pointwise upper bound of
Ei,t,τ near a node q j with 1 ≤ j ≤ m. Let N j = 
m+1(r)×V ⊂⊂ 
m+1(r ′)×V ′ = N ′j
(with 0 < r < r ′ < 1), N j,t,τ , N ′j,t,τ , N 1

j,t,τ , N 2
j,t,τ , z j , w j be as in Sect. 2.2. Motivated

by (2.2.5) and (2.2.6), we consider a family of comparison functions for the Ei,t,τ ’s as
follows: For each (t, τ ) ∈ U with t j �= 0, we let

E∗t,τ (z j ) := − π

log |t j | · sin
(
π log |z j |

log |t j |
) on N ′j,t,τ . (4.2.1)

For each (t, τ ) ∈ U with t j = 0, recall that N ′j,t,τ consists of two discs {z j ∈ C | |z j | <
r ′} and {w j ∈ C | |w j | < r ′}, and we let

E∗t,τ (·) :=

⎧
⎪⎪⎨

⎪⎪⎩

− 1

log |z j | on the z j -disc,

− 1

log |w j | on the w j -disc.
(4.2.2)

As in Sect. 2.2, it is easy to see that the E∗t,τ ’s glue together to form a positive contin-

uous function on N ′j \ {nodes}. We write ‖(t, τ )‖ =
√∑m

j=1 |t j |2 +
∑3g−3+n−m

k=1 |τk |2
for (t, τ ) ∈ U .

Proposition 4.2.2. For fixed 1 ≤ i ≤ n, 1 ≤ j ≤ m and 0 < α < 1, there exist constants
C1, C2, δ > 0 such that for all (t, τ ) ∈ U with t j �= 0 and satisfying ‖(t, τ )‖ < δ, one
has

Ei,t,τ ≤ C1(E
∗
t,τ )

α on N j,t,τ , so that (4.2.3)

Ei,t,τ (z j ) ≤ C2

(− log |z j |)α on N 1
j,t,τ , (4.2.4)

and a similar inequality (with z j replaced by w j ) holds on N 2
j,t,τ .

Proof. First we consider the special case when at (t, τ ) = (0, 0), z j , w j are stan-
dard local holomorphic coordinates for X0 (cf. Remark-Definition 2.1.2). Consider the
operator


 j := 4
∂2

∂z j∂z j
on N j,t,τ . (4.2.5)

(Note that in terms of real coordinates, one has 
 j = ∂2

∂x2
j

+ ∂2

∂y2
j
, where z j = x j + iy j .)

By direct calculation, one can check that for (t, τ ) ∈ U with t j �= 0,


 j E∗t,τ (z j ) =
(

1 + cos2
(
π log |z j |

log |t j |
))

E∗t,τ (z j )ρ
∗
j,t,τ (z j )

≤ 2

C3,t,τ
E∗t,τ (z j )ρt,τ (z j ) on N j,t,τ (by Proposition 2.2.1), (4.2.6)
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where ρ∗j,t,τ , C3,t,τ and ρt,τ (z j ) are as in (2.2.5), (2.2.10) and (2.2.7) respectively. For
(t, τ ) ∈ U with t j �= 0, it follows from the chain rule that


 j (E
∗
t,τ )

α = 4α(α − 1)(E∗t,τ )α−2|∂z j E∗t,τ |2 + α(E∗t,τ )α−1
 j E∗t,τ

≤ 2α

C3,t,τ
(E∗t,τ (z j ))

αρt,τ (z j ) on N j,t,τ

(by (4.2.6) and since 0 < α < 1). (4.2.7)

On the other hand, for (t, τ ) ∈ U with t j �= 0, it follows from (1.1.2) and Definition 4.1.1
that


 j Ei,t,τ (z j ) = 2Ei,t,τ (z j )ρt,τ (z j ) on N j,t,τ , (4.2.8)

and a similar expression holds for thew j -coordinate. For each (t, τ ) ∈ U , the boundary
∂N j,t,τ of N j,t,τ consists of two circles |z j | = r and |w j | = r , and it is easy to see that
∪(t,τ )∈U ∂N j,t,τ forms a compact subset of N ′j . It follows readily from Proposition 2.2.1
that for any (t, τ ) ⊂ U and any point z on ∂N j,t,τ , the injectivity radius of (Xt,τ , ρt,τ )

at z is uniformly bounded below by some constant κ > 0 independent of (t, τ ). Thus,
by Proposition 4.1.2(ii), there exists a constant C > 0 such that

Ei,t,τ (z) ≤ C for all (t, τ ) ∈ U and z ∈ ∂N j,t,τ . (4.2.9)

It is also easy to see from (4.2.1) and (4.2.2) that there exists a constant C∗ > 0 such
that

E∗t,τ (z) ≥ C∗ for all (t, τ ) ∈ U and z ∈ ∂N j,t,τ . (4.2.10)

Let C1 = C
(C∗)α > 0. Then it follows from (4.2.9) and (4.2.10) that for all (t, τ ) ∈ U ,

one has

Ei,t,τ (z j )− C1(E
∗
t,τ (z j ))

α ≤ 0 on ∂N j,t,τ . (4.2.11)

Since α < 1, it follows from Proposition 2.2.1 that there exists a constant δ > 0 such
that

C3,t,τ ≥ α for all (t, τ ) ∈ U satisfying t j �= 0 and ‖(t, τ )‖ < δ. (4.2.12)

Combining (4.2.7), (4.2.8) and (4.2.12), one easily sees that for all (t, τ ) ∈ U satisfying
t j �= 0 and ‖(t, τ )‖ < δ, one has


 j (Ei,t,τ (z j )− C1(E
∗
t,τ (z j ))

α) ≥ 2(Ei,t,τ (z j )− C1(E
∗
t,τ (z j ))

α)ρt,τ (z j ) on N j,t,τ .

(4.2.13)
By using the maximum principle, one easily obtains (4.2.3) as a consequence of (4.2.11)
and (4.2.13). Then (4.2.4) follows readily from (4.2.3), (2.2.4) and the boundedness of
the function x/ sin x for 0 < x ≤ π

2 , and this finishes the proof of the proposition in the
special case when at (t, τ ) = (0, 0), z j , w j are standard local holomorphic coordinates
for X0. Finally we remark that the general case of the proposition follows readily from
the above special case by performing a change of variable and adjusting the values of
C1 and C2 in (4.2.3) and (4.2.4) if necessary. ��
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4.3. Integral lower bound of Ei,t,τ near an adjacent node. Settings, notations and def-
initions are as in Sect. 4.2. We are going to derive a desired integral lower bound for
Ei,t,τ on the region N j,t,τ associated to any node q j adjacent to pi (cf. Remark 4.3.2).

Proposition 4.3.1. Let 1 ≤ i ≤ n, 1 ≤ j ≤ m be such that the node q j of X0 is adjacent
to the puncture pi , and let φ j = φ j (z, t, τ )dz2 be as in Proposition 3.1.2. Then for any
fixed β > 1, there exist constants C = C(β), δ = δ(β) > 0 such that for all (t, τ ) ∈ U∗
satisfying ‖(t, τ )‖ < δ, one has

∫

N j,t,τ

Ei,t,τ
φ jφ j

ρt,τ
≥ C |t j |2(− log |t j |)3−β. (4.3.1)

Proof. As in Proposition 4.2.2, we will assume without loss of generality that at (t, τ ) =
(0, 0), z j , w j are standard local holomorphic coordinates for X0. Consider the biholo-
morphism from N j onto itself given by

σ(t1, . . . , t j−1, z j , w j , t j+1, . . . , tm, τ ) = (t1, . . . , t j−1, w j , z j , t j+1, . . . , tm, τ )

in terms of the coordinates in (2.2.1). For each fixed (t, τ ) ∈ U with t j �= 0 (and upon
suppressing the coordinates t1, . . . , t j−1, t j+1, . . . , tm, τ ), it is easy to see that σ restricts
to a biholomorphism σ j,t,τ : N 1

j,t,τ → N 2
j,t,τ given by

σ j,t,τ (z j , w j ) = (w j , z j ) with z jw j = t j (4.3.2)

(cf. (2.2.3) and (2.2.4)). With ρ∗j,t,τ as given in (2.2.7) (see also (2.2.5)), it is easy to see

that σ j,t,τ induces the following isometry between N 1
j,t,τ and N 2

j,t,τ :

σ ∗j,t,τ ρ∗j,t,τ = ρ∗j,t,τ . (4.3.3)

Let C1 > 0 be as in (3.1.5). Then it follows from Proposition 3.1.2 and (4.3.2) that for
all (t, τ ) ∈ U , one has

|φ j (z j , t, τ )|, |φ j (σ j,t,τ (z j ), t, τ )| ≥ C1
|t j |
|z j |2 on N 1

j,t,τ . (4.3.4)

Using the limit lim
x→0

x csc x = 1, it is easy to see from (2.2.5) that for all (t, τ ) ∈ U with

t j �= 0, one has

ρ∗j,t,τ (z j ) ≤
Ct j

|z j |2(log |z j |)2 on N 1
j,t,τ , (4.3.5)

where Ct j is a positive continuous function in the variable t j such that

Ct j → 1 as t j → 0. (4.3.6)
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Let C4,t,τ be as in (2.2.11). By Proposition 2.2.1, we have

∫

N j,t,τ

Ei,t,τ
φ jφ j

ρt,τ

≥ 1

C4,t,τ

(∫

N 1
j,t,τ

Ei,t,τ
φ jφ j

ρ∗j,t,τ
+

∫

N 2
j,t,τ

Ei,t,τ
φ jφ j

ρ∗j,t,τ

)

= 1

C4,t,τ

∫

N 1
j,t,τ

(

Ei,t,τ
φ jφ j

ρ∗j,t,τ
+ σ ∗j,t,τ Ei,t,τ

σ ∗j,t,τ φ jσ
∗
j,t,τ φ j

σ ∗j,t,τ ρ∗j,t,τ

)

= 1

C4,t,τ

∫

N 1
j,t,τ

(
Ei,t,τ (z j )|φ j (z j , t, τ )|2

ρ∗j,t,τ (z j )

+
Ei,t,τ (σ j,t,τ (z j ))|φ j (σ j,t,τ (z j ), t, τ )|2

ρ∗j,t,τ (z j )

)

dz j dz j (by (4.3.3))

≥ C2
1

C4,t,τCt j

∫

N 1
j,t,τ

(
Ei,t,τ (z j ) + Ei,t,τ (σ j,t,τ (z j ))

) · |t j |2
|z j |4 · |z j |2(log |z j |)2 dz j dz j

(by (4.3.2), (4.3.4) and (4.3.5)). (4.3.7)

In polar coordinates, we write z j = r j eiθ j , t j = |t j |eiψ j , and write Ei,t,τ (z j ) =
Ei,t,τ (r j , θ j ), so that Ei,t,τ (σ j,t,τ (z j )) = Ei,t,τ (

|t j |
r j
, ψ j − θ j ). Then (4.3.7) can be

re-written in the following form:

∫

N j,t,τ

Ei,t,τ
φ jφ j

ρt,τ
≥ C2

1 |t j |2
C4,t,τCt j

∫ r

|t j |
1
2

ft,τ (r j ) · (log r j )
2

r j
dr j , where

ft,τ (r j ) :=
∫ 2π

0

(
Ei,t,τ (r j , θ j ) + Ei,t,τ (

|t j |
r j
, ψ j − θ j )

)
dθ j

=
∫ 2π

0

(
Ei,t,τ (r j , θ j ) + (σ ∗j,t,τ Ei,t,τ )(r j , θ j )

)
dθ j . (4.3.8)

It is easy to see that the ft,τ ’s (with (t, τ ) ∈ U∗) form a continuous family of func-
tions and each ft,τ is a smooth function in the variable r j . Moreover, one also has

ft,τ (r j ) = ft,τ (
|t j |
r j
) for all

|t j |
r ≤ r j ≤ r , which implies readily that

f ′t,τ (|t j | 1
2 ) = 0. (4.3.9)

Consider the differential operator


̃ j := 1

r j

∂

∂r j

(
r j

∂

∂r j

)
, so that 
 j = 
̃ j +

1

r2
j

∂2

∂θ2
j

, (4.3.10)

where 
 j is as in (4.2.5). Also, we denote the hyperbolic Laplacian on N j,t,τ with
respect to ρ∗j,t,τ by 
∗j,t,τ , so that in terms of the z j -coordinate, one has


∗j,t,τ = (ρ∗j,t,τ (z j ))
−1
 j , (4.3.11)
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and a similar expression holds for thew j -coordinate. The isometric property of σ j,t,τ in
(4.3.3) implies readily that


∗j,t,τ (σ ∗j,t,τ Ei,t,τ ) = σ ∗j,t,τ (
∗j,t,τ Ei,t,τ ). (4.3.12)

From the analogues of (4.2.8) and (4.3.11) for the w j -coordinate, one has


∗j,t,τ Ei,t,τ (w j ) = 2Ei,t,τ (w j ) · ρt,τ (w j )

ρ∗j,t,τ (w j )
on N 2

j,t,τ . (4.3.13)

Upon pulling back by σ j,t,τ and using Proposition 2.2.1, one obtains from (4.3.12) and
(4.3.13) that on N 1

j,t,τ ,


∗j,t,τ (σ ∗j,t,τ Ei,t,τ )(z j ) ≤ 2σ ∗j,t,τ Ei,t,τ (z j ) · C4,t,τ

=⇒ 
 j (σ
∗
j,t,τ Ei,t,τ )(z j ) ≤ 2σ ∗j,t,τ Ei,t,τ (z j ) · C4,t,τ · ρ∗j,t,τ (z j ) (by (4.3.11))

≤ 2σ ∗j,t,τ Ei,t,τ (z j ) · C4,t,τ ·
Ct j

|z j |2(log |z j |)2 (by (4.3.5))

(4.3.14)

Similarly, it follows from Proposition 2.2.1, (4.2.8) and (4.3.5) that one has


 j Ei,t,τ (z j ) ≤ 2Ei,t,τ (z j ) · C4,t,τ ·
Ct j

|z j |2(log |z j |)2 on N 1
j,t,τ . (4.3.15)

It follows readily from (4.3.8) and (4.3.10) that


̃ j ft,τ (r j ) =
∫ 2π

0

̃ j

(
Ei,t,τ + σ ∗j,t,τ Ei,t,τ

)
(r j , θ j ) dθ j

=
∫ 2π

0

 j

(
Ei,t,τ + σ ∗j,t,τ Ei,t,τ

)
(r j , θ j ) dθ j

− 1

r2
j

∫ 2π

0

∂2

∂θ2
j

(
Ei,t,τ (r j , θ j ) + Ei,t,τ (

|t j |
r j
, ψ j − θ j )

)
dθ j . (4.3.16)

Observe that
∫ 2π

0

∂2

∂θ2
j

(
Ei,t,τ (r j , θ j ) + Ei,t,τ (

|t j |
r j
, ψ j − θ j )

)
dθ j = 0, (4.3.17)

since the expression Ei,t,τ (r j , θ j ) + Ei,t,τ (
|t j |
r j
, ψ j − θ j ) is periodic in θ j with period

2π . By (4.3.14) and (4.3.15), we also have
∫ 2π

0

 j

( (
Ei,t,τ + σ ∗j,t,τ Ei,t,τ

)
(r j , θ j ) dθ j

≤
∫ 2π

0
(Ei,t,τ + σ ∗j,t,τ Ei,t,τ )(r j , θ j ) ·

2C4,t,τCt j

r2
j (log r j )2

dθ j

= 2C4,t,τCt j

r2
j (log r j )2

· f (r j ). (4.3.18)
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Combining (4.3.16), (4.3.17) and (4.3.18), it follows that we have


̃ j ft,τ (r j ) ≤
2C4,t,τCt j

r2
j (log r j )2

· f (r j ). (4.3.19)

For any fixed number β > 1, a direct calculation gives

d

dr j

(
1

(− log r j )β

)
= β

r j (− log r j )β+1 > 0 for 0 < r j < 1, and (4.3.20)


̃ j

(
1

(− log r j )β

)
= β(β + 1)

r2
j (− log r j )β+2

. (4.3.21)

Since the node q j of X0 is adjacent to the puncture pi , it follows that Ei,0,0 is positive
(and thus bounded below by some constant C2 > 0) on at least one of the boundary
circles of Ni,0,0, namely |z j | = r or |w j | = r . (We remark that Ei,0,0 may be identically
zero on the other boundary circle of Ni,0,0.) Together with Proposition 4.2.1, it follows
that there exists a constant δ1 > 0 such that Ei,t,τ ≥ C2

2 on the corresponding boundary
circle of Ni,t,τ for all (t, τ ) ∈ U∗ satisfying ‖(t, τ )‖ < δ1. Together with (4.3.8), it
follows that

ft,τ (r) ≥ 2π · C2

2
= πC2 for all (t, τ ) ∈ U∗ satisfying ‖(t, τ )‖ < δ1. (4.3.22)

Let C3 := πC2 · (− log r)β > 0. For each (t, τ ) ∈ U∗, consider the function

Ft,τ (r j ) := C3

(− log r j )β
− ft,τ (r j ), |t j | 1

2 ≤ r j ≤ r. (4.3.23)

Then it follows from (4.3.22) that

Ft,τ (r) ≤ 0 for all (t, τ ) ∈ U∗ satisfying ‖(t, τ )‖ < δ1. (4.3.24)

Moreover, it follows from (4.3.9) and (4.3.20) that for all (t, τ ) ∈ U∗, one has

F ′t,τ (|t j | 1
2 ) ≥ 0. (4.3.25)

Since β > 1, we have β(β + 1) > 2. Together with (2.2.11) and (4.3.6), it follows that
there exists a constant δ2 > 0 such that

2C4,t,τCt j < β(β + 1) for all (t, τ ) ∈ U∗ satisfying ‖(t, τ )‖ < δ2. (4.3.26)

Together with (4.3.19), (4.3.21) and (4.3.23), it follows that


̃ j Ft,τ (r j ) ≥ β(β + 1)

r2
j (− log r j )2

Ft,τ (r j ) for all (t, τ ) ∈ U∗ satisfying ‖(t, τ )‖ < δ2.

(4.3.27)
Regarding Ft,τ also as a function in the new variable s j = log r j , one easily sees from
(4.3.10) that the inequality in (4.3.27) can be re-written as

d2

ds2
j

Ft,τ ≥ β(β + 1)

s2
j

Ft,τ . (4.3.28)
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By using the maximum principle, one easily sees from (4.3.24), (4.3.25) and (4.3.28)
that for all (t, τ ) ∈ U∗ satisfying ‖(t, τ )‖ < min{δ1, δ2}, one has

Ft,τ (r j ) ≤ 0, or equivalently, ft,τ (r j ) ≥ C3

(− log r j )β
for all |t j | 1

2 ≤ r j ≤ r.

(4.3.29)
We remark that to prove (4.3.1), it is clear that we may assume without loss of generality
that β < 3. From (4.3.8) and (4.3.29), one has

∫

N j,t,τ

Ei,t,τ
φ jφ j

ρt,τ
≥ C2

1 |t j |2
C4,t,τCt j

∫ r

|t j |
1
2

C3

(− log r j )β
· (log r j )

2

r j
dr j

= C3C2
1 |t j |2

C4,t,τCt j

·
(
(− log |t j | 1

2 )3−β − (− log r)3−β
)

3− β . (4.3.30)

It follows from (2.2.11) and (4.3.6) that there exists δ3 > 0 such that C4,t,τ ≤ 2
and Ct j ≤ 2 for all (t, τ ) ∈ U∗ satisfying ‖(t, τ )‖ < δ3. Clearly there also exists

δ4 > 0 such that (− log r)3−β < 1
2 (− log |t j | 1

2 )3−β if 0 < |t j | < δ4. Now let δ =
min{δ1, δ2, δ3, δ4} > 0. Then it follows readily from (4.3.30) that (4.3.1) holds for all

(t, τ ) ∈ U∗ satisfying ‖(t, τ )‖ < δ (and with the constant C = C3C2
1

8·23−β ·(3−β) > 0). ��
Remark 4.3.2. The proof of Proposition 4.3.1 does not work for the case when the node
q j is not adjacent to the puncture pi , since Ei,0,0 is identically zero near such q j (cf.
(4.1.1)). One expects that (4.3.1) will not hold for such q j . For a similar reason, one
expects that a pointwise lower bound in the spirit of Proposition 4.2.2 will not hold on
the entire N j,t,τ even in the case when q j is adjacent to pi (unless both branches of
N j,0,0 are “adjacent to” pi ).

4.4. Upper and lower bounds of Ei,t,τ near pi . For a fixed integer i with 1 ≤ i ≤ n,
we are going to give a pointwise upper bound of Ei,t,τ near the puncture pi . Let Wi =

∗(R)×U , W ′

i = 
∗(R′)×U ′ (with 0 < R < R′ < 1), Wi,t,τ , W ′
i,t,τ , zi be as in (2.1).

Proposition 4.4.1. There exist constants δ, c1, c2 > 0 such that for all (t, τ ) ∈ U
satisfying ‖(t, τ )‖ < δ, one has

(
log |zi |

2π

)2

+ c1 log |zi | ≤ Ei,t,τ (zi ) ≤
(

log |zi |
2π

)2

− c2 log |zi | on Wi,t,τ , (4.4.1)

shrinking R if necessary. In particular, there exist constants c3, c4 > 0 such that for all
(t, τ ) ∈ U satisfying ‖(t, τ )‖ < δ, one has

c3 (log |zi |)2 ≤ Ei,t,τ (zi ) ≤ c4 (log |zi |)2 on Wi,t,τ . (4.4.2)

Proof. For any (t, τ ) ∈ U , we let zi,t,τ be a standard local holomorphic coordinate
function around the puncture pi on Xt,τ (cf. Remark-Definition 2.1.2). As mentioned in
Remark-Definition 2.1.2(ii), 
∗t,τ (e−π ) := {zi,t,τ ∈ C

∣∣ 0 < |zi,t,τ | < e−π } is a bona-
fide local coordinate neighborhood around pi in Xt,τ . It follows readily from the collar
lemma for non-compact surfaces ([Bu, Theorem 4.4.6, p.112]) and Proposition 2.1.3(ii)
that there exists δ > 0 such that for all (t, τ ) ∈ U satisfying ‖(t, τ )‖ < δ, one has
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W ′
i,t,τ ⊂ 
∗t,τ (e−π ), upon shrinking R′ (and possibly also R) if necessary; in particular,

zi,t,τ (in addition to zi ) provides a holomorphic coordinate function on W ′
i,t,τ vanishing

only at pi . In terms of the Euclidean coordinate Z = X + iY on the upper half plane
H, it is easy to calculate that the hyperbolic distance from a point Z to Z + 1 is given
by 2 coth−1(

√
4Y 2 + 1) (with the hyperbolic geodesic joining Z to Z + 1 given by the

Euclidean circular arc joining the two points and with center at X + 1
2 ). Shrinking R again

if necessary, it follows that for all (t, τ ) ∈ U satisfying ‖(t, τ )‖ < δ, the injectivity radius
of W ′

i,t,τ at any point a ∈ Wi,t,τ with respect to the restriction of the hyperbolic metric

ρt,τ on Xt,τ is given by f (|zi,t,τ (a)|), where f (t) := 2 coth−1
(√

1 + ( 1
π

log t)2
)

. Next

we recall from Proposition 2.1.3(i) the comparison of ρt,τ with the two model hyperbolic
metrics on W ′

i,t,τ with respect to the zi -coordinate (the comparison was stated for Wi,t,τ

there, but clearly it holds for W ′
i,t,τ here). Upon shrinking R further if necessary, one

easily sees that it leads readily to a corresponding comparison of the injectivity radii of
W ′

i,t,τ at the point a with respect to these metrics given by

√
C1 f (R) ≤ f (|zi,t,τ (a)|) ≤

√
C2 f (R), (4.4.3)

where C1, C2 > 0 are as in Proposition 2.1.3(i). It is easy to see that f : (0, 1)→ (0,∞)
is a continuous strictly increasing and bijective function. Since zi and zi,t,τ are both coor-
dinate functions on W ′

i,t,τ vanishing at pi , it follows that the function ht,τ = zi,t,τ /zi
extends across pi as a non-vanishing holomorphic function. By applying the maximum
and minimum modulus principles to the (extended) function ht,τ on the disc |zi | ≤ R
and varying (t, τ ), it follows from (4.4.3) that for all (t, τ ) ∈ U satisfying ‖(t, τ )‖ < δ,
one has

C3 |zi | ≤ |zi,t,τ | ≤ C4 |zi | on Wi,t,τ , where (4.4.4)

C3 = f −1(
√

C1 f (R))

R
> 0 and C4 = f −1(

√
C2 f (R))

R
> 0. (4.4.5)

Fix a number ε > 0. Then shrinking R and δ if necessary, we may assume that Wi,t,τ ⊂

∗t,τ (e−2πe−ε ) for all (t, τ ) ∈ U satisfying ‖(t, τ )‖ < δ. Thus by Proposition 4.1.2(i)
(with s = 2), there exists a constant C2,ε > 0 such that for all (t, τ ) ∈ U satisfying
‖(t, τ )‖ < δ, one has

− C2,ε ≤ Ei,t,τ (zi,t,τ )−
(

log |zi,t,τ |
2π

)2

≤ C2,ε on Wi,t,τ . (4.4.6)

By replacing C3 by min{C3, 1}, etc., we may assume that (4.4.4) holds with C3 ≤ 1 and
C4 ≥ 1. Note also that |zi |, |zi,t,τ | < 1 on Wi,t,τ . Thus (4.4.4) leads to the inequality

(log |zi | + log C4)
2 ≤ (log |zi,t,τ |)2 ≤ (log |zi | + log C3)

2 on Wi,t,τ , (4.4.7)

which, together with (4.4.6), lead readily to (4.4.1). We just remark that the constant
terms in (4.4.6) and (4.4.7) can be absorbed by the terms linear in log |zi | in (4.4.1) by
adjusting c1 and c2 suitably, if necessary. Finally one easily sees that (4.4.2) is a direct
consequence of (4.4.1). ��
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4.5. Upper bound of Ei,t,τ near a puncture p j with j �= i . For fixed integers i, j with
1 ≤ i �= j ≤ n, we are going to give a pointwise upper bound of Ei,t,τ near the puncture
p j . Let W j = 
∗(R)×U (with 0 < R < 1), W j,t,τ , z j be as in (2.1).

Proposition 4.5.1. For fixed integers 1 ≤ i �= j ≤ n and real number α satisfying
0 < α < 1, there exist constants C, δ > 0 such that for all (t, τ ) ∈ U satisfying
‖(t, τ )‖ < δ, one has

Ei,t,τ (z j ) ≤ C

(− log |z j |)α on W j,t,τ . (4.5.1)

Proof. The proof is similar to that of Proposition 4.2.2, and as in there, we will assume
without loss of generality that at (t, τ ) = (0, 0), z j is a standard local holomorphic
coordinate for X0. For each (t, τ ) ∈ U , the boundary ∂W j,t,τ of W j,t,τ consists of the
circle |z j | = R. As in (4.2.9), it follows from Proposition 2.1.3 and Proposition 4.1.2(ii)
that there exists a constant C1 > 0 such that for all (t, τ ) ∈ U , one has

Ei,t,τ (z j ) ≤ C1 on ∂W j,t,τ . (4.5.2)

Thus for all (t, τ ) ∈ U , one has

Ei,t,τ (z j )− C

(− log |z j |)α ≤ 0 on ∂W j,t,τ , where C := C1 · (− log R)α > 0.

(4.5.3)
Since 0 < α < 1, it follows from Proposition 4.1.2(iii) that for all (t, τ ) ∈ U , one has

Ei,t,τ (z j )− C

(− log |z j |)α → 0 as z j → 0. (4.5.4)

Let 
 j := 4 ∂2

∂z j ∂z j
be as in (4.2.5). Then a direct calculation gives


 j

(
1

(− log |z j |)α
)
= α(α + 1)

|z j |2(− log |z j |)α+2 . (4.5.5)

Let ρt,τ (z j ) be as in (2.1.4). For all (t, τ ) ∈ U , it follows from (1.1.2) that one has


 j Ei,t,τ (z j ) = 2Ei,t,τ (z j )ρt,τ (z j )

≥ 2 C1,t,τ Ei,t,τ (z j )

|z j |2(log |z j |)2 on W j,t,τ (by Proposition 2.1.3), (4.5.6)

where C1,t,τ is as in (2.1.13). Since α(α + 1) < 2, it follows from Proposition 2.1.3(ii)
that there exists a constant δ > 0 such that

C1,t,τ >
α(α + 1)

2
for all (t, τ ) ∈ U satisfying ‖(t, τ )‖ < δ. (4.5.7)

Together with (4.5.5) and (4.5.6), it follows that for all (t, τ ) ∈ U satisfying ‖(t, τ )‖ < δ,
one has


 j

(
Ei,t,τ (z j )− C

(− log |z j |)α
)

≥ α(α + 1)

|z j |2(log |z j |)2 ·
(

Ei,t,τ (z j )− C

(− log |z j |)α
)

on W j,t,τ . (4.5.8)

By using the maximum principle, one easily obtains (4.5.1) as a consequence of (4.5.3),
(4.5.4) and (4.5.8). ��
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5. Asymptotic Behavior of the Takhtajan-Zograf Metric

5.1. Let X0 ∈Mg,n\Mg,n be a stable Riemann surface with n punctures p1, . . . , pn

and m nodes q1, . . . , qm , and let ψ :U 	 
m × V → Û with V 	 
3g−3+n−m and
coordinates (s1, . . . , s3g−3+n) = (t1, . . . , tm, τ1, . . . , τ3g−3+n−m) = (t, τ ) be as in The-
orem 1. For (t, τ ) ∈ U∗ = (
∗)m × V , the components of the Takhtajan-Zograf metric

given as in (1.4.1) form a matrix GTZ :=
(

gTZ
j k̄

)

1≤ j,k≤3g−3+n
. For the Weil-Petersson

metric, we similarly denote the matrix GWP :=
(

gWP
j k̄

)

1≤ j,k≤3g−3+n
, where the gWP

j k̄
’s

are as in Proposition 3.2.1. Let φk , k = 1, . . . , 3g − 3 + n, be the regular 2-differentials
given by Proposition 3.1.2. For 1 ≤ j, k ≤ 3g − 3 + n, we define

hTZ
j k̄
=

n∑

i=1

∫

Xt,τ

Ei,t,τ φ jφk

ρt,τ
, (5.1.1)

and denote the corresponding matrix by �TZ :=
(

hTZ
j k̄

)
. We remark that it is easy

to see from Proposition 3.1.2 and Definition 4.1.1 that �TZ is actually well-defined
on the entirety of U ; moreover, for each non-empty subset J ⊂ {1, . . . ,m} and with
B(J ) = {(t, τ ) ∈ U

∣∣ t j = 0 for all j ∈ J } as defined in (3.1), one has, at any point
(t, τ ) ∈ B(J ), hTZ

j k̄
= 0 whenever either j ∈ J or k ∈ J (cf. Proposition 3.1.2(ii)). In

particular, at (t, τ ) = (0, 0), we have

hTZ
j k̄
(0, 0) = 0 if j ≤ m + 1 or k ≤ m + 1. (5.1.2)

Proposition 5.1.1. On U∗, we have

GTZ = GWP�TZGWP, or equivalently,

gTZ
j k̄
=

3g−3+n∑

�,r=1

gWP
j �̄

hTZ
�r̄ gWP

rk̄
, 1 ≤ j, k ≤ 3g − 3 + n. (5.1.3)

Proof. For (t, τ ) ∈ U∗, let µk = µk(z, t, τ )dz/dz, k = 1, . . . , 3g− 3 + n, be a basis of
harmonic Beltrami differentials on Xt,τ dual to {φk}1≤k≤3g−3+n with respect to the pair-
ing in (1.1.3). From the definition of harmonic Beltrami differentials in (1.1) and Proposi-
tion 3.1.2(i), one easily sees that for each 1 ≤ j ≤ 3g−3+n,µ j =∑3g−3+n

k=1 c jkφk/ρt,τ
for some constants c jk . Now for each j, k, we have

gWP
jk
=

∫

Xt,τ

µ jµkρt,τ =
3g−3+n∑

�=1

c j�

∫

Xt,τ

φ�µk =
3g−3+n∑

�=1

c j�δ�k = c jk .

It follows that

µ j =
3g−3+n∑

�=1

gWP
j �̄

φ�

ρt,τ
(5.1.4)
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for each j . Now, for each 1 ≤ j, k ≤ 3g − 3 + n, we have

gTZ
j k̄
=

n∑

i=1

∫

Xt,τ

Ei,t,τµ jµkρt,τ

=
3g−3+n∑

�,r=1

n∑

i=1

∫

Xt,τ

Ei,t,τ gWP
j �̄
φ�gWP

kr̄ φr

ρt,τ
(by (5.1.4))

=
3g−3+n∑

�,r=1

gWP
j �̄

(
n∑

i=1

∫

Xt,τ

Ei,t,τ φrφ�

ρt,τ

)

gWP
r k̄

=
3g−3+n∑

�,r=1

gWP
j �̄

hTZ
�r̄ gWP

r k̄
.

��

5.2. We obtain the asymptotic behavior of the matrix �T Z as follows:

Proposition 5.2.1. Notation as in Theorem 1 and (5.1). Then the following statements
hold:
(i) For each 1 ≤ j ≤ m and any ε > 0, there exist constants C1 > 0 (depending on ε)
such that

hTZ
j j̄
(t, τ ) ≤ C1|t j |2(− log |t j |)2+ε) (5.2.1)

for all (t, τ ) ∈ U∗.
(ii) For each 1 ≤ j ≤ m′ and any ε > 0, there exists a constant C2 > 0 (depending on
ε) such that

hTZ
j j̄
(t, τ ) ≥ C2|t j |2(− log |t j |)2−ε (5.2.2)

for all (t, τ ) ∈ U∗.
(iii) For each 1 ≤ j, k ≤ m with j �= k,

∣∣hTZ
j k̄
(t, τ )

∣∣ = O
(|t j | |tk |

)
as (t, τ ) ∈ U∗ → (0, 0). (5.2.3)

(iv) For each j , k ≥ m + 1,

lim
(t, τ )→ (0, 0)
(t, τ ) ∈ U∗

hTZ
j k̄
(t, τ ) = hTZ

j k̄
(0, 0). (5.2.4)

(v) For each j ≤ m and k ≥ m + 1,

∣∣hTZ
j k̄
(t, τ )

∣∣ = O
(|t j |

)
as (t, τ ) ∈ U∗ → (0, 0). (5.2.5)
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Proof. First we prove (i). It is easy to see that we only need to verify (5.2.1) for (t, τ )∈U∗
with small ‖(t, τ )‖. Recall from (1.3) and (3.1.3) the covering of X by coordinate neigh-
borhoods {N j }1≤ j≤m , {Wi }1≤i≤n and {A�}1≤�≤�o , and the corresponding fibers N j,t,τ ,
Wi,t,τ , A�,t,τ . For each 1 ≤ j ≤ m and each 1 ≤ i ≤ n, we have

∫

Xt,τ

Ei,t,τ φ jφ j

ρt,τ

≤

⎛

⎜⎜
⎝

∫

N j,t,τ

+
∑

1≤ j ′≤n
j ′ �= j

∫

N j ′,t,τ
+

∫

Wi,t,τ

+
∑

1≤i ′≤n
i ′ �=i

∫

Wi ′,t,τ
+

∑

1≤�≤�o

∫

A�,t,τ

⎞

⎟⎟
⎠

Ei,t,τ φ jφ j

ρt,τ

=: I1 + I2 + I3 + I4 + I5. (5.2.6)

Fix an ε with 0 < ε < 1, and recall the decomposition N j,t,τ = N 1
j,t,τ ∪ N 2

j,t,τ in
(2.2.4). By Proposition 4.2.2 (with α = 1 − ε), the first line of (3.1.5) in Proposi-
tion 3.1.2 and Proposition 2.2.1, it follows that there exist constants C1, δ1 > 0 such
that for all (t, τ ) ∈ U with t j �= 0 and satisfying ‖(t, τ )‖ < δ1, one has

∫

N 1
j,t,τ

Ei,t,τ φ jφ j

ρt,τ

≤ C1

∫

|t j |
1
2 <|z j |<r

1

(− log |z j |)1−ε ·
|t j |
|z j |2 ·

|t j |
|z j |2 · |z j |2(log |z j |)2dz j d z̄ j

= C1|t j |2
∫ 2π

0

∫ r

|t j |
1
2

(− log r j )
1+ε

r j
dr j dθ j (with z j = r j e

iθ j )

= 2πC1

2 + ε
· |t j |2 ·

(
(− log |t j | 1

2 )2+ε − (− log r)2+ε
)
. (5.2.7)

A similar estimate holds on N 2
j,t,τ , and thus we get an estimate of the form

I1 =
∫

N j,t,τ

Ei,t,τ φ jφ j

ρt,τ
= O

(
|t j |2(− log |t j |)2+ε

)
as (t, τ ) ∈ U∗ → (0, 0). (5.2.8)

For each 1 ≤ j ′ ≤ n with j ′ �= j , one easily performs a computation similar to (5.2.7)
with the first line of (3.1.5) replaced by the second line of (3.1.5) to see that there exist
constants C2, δ2> 0 such that for all (t, τ )∈U with t j �= 0 and satisfying ‖(t, τ )‖ < δ2,
one has

∫

N 1
j ′,t,τ

Ei,t,τ φ jφ j

ρt,τ
≤ C2|t j |2

∫

|t j ′ |
1
2 <|z j ′ |<r

|z j ′ |2(log |z j ′ |)1+εdz j ′dz̄ j ′

≤ C3|t j |2 (5.2.9)

for some constant C3> 0, and a similar estimate holds on N 2
j ′,t,τ . By summing (5.2.9)

over the j ′’s, we get an estimate of the form

I2 =
∑

1≤ j ′≤n
j ′ �= j

∫

N j ′,t,τ

Ei,t,τ φ jφ j

ρt,τ
= O(|t j |2) as (t, τ ) ∈ U∗ → (0, 0). (5.2.10)
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Using Proposition 4.4.1, the first line of (3.1.9) in Proposition 3.1.2 and Proposition 2.1.3,
one easily checks that for each 1 ≤ i ≤ n and each 1 ≤ j ≤ m, there exist constants
C4, δ3 > 0 such that for all (t, τ ) ∈ U satisfying ‖(t, τ )‖ < δ3, one has

I3 =
∫

Wi,t,τ

Ei,t,τ φ jφ j

ρt,τ

≤ C4

∫

0<|zi |<R
(log |zi |)2 · |t j |2

|zi |2 · |zi |2(log |zi |)2dzi d z̄i

≤ C5|t j |2 (5.2.11)

for some constant C5 > 0. A calculation similar to (5.2.11) (using Proposition 4.5.1 in
place of Proposition 4.4.1) easily shows that

I4 =
∑

1≤i ′≤n
i ′ �=i

∫

Wi ′,t,τ

Ei,t,τ φ jφ j

ρt,τ
= O(|t j |2) as (t, τ ) ∈ U∗ → (0, 0). (5.2.12)

For each 1 ≤ � ≤ �o, it follows readily from the result of Bers [Be] mentioned in (2.1)
that there exist constants C5, C6 > 0 such that for all (t, τ ) ∈ U , one has

C5dz� ⊗ dz̄� ≤ ρt,τ ≤ C6dz� ⊗ dz̄� on A�,t,τ . (5.2.13)

Together with the first line of (3.1.11) in Proposition 3.1.2 and Proposition 4.2.1, it fol-
lows easily that for each 1 ≤ i ≤ n, there exist constants C7, δ4 > 0 such that for all
(t, τ ) ∈ U∗ satisfying ‖(t, τ )‖ < δ4, one has

I5 =
∑

1≤�≤�o

∫

A�,t,τ

Ei,t,τ φ jφ j

ρt,τ
≤ C7 |t j |2. (5.2.14)

By using (5.1.1), (5.2.8), (5.2.10), (5.2.11), (5.2.12) and (5.2.14), one easily sees that
(5.2.1) can be obtained readily by summing (5.2.6) with the index i running from 1
to n, and this finishes the proof of (i). We remark that I1 is the dominant term on the
right-hand side of (5.2.6). Next one easily sees that (5.2.2) is a direct consequence of
Proposition 4.3.1 (by setting β = 1 + ε in (4.3.1)), which gives (ii). The proof of (iii)
is similar to that of (i), and thus it will be skipped. To prove (iv), we first observe from

(2.2.4) that for each (t, τ ) ∈ U , N 1
j,t,τ can be identified with the subset |t j | 1

2 ≤ |z j | < r

in N 1
j,0,0 via the projection map in the z j -coordinate, and similar description holds for

N 2
j,t,τ . Similarly, each Wi,t,τ and A�,t,τ can be identifed with Wi,0,0 and A�,0,0 respec-

tively. Next we recall the pointwise upper bounds for the Ei,t,τ ’s in Proposition 4.2.2,
Proposition 4.4.1 and Proposition 4.5.1, the pointwise upper bounds for the φ j ’s (with
j ≥ m + 1) in (3.1.7), the second line of (3.1.9) and that of (3.1.11) in Proposition 3.1.2,
and the pointwise lower bounds for the ρt,τ ’s in Proposition 2.1.3, Proposition 2.2.1
and (5.2.13). Recall also the pointwise convergence of the Ei,t,τ ’s given by Proposition
4.2.1, that of the φk’s given by Proposition 3.1.2 and that of the ρt,τ ’s given by Bers’
result [Be] as (t, τ ) ∈ U∗ → (0, 0). Together with a partition of unity of X with respect
to the coverings {N j }, {Wi } and {A�}, one can easily apply the dominated convergence
theorem to show that for each 1 ≤ i ≤ n and j, k ≥ m + 1, one has

∫

Xt,τ

Ei,t,τ φ jφk

ρt,τ
→

∫

X0,0

Ei,0,0φ jφk

ρ0,0
as (t, τ ) ∈ U∗ → (0, 0), (5.2.15)
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which together with (5.1.1), leads to (5.2.4) readily, and this finishes the proof of (iv).
Finally the proof of (v) is similar to those of (i) and (iii) (and involves the use of the
pointwise upper bounds for the φ j ’s with j ≤ m needed in (i) and those for the φk’s
with k ≥ m + 1 needed in (iv) above), and thus it will be skipped. ��

5.3. Finally we are ready to give the proof of Theorem 1 as follows:

Proof of Theorem 1. We are going to deduce Theorem 1 from Proposition 3.2.1, Prop-
osition 5.1.1 and Proposition 5.2.1, and it amounts to estimating terms of the form

gWP
j �̄

hTZ
�r̄ gWP

r k̄
, 1 ≤ j, �, r, k ≤ 3g − 3 + n

(cf. Proposition 5.2.1). To prove Theorem 1(i) or equivalently (1.4.7), we fix an ε with
0 < ε < 1, and fix a j with 1 ≤ j ≤ m. Then it follows from (3.2.1) and (5.2.1) that

gWP
j j̄

hTZ
j j̄

gWP
j j̄
= O

(
1

|t j |2(− log |t j |)3 · |t j |2(− log |t j |)2+ε · 1

|t j |2(− log |t j |)3
)

= O

(
1

|t j |2(− log |t j |)4−ε
)

as (t, τ ) ∈ U∗ → (0, 0). (5.3.1)

Similarly, it follows from (3.2.1), (3.2.2), (5.2.1) and (5.2.3) that

gWP
j �̄

hTZ
�r̄ gWP

r j̄

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O

(
1

|t j |2(− log |t j |)3 · |t j | |tr |

· 1

|tr | |t j | (log |tr |)3(log |t j |)3
)

if � = j & 1 ≤ r �= j ≤ m,

O

(
1

|t j | |t�| (log |t j |)3(log |t�|)3
·|t�|2(− log |t�|)2+ε

· 1

|t�| |t j | (log |t�|)3(log |t j |)3
)

if 1 ≤ � = r �= j ≤ m,

O

(
1

|t j | |t�| (log |t j |)3(log |t�|)3 · |t�| |t j |

· 1

|t j |2(− log |t j |)3
)

if 1 ≤ � �= j ≤ m & r = j,

= O

(
1

|t j |2(log |t j |)6
)

as (t, τ ) ∈ U∗→(0, 0) if 1 ≤ �, r ≤ m & (�, r) �=( j, j).

(5.3.2)

Similarly one easily checks from (3.2.1), (3.2.2), (3.2.3), (3.2.4), (5.2.4), (5.2.5) that

gWP
j �̄

hTZ
�r̄ gWP

r j̄

= O

(
1

|t j |2(log |t j |)6
)

as (t, τ ) ∈ U∗ → (0, 0) if � ≥ m + 1 or r ≥ m + 1.

(5.3.3)



260 K. Obitsu, W.-K. To, L. Weng

Combining Proposition 5.1.1, (5.2.1), (5.2.2) and (5.2.3), we have

gTZ
j j̄
= gWP

j j̄
hTZ

j j̄
gWP

j j̄
+

∑

1≤�,r≤3g−3+n
(�,r) �=( j, j)

gWP
j �̄

hTZ
�r̄ gWP

r j̄

= O

(
1

|t j |2(− log |t j |)4−ε
)

+ O

(
1

|t j |2(log |t j |)6
)

= O

(
1

|t j |2(− log |t j |)4−ε
)

as (t, τ ) ∈ U∗ → (0, 0), (5.3.4)

and this gives Theorem 1(i). A calculation similar to (5.3.1) using (5.2.2) in place of
(5.2.1) implies that for 1 ≤ j ≤ m and 0 < ε < 1, there exists a constant C > 0 such
that

gWP
j j̄

hTZ
j j̄

gWP
j j̄
≥ C

|t j |2(− log |t j |)4+ε (5.3.5)

for all (t, τ ) ∈ U∗. Then a calculation similar to (5.3.4) using (5.2.3) in place of (5.2.1)
leads readily to (1.4.8), which, in turn, leads to Theorem 1(ii). The proof of Theorem
1(iii) is similar to that of Theorem 1(i), and thus it will be skipped. To prove Theo-
rem 1(iv), we first observe that from (1.2), (5.1.1), Proposition 3.1.2(ii) and using a
calculation similar to Proposition 5.1.1, one has, for each j , k ≥ m + 1,

ĝTZ,(γ1,...,γm )

j k̄
(0, 0) =

3g−3+n∑

�,r=m+1

gWP
j �̄
(0, 0)hTZ

�r̄ (0, 0)gWP
r k̄
(0, 0). (5.3.6)

For each j, k≥m+1 and each 1≤�, r≤m, it follows from (3.2.4), (5.2.1), (5.2.3) that

gWP
j �̄
(t, τ )hTZ

�r̄ (t, τ )g
WP
r k̄
(t, τ )

=

⎧
⎪⎪⎨

⎪⎪⎩

O

(
1

|t�|(− log |t�|)3 · |t�||tr | ·
1

|tr |(− log |tr |)3
)

if � �= r,

O

(
1

|t�|(− log |t�|)3 · |t�|
2(− log |t�|)2+ε · 1

|t�|(− log |t�|)3
)

if � = r,

→ 0 as (t, τ ) ∈ U∗ → (0, 0). (5.3.7)

Similarly, for each j , k ≥ m + 1, one also easily sees from (3.2.3), (3.2.4), (5.2.4) and
(5.2.5) that

gWP
j �̄
(t, τ )hTZ

�r̄ (t, τ )g
WP
r k̄
(t, τ )→ 0 as (t, τ ) ∈ U∗ → (0, 0), if � ≥ m+1 or r ≥ m+1.

(5.3.8)
Thus, one has, for j , k ≥ m + 1,

lim
(t,τ )∈U∗→(0,0)

gTZ
j k̄
(t, τ ) = lim

(t,τ )∈U∗→(0,0)

3g−3+n∑

�,r=m+1

gWP
j �̄
(t, τ )hTZ

�r̄ (t, τ )g
WP
r k̄
(t, τ )

(by Proposition 5.1.1, (5.3.7), (5.3.8))

=
3g−3+n∑

�,r=m+1

gWP
j �̄
(0, 0)hTZ

�r̄ (0, 0)gWP
r k̄
(0, 0) (by (3.2.3), (5.2.4))

= ĝTZ,(γ1,...,γm )

j k̄
(0, 0) (by (5.3.6)), (5.3.9)

and this finishes the proof of Theorem 1(iv). Finally the proof of Theorem 1(v) is similar
to that of Theorem 1(i) and (iv), and thus it will be skipped. ��
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