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Abstract

We begin with a construction of non-abelian motivic zeta functions for curves
over any base field, using moduli stacks of semi-stable bundles. As an applica-
tion, we define motivic Euler products. Then, we introduce genuine zeta func-
tions for Riemann surfaces and establish their convergences, based on the theory
of Ray-Singer analytic torsions. To understand common features of these zetas,
we next introduce natural motivic measures for the associated adelic spaces and
hence obtain a motivic Siegel-Weil formula for the total mass of G-torsors in
terms of special values of motivic zetas, using the newly defined motivic Euler
product. Moreover, we, using parabolic reduction and stability, obtain natural
decompositions for moduli stacks of G-torsors, and prove the parabolic reduc-
tion, stability and the mass conjecture for G-torsors relating the total mass and
the semi-stable masses. Finally, with Atiyah-Bott’s analogue between Riemann
surfaces and curves over finite fields and the conformal field theory in mind, we
conjecture that our analytic zeta functions for Riemann surfaces are motivic,
and hence unify our algebraic and analytic zetas.
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1 Motivic Euler Products

1.1 Motivic Zeta Functions

Let k be a field, and X an irreducible, reduced regular projective curve of genus
g. Denote by MX,n(d) the moduli stack of k-rational semi-stable bundles on X.
We want to study its class in the Grothendieck ring of k-stacks K!

0
(Strk).

For this purpose, introduce the non-abelian rank n (complete) motivic zeta

function for X by

bZX,n(u) :=
X

m�0

Z

MX,n(mn)

µ(H0(X,V )\{0})

µ(Aut(V ))
· u�(X,V )dµ(V )

=
X

m�0

Z

MX,n(mn)

L
h0

(X,V )
� 1

µ(Aut(V ))
· u�(X,V )dµ(V )

viewed as an element in K!
0
(Strk)((u)). Here, for a stack X (over k), denote by

µ(X) its class in K!
0
(Strk), and write L := µ(A1

k). Then it is well known that

K!
0
(Strk) = \K!

0
(V ark)[

1

L ] wherebdenotes the L-adic completion andK!
0
(V ark)

denotes the Grothendieck ring of k-varieties. Consequently, the motivic zetas
are well-defined.1 Quite often we also use the non-abelian rank n motivic zeta
function for X defined by:

ZX,n(u) :=
X

m�0

Z

MX,n(mn)

L
h0

(X,V )
� 1

µ(Aut(V ))
· udeg(V )dµ(V )

Motivated by [Weng] and [HN], introduce the motivic ↵ and �-invariants of
X by

↵!
X,n(d) :=

Z

V 2MX,n(d)

L
h0

(X,V )
� 1

µ(Aut(V ))
dµ(V )

and

�!
X,n(d) :=

Z

V 2MX,n(d)

1

µ(Aut(V ))
dµ(V ).

Then, tautologically, by a direct computation using the vanishing theorem for
semi-stable bundles, the duality and the Riemann-Roch theorem, we have

1For this reason, it would be better to call the above zetas A1-homological zetas. We notice
then that our studies here and that of [ABK] can be unified.
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Theorem 1. We have

bZX,n(u) =

(g�1)�1X

m=0

↵X,n(mn) ·
⇣� 1

un

�(g�1)�m
+

�
(Lu)n

�(g�1)�m⌘

+ ↵X,n(n(g � 1)) + �X,n(0) ·
(Ln

� 1)un

(1� Lnun)(1� un)

From this, we see easily that bZX,n(u) is a rational function in un, satisfies
the standard functional equation

bZX,n(
1

Lu
) = bZX,n(u)

and its residue to un = 1 is (essentially) given by �!
X,n(0). For this reason, we

sometimes also write bZX,n(1) = �!
X,n(0).

1.2 Motivic Euler Product for Curves

In the discussion above, we have used the fact that there is always a degree 1
line bundle over X/k. This can be proved by a standard discussion on the poles
of the rank one zeta functions with the help of the motivic Euler product to be
introduced in this section: Indeed, if k = k̄, there is nothing to prove. Otherwise,
there exists a certain prime l such that for a certain degree l extension kl of k, we
have the decomposition ZXl(u) =

Q
⇠2µl

ZX(⇠u). Here, as usual, Xl := X⇥k kl.

When n = 1, we have

ZX,1(u) :=
X

d�0

Z

PicX(d)

µ(H0(X,L)\{0})

µ(Aut(L))
· udeg(L)dµ(L)

where as usual PicX(d) denotes the degree Picard variety of X. Then by the fact
that non-zero global sections, up to a non-zero constant scalar factor, correspond
in one-to-one to e↵ective divisors on X, we see that

ZX,1(u) =
X

d�0

µ(E↵(0)

X (d)) · ud,

where E↵(0)

X (d) denotes the stack of degree d e↵ective 0-cycles on X.

Accordingly, introduce the motivic Euler product by

Y!

x2X

1

1� ux
=

Y!

x2X

1

1� udeg(x)
:=

X

d�0

µ(E↵(0)

X (d)) · ud.

Here as usual d(x) := [k(x) : k] with k(x) the residue field of the closed point
x 2 X and ux := udeg(x).

Example 1. When k = Fq, then
Q!

x2X is the standard Euler product
Q

x2X ,

since closed points on X/Fq are only countable. However, our motivic Euler

product is much more general. In the case when k = k is algebraically closed,

e.g., k = C, the points involved in the motivic product are not countable. More-

over, in this case, E↵(0)

X (d) is nothing but Sym(d)X, the d-th symmetric product

of X. Consequently, our zeta function ZX(u) coincides with motivic zeta func-

tion ZX(u) in [K] used by geometers.
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1.3 Motivic Euler Product in General

More generally, for any algebraic variety X over a field k we define its motivic
zeta function by

ZX(u) :=
X

n�0

µ(E↵(0)

X (n))un

where E↵(0)

X (n) denotes the stack of e↵ective 0-cycles of degree n on X. Ac-
cordingly, define the motivic Euler product

Q!
x2X by

Y!

x2X

1

1� ux
=

X

n�0

µ(E↵(0)

X (n))un.

For examples, if k = k, then E↵(0)

X (n) is nothing but Sym(n)X, the n-th sym-
metric product of X. So,

Y!

x2X

1

1� ux
=

X

n�0

µ(Sym(n)X)un

the geometrical motivic zeta; And, when k = Fq, since there are only countable
algebraic points, our motivic Euler product coincides with the standard one,
and the above product simply recovers Artin-Weil’s zeta function.

Note that for a closed Y ,! X with U = X\Y , hence

ZX(u) = ZY (u) · ZU (u),

we have Y!

x2X
=

Y!

x2Y
·

Y!

x2U
.

This latest property is basic to the theory. For example, we have the asso-
ciative and commutative law and hence a well-defined motivic product:

Y
i2I

Y!

x2Xi

· · · 8i 2 I, #I < 1. (⇤)

2 Analytic Torsion and Genuine Zetas for Rie-
mann surfaces

2.1 Regularized Integrations

2.1.1 Uniformizing Metrics

Let M be a compact Riemann surface of genus g. Denote its fundamental
group by ⇡1(M) and the associated uniformizing map by ⇡ : fM ! M . As a

simply connected ⇡1(M)-space, fM is well known to be isomorphic to either the
complex projective line P

1, or the complex plane C, or the upper half complex
plane H, depending on whether g = 0 or 1 or � 2. Accordingly, put, on fM ,
the standard Fubini-Study metric, or the canonical flat metric, or the standard
hyperbolic metric. Induced from the uniformization map ⇡, we then obtain a
natural metric µ on M which we call standard. Denote its normalized volume
form by ! (so that

R
M ! = 1). For a line bundle L of degree d, by definition, an
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!-admissible metric h on L is a hermitian metric on L such that c1(L, h) = d ·!.
One checks that !-admissible metrics always exist and for a fixed line bundle
they are parametrized by positive reals. For our purpose, fix a point P0 2 M
and use the normalized Green function ([L]) to define the !-admissible metric
hA on the line bundle A = AM corresponding to the invertible sheaf OM (P0).
(From now on, we will not make distinctions between bundles and locally free
sheaves.) Moreover, for the metric µ on M , denote its induced !-admissible
metric on the canonical line bundle KM by ⌧ = ⌧µ.

Let MM,r(d) be the moduli stack of semi-stable bundles of rank r and degree
d on M . For all m 2 Z, there are natural isomorphisms

MM,r(0) ' MM,r(mr), V 7! V ⌦A⌦m.

By a result of Narasimhan-Seshadri [NS], stable points V of MM,r(0) are in
one-to-one correspondence with irreducible unitary representations ⇢ of ⇡1(M).
Consequently,

V ' V⇢ := fM⇥C
r/ ⇠, with (x, v) ⇠ (gx, ⇢(g)v), 8(x, v) 2 fM⇥C

r, g 2 ⇡1(M).

Hence, for such a V⇢, from the uniformization, we get a natural induced hermi-
tian metric h⇢ (from the standard one on C

r).

To go further, recall that if the bundle extension on M

0 ! V1 ! Ve ! V3 ! 0

is corresponding to e 2 Ext1(V2, V1), then for any fix hermitian metrics hi on
Vi, i = 1, 2, there exists a unique metric he on Ve defined using hi’s and the
standard metric on the o↵ diagonal entries. Since each degree zero semi-stable
bundle is obtained canonically, up to isomorphism (in particular, not up to
S-equivalence,) as successive extensions of stable bundles of degree zero, from
above, we then obtain a unique hermitian metric h on a fixed degree zero semi-
stable bundle V of rank r. Hence, by tensoring with the metric h⌦mA on A⌦m

(m 2 Z), we get a unique hermitian metric h on every degree mr semi-stable
bundles V of rank r on M . For simplicity, denote such a metrized semi-stable
bundle (resp. Riemann surface M) by V (resp. M).

2.1.2 Analytic Torsions

To go further, we next recall some basic facts about analytic torsions. Let
V /M be a metrized vector bundle over a metrized Riemann surface. Denote
the associated Laplacian by DV on the associated space of L2 sections L2(M,V )
of V on M . From the Fredholm theory, the spectrum of DV is a purely dis-
crete sequence 0  �1  �2  �3  . . . , �n ⇠

1

r(g�1)n with corresponding

eigenfunctions {en(z, V )} forming a complete orthonormal basis for L2(M,V ).
Accordingly, following Ray-Singer [RS], define for Re(�) > 0 and Re(s) > 1, the
spectrum zeta function ⇣�(s, V ) := Tr(DL + �)�s =

P
1

n=1

1

(�+�n)
s and more

generally for any c � 0, ⇣c�(s, V ) :=
P

�>c
1

(�+�n)
s .

We have the following

Theorem 2. ([RS]) (i) For fixed c � 0, ⇣c�(s, V ) has an analytic continuation to

the half plane Re(�) � c and a meromorphic continuation to the whole s-plane
with only a simple pole at s = 1 with residue r(g � 1).
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(ii) For Re(�) > �⇤ the smallest non-zero eigenvalue of DV ,

⇣0�(s, V ) = ⇣�(s, V )� h0(M,V )��s

has an analytic continuation through the s-plane with

⇣0�(0, V ) + h0(M,V ) = �

⇣
�+

1

3

⌘
n(g � 1) +

1

2
deg(V ).

(iii) (Duality) Equipped the dual bundle V _ with the dual metric, then

⇣c�(s, V ) = ⇣c�(s,KM ⌦ V _)

Based on this, define the (Ray-Singer) analytic torsion for V (/M) by

T (V ) := T (M ;V ) := e�⌧(V )

with

⌧(V ) := ⌧(M,V ) := ⌧(M ;V ) :=
d

ds
⇣0�(s, V )|s=�=0.

It is well known then that T (V ) may be viewed as a regularized determinant of
the Laplacian DV . That is to say, formally, we have

T (V ) = det0(DV ) =
Y0

n:�n>0

�n.

The biggest advantage of using analytic torsions is that together with (de-
terminant of) L2-metrics, we get a smooth metric, the Quillen metric, on the
so-called determinant bundles � on MM,r(rm), whose fiber at V 2 MM,r(rm)
is given by detH0(M,V )⌦detH1(M,V )⌦�1 and that its associated Chern form
can be calculated via the so-called local family index theorem. For our own use,
denote this metrized line bundle on MM,r(rm) by �.

2.1.3 Stractifications of Moduli Stacks: Determinant Varieties Struc-
tures

Let Vm be the universal Poincaré bundle on the moduli stack MM,r(rm). Then
with respect to the projection q : M ⇥MM,r(rm) ! MM,r(rm), for su�ciently
larger d, we may assume that the direct images with respect to q associated to
the short exact sequence of coherent sheaves on M ⇥MM,r(rm):

0 ! Vm ! Vm ⌦A⌦d ! Vm ⌦A⌦d/Vm ! 0

yields an exact sequence of vector bundles on MM,r(rm):

0 ! q⇤Vm ! q⇤
⇣
Vm ⌦A⌦d

⌘
�
! q⇤

⇣
Vm ⌦A⌦d/Vm

⌘
! R1q⇤Vm ! 0.

Denote by W�iM,r(rm) the determinantal variety associated to �. Then one

checks that W�iM,r(rm) is well-defined, namely, independent of the choices of d,

and the support of W�iM,r(rm) coincides with the so-called Brill-Noether locus

consisting of these whose h0 are at least i. That is,

SuppW�i
M,r(rm) = {V 2 WM,r(rm) : h0(M,V) � i}.
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(See e.g., [ACGH, p.176] when r = 1.) Moreover, W�iM,r(rm) are normal sub-
varieties of MM,r(rm) and analytic torsion T (V,M) defines a smooth function
on

W i
M,r(rm) = W�iM,r(rm)

✏
W�(i+1)

M,r (rm)

when m 2 Z. By an abuse of notation, denote by dµ the volume forms on
W�iM,r(mn) induced by the polarization �.

2.1.4 Regularized Integration

With all this, we are ready to introduce the regularized integration by

Z
#

MM,r(rm)

⇣
eT (M,V )

� 1
⌘�

e�s
��(M,V )

dµ

:=
1X

i=0

Z

W i
M,r(rm)

⇣
eT (M,V )

⌘�
e�s

��(M,V )

dµ�

Z

MM,r(rm)

�
e�s

��(M,V )

dµ.

2.2 Zeta Facts I: Formal Aspect

Let X be a compact Riemann surface of genus g. Using the uniformization,
for any stable bundle V of rank n and degree mn, m 2 Z, we can canonically
associate the analytic torsion ⌧(M̄, V̄ ) to the metrized M̄ and metrized V̄ . As
such define the associated rank n zeta function of M by

b⇣X,n(s) :=
1X

m=�1

Z
#

MX,n(mn)

⇣
ee

�⌧(X̄,V̄ )
+h0

(X,V )
� 1

⌘⇣
e�s

⌘�(X,V )

dµ(V ).

Before justifying the convergence of our regularized integrations appeared
in the definition of new zeta functions, let us formally establish the functional
equation and find out the singularities of these zetas and hence calculate the
associated residues when applicable.

Then
b⇣X,n(s) = I(s) + II(s) + III(s)� IV (s)

with

I(s) =
2g�2X

m=0

Z
#

MX,n(mn)
ee

�⌧(X̄,V̄ )
+h0

(X,V )
·

⇣
e�s

⌘�(X,V )

dµ(V ),

II(s) =
X

m<0

Z
#

MX,n(mn)

⇣
ee

�⌧(X̄,V̄ )
+h0

(X,V )
� 1

⌘⇣
e�s

⌘�(X,V )

dµ(V ),

III(s) =
X

m>2g�2

Z
#

MX,n(mn)
ee

�⌧(X̄,V̄ )
+h0

(X,V )
·

⇣
e�s

⌘�(X,V )

dµ(V ),

IV (s) =
X

m�0

Z
#

MX,n(mn)

⇣
e�s

⌘�(X,V )

dµ(V ).

We next study each of these functions.
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Set µss

X,n(0) = VolMX,n(0). Then

IV (s) =µss

X,n(0)
1X

m=0

(e�s)n[m�(g�1)]

=µss

X,n(0) ·
ens(g�1)

1� e�sn
, Re(s) > 0,

(1)

a meromorphic function with simple poles at s = 2⇡i · 1

nZ, whose residues are
1

nµ
ss

X,n(0).

To understand I(s), note that

⌧(X̄, V̄ ) = ⌧(X̄, K̄X ⌦ V̄ _), �(X,KX ⌦ V _) = ��(X,V ).

We get

I(s) =
0X

m=2g�2

Z
#

MX,n(mn)
ee

�⌧(X̄,V̄ )
+h1

(X,V )
·

⇣
e�s

⌘��(X,V )

dµ(V )

=
2g�2X

m=0

Z
#

MX,n(mn)
ee

�⌧(X̄,V̄ )
+h0

(X,V )
·

⇣
e�(1�s)

⌘�(X,V )

dµ(V )

=I(1� s)

(2)

a holomorphic function in s. (In fact, I(s) is a rational function in T = tn with
t = e�s.)

To see II(s), using the fact that ⌧(X̄, V̄ ) = ⌧(X̄, K̄X ⌦ V̄ _) again, we get

II(s) =
X

m>2g�2

Z
#

MX,n(mn)

⇣
ee

�⌧(X̄,V̄ )
+h0

(X,V )
� 1

⌘⇣
es
⌘�(X,V )

dµ(V ).

By Thm 9 of [W], we know that ⌧(X̄, V̄ ) = O(mn logm). Thus the convergence
of II(s) comes form that for the series

X

m>2g�2

⇣
e1/(m

mn
)
� 1

⌘
·
�
ens

�m
8s.

In particular, II(s) is holomorphic in s.

Similarly, if we set

V (s) :=
X

m>2g�2

Z
#

MX,n(mn)

⇣
e1�s

⌘�(X,V )

dµ(V ),

then

III(s) =
X

m>2g�2

Z
#

MX,n(mn)
ee

�⌧(X̄,V̄ )
⇣
e1�s

⌘�(X,V )

dµ(V )

=
X

m>2g�2

Z
#

MX,n(mn)

⇣
ee

�⌧(X̄,V̄ )

� 1
⌘⇣

e1�s
⌘�(X,V )

dµ(V ) + V (s)

=II(1� s) + V (s).
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Thus III(s)� V (s) = II(1� s) is holomorphic in s.

Finally,

V (s) =µss

X,n(0)
X

m>2g�2

�
e1�s

�n[m�(g�1)]

=µss

X,n(0) · e
(1�s)ng

X

m�0

�
e1�s

�nm

=µss

X,n(0) ·
e(1�s)ng

1� e(1�s)n

=µss

X,n(0) ·
e(1�s)n(g�1)

e(s�1)n � 1
= �IV (1� s) Re(s) > 1,

a meromorphic function in s with simple poles at s = 1+2⇡i· 1nZ, whose residues
are 1

nµ
ss

X,n(0). Thus all in all, we have just established the following

Theorem 3. Let b⇣X,n(s) be the rank n zeta function for compact Riemann

surface X. Then

(i) it is a well-defined meromorphic function for Re(s) > 1 and admits a mero-

morphic continuation in the whole complex s-plane;

(ii) b⇣X,n(1� s) = b⇣X,n(s);

(iii) the singularities are concentrated on 2⇡i · 1

nZ and 1 + 2⇡i · 1

nZ, all simple

poles with residues
1

nµ
ss

X,n(0) (at s = 1).

2.3 Zeta Facts II: Analytic Aspect

To establish the zeta facts for our zeta functions, two types of convergences
should be justified properly. Namely, the one for regularized integrations over
the moduli spaces MM,r(rm) for a fixed m, and the other for the infinite sum
on m,m > 2g � 2 appeared in III(s). As we will see below, these two are
very di↵erent in nature: Technically, for the first type, we need to see how the
analytic torsions T (V ) degenerate when h0 jump; while for the second, we need
to understand how the analytic torsions T (V ⌦A⌦m) behave when m ! 1.

2.3.1 Degenerations of Analytic Torsions

In this subsection, we will establish the convergence of the regularized integra-
tion Z

#

MM,r(rm)

⇣
eT (M,V )+h0

(M,V )
� 1

⌘�
e�s

��(M,V )

dµ

for each fixed m. There are a few issues here: First, MM,r(rm) are not com-

pact; second, W�iM,r(rm) are not smooth; and finally, T (V ) are not smooth on

W�iM,r(rm).

A. Non-Compactness This is not really that serious, thanks to the classical
works done. In fact, using Mumford’s GIT, we now have a natural compacti-
fication MM,r(rm) in terms of Seshadri’s equivalences of semi-stable bundles.

Denote by @
⇣
MM,r(rm)

⌘
:= MM,r(rm)\MM,r(rm) the associated boundary.
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It is well-known that this boundary is of much higher co-dimension, and hence
does not cause any serious trouble for the integration.

B. Geometric Singularities

Note that for any open subset U ⇢ MM,r(rm), if h0 is a constant on U ,
then T (V ) is smooth on U . Thus we only need to consider the case when
0  m  g � 1 with the duality for analytic torisons in mind.

From the structure of determinantal varieties, it is well-known that the sin-

gularities of W�iM,r(rm) is contained in W�(i+1)

M,r (rm), which has codimension at
least 2 except in the case when m = g�1. Thus, in pour discussion, we will use
the most complicated level, i.e., m = g � 1, to show how the convergence can
be established. For other levels, which are much simpler, a consideration using
the following insertion formula for analytic torsions ([AGBMNV]) is su�cient
to complete the argument. (For unknown notations, please consult [F].)

Theorem 4. (see e.g. [F, Thm 4.13]) Let L be a line bundle of degree d � g with

an admissible metric h. Then for all stable bundles V = V⇢ with uniformizing

metric, h1(M,V⇢ ⌦ L) = 0 and for any points x1, . . . , xN :=d+1�g 2 M :

T (V⇢ ⌦ L) = "d(M)
T (V⇢ ⌦ L(�

PN
i=1

Pi))

det(B(xi, xj ;V⇢ ⌦ L))
·

QN
i<j P (xi, xj)2rQm

i=1
h(xi)r

where "d(⇢) is a constant depending only on d and M .

C. Analytic Singularities

So from now on, we concentrate on the level g � 1. For this, we recall
some facts on both abelian and non-abelian theta functions. The explosion
here follows closely that of Fay [F] (please check the meaning of the unknown
notations below in [F] as well).

Theorem 5. (Theta Functions [F, Thm 1.6]) Let L be a fixed line bundle with

h0(�(s)⌦L) constant for s in some neighborhood V containing 0 2 C
N
; choose

{!i}, {!⇤i } bases for H0(�(s) ⌦ L), H0(�⇤(s) ⌦ KL�1) with {M�1(z, s)!i},
{
tM(z, s)!⇤i } holomorphic in s 2 V . Then

(i) for s 2 V ,

T (�⌦ L) = U(�(s))|f(s)|2 det(h!i,!ji�(s)⌦L) det(h!
⇤

i ,!
⇤

j i�⇤(s)⌦KL�1)

where f(s) is a holomorphic function on V depending on L, the fixed potential

U , the bases {!i}, {!⇤j }, and the metrics h, I ⌦ h and ⇢. In particular,

(ii) in a neighborhood of any point �(0) where h0(�(s) ⌦ �) = 0 with � a

Riemann divisor class satisfying h0(M,�) = 0,

T (�(s)⌦ L) = cl
0
(h, ⇢)U(�(s)) |✓(�(s))|2

with ✓(�(s)) = ✓(s) holomorphic in s and independent of the metrics h, ⇢.

Theorem 6. (Vanishing of Non-Abelian Theta, [F, Prop 4.7, Thm 4.8])

There exists a holomorphic section ✓r of the determinant line bundle � on

MM,r(0) such that

10



(i) ✓r(V⇢) = 0 if and only if h0(M,EndV⇢ ⌦�) > 0;

(ii)
✓r(E⇢)✓(detE⇢)

2

✓(⇢)2r is a meromorphic function on MM,r(0);

(iii) As a bundle on MM,r(0), � ' K_
MM,r(0)

, the dual of the canonical line

bundle of MM,r(0).

(iv) The section ✓r vanishes to order n at any representation V⇢ 2 MM,r(0)
with h0(V⇢ ⌦ �) = n. The tangent cone to (✓r) at V⇢ is the sub variety of

w =
PdimMM,r(0)

i=1
siwi(z,EndV⇢) 2 H0(M,KM ⌦ EndV⇢) given by

det
1i,jn

⇣Z

M

tei(z;V⇢ ⌦�)w(z)ej(z;V
_

⇢ ⌦�)cdz
⌘
⌘ 0

for any fixed bases {ei(z;V
(⇤)

⇢ ⌦�)} of H0(M,V (⇤)
⌦�).

This generalizes the standard theory of abelian theta functions and the Brill-
Noether loci to non-abelian setting. For example, when r = 1, on the i-th
Brill-Noether locus, the analogue of (iv) says that the analytic torsion may be
calculated via the norm of the i-th partial derivatives of the standard theta
functions. For details, see [F, Thm 4.9] and [ACGR].

Put all this together, we have then justified the convergence in the abelian
case, namely, r = 1. As for general non-abelian cases, such a strong result has
yet been obtained. Fortunately, what needed is a much weak result which we
recall below:

Theorem 7. (Degenerations of Analytic Torisons [F, Thm 4.12]) Let L
be a line bundle of degree d � g � 1 such that h1(V⇢ ⌦ L) = n > 0 for a fixed

V⇢ 2 MM,r(0). Then within a neighborhood U of V⇢ in MM,r(0), the analytic

torsions T (V⇢(s) ⌦L), which is positive whenever h1(V⇢(s) ⌦L) = 0, vanishes to
order 2n at V⇢ = V⇢(0). In particular, near s = 0,

T (V⇢(s) ⌦ L) = 4nT (V⇢ ⌦ L) det[tC(s)C(s)] +O(ksk2n+1)

where for any orthonormal basis {ei}, {e⇤j} for H0(M,V⇢ ⌦ L), H0(M,KM ⌦

(V⇢ ⌦ L)_) respectively:

Cij(s) :=

Z

M

tei(z;V⇢ ⌦ L)we⇤j (z;KM ⌦ (V⇢ ⌦ L)_)cdz.

And for any x1, . . . , xd+1�g,

det[tC(s)C(s)] det[B(xi, xj ;V⇢(s) ⌦ L)]

=

�����det

0

@
te1(x1 : V⇢ ⌦ L) · · ·

te1(x1 : V⇢ ⌦ L) C11(s) · · · C1n(s)
· · ·

tep(x1 : V⇢ ⌦ L) · · ·
tep(x1 : V⇢ ⌦ L) Cp1(s) · · · Cpn(s)

1

A
�����

2

+O(ksk2n+1)

as ⇢(s) ! ⇢ along any smooth curve transverse at ⇢ to the subvariety V1 of all

V⇢ 2 MM,r(0) with h1(M,V⇢ ⌦ L) > 0. Here p = n+ r(d+ 1� g).

Thus by the fact that the Bergman kernel admits logarithmic degeneration,
we complete the proof of the convergence of the regularized integrations ap-
peared in the proof of our zeta functions.

11



2.3.2 Asymptotics of Analytic Torsions

To establish the convergence of the infinite sum appeared in the definition of
our zeta functions on m, we only need to understand

III(s) =
X

m>2g�2

Z

MM,r(rm)

⇣
eT (M,V )+h0

(M,V )
� 1

⌘
(e�s)�(M,V )dµ,

by the discussion in §1.3. Note that for stable bundle of rank r and degree mr
with m > 2g � 2, h0(M,V ) = �(M,V ) = r[m� (g � 1)] is a constant. So T (V )
is a constant function on MM,r(mr). Thus using the natural isomorphism

MM,r(0) ' MM,r(mr), V 7! V ⌦A⌦m,

we have

III(s) =
X

m>g�1

Z

V 2MM,r(0)

⇣
eT (M,V⌦A⌦(m+g�1)

)+h0
(M,V⌦A⌦(m+g�1)

)
�1

⌘
(e�s)rmdµ.

As such, then the convergence is guaranteed by the following results of Faltings,
Miyaoka, Bismut-Vasserot:

Theorem 8. (See e.g., [BV, Thm 8]) As m ! 1,

d

ds
⇣0�(s, V ⌦A⌦(m+1�1))

���
�=s=0

= O(mr logm).

Thus, in essence, we are dealing with the infinite summation

X

m>g�1

Z

Mm,r(0)

⇣
ee

�mr log m

� 1
⌘
(e�s)rmdµ

which is clearly convergent. All this then justify that our analytic zeta func-
tions for Riemann surfaces are well-defined. In particular, we have proved the
following

Theorem 9. Let M be a compact Riemann surfaces. Then the rank n analytic

zeta function of M constructed by

b⇣M,n(s) :=
1X

m=�1

Z
#

MM,n(mn)

⇣
ee

�⌧(X̄,V̄ )
+h0

(M,V )
� 1

⌘⇣
e�s

⌘�(M,V )

dµ(V )

is well-defined. Furthermore, it satisfies the following standard zeta facts.

(i) it defines meromorphic function for Re(s) > 1 and admits an infinite order

meromorphic continuation in the whole complex s-plane;

(ii) b⇣X,n(1� s) = b⇣X,n(s);

(iii) the singularities are concentrated on 2⇡i · 1

nZ and 1 + 2⇡i · 1

nZ, all simple

poles with residues
1

nµ
ss

X,n(0) (at s = 1).
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3 Adelic Motivic Measures

3.1 Motivic Measure: Adelic Spaces

Let F = k(X) be the function field of an irreduciblele, reduced regular projective

curve X of genus g over the base field k. Denote by A = AF =
Q!,0

x2X(Fx,Ox)
its associated adelic ring. Namely, the restricted product of the local fields Kx

of X at x with respect to the rings of integers Ox. Here, as usual, for x 2 X,
Kx denotes (the completion of) the local field of X at x, and Ox its ring of
integers.

For x 2 X, let |!x| be the motivic measure on Fx such that

µ(Ox) =

Z

Ox

|!x| = 1.

With this, we claim that the theory of motivic integrations on A can be devel-
oped, with the help of two mutually compatible topologies, i.e., ind-pro topology
and locally linearly compact topology on A. To justify this, recall that from the
ind-pro topology, we have the following natural diagram

Ox = lim n Ox/mn
x �! Ox/mx = k(x)

# &

{0} ⇢ mn�1
x /mn

x ⇢ · · · ⇢ m1

x/m
n
x ⇢ Ox/mn

x . . . Ox/m2

x

k(x) k(x) . . . k(x) k(x)

Consequently,
µ(mn

x) = L
�n
x

with Lx = L
deg(x) since from above µ(Ox) = µ(mn

x) · µ(Ox/mn
x) = µ(mn

x) · L
n
x .

More generally, for a divisor D =
P

x nxx on X, set

A(D) := {(ax) 2 A : ordx(ax) + nx � 08x}.

Then
A = lim

!D1

lim
 D2:D2D1

A(D1)/A(D2).

This then gives the ind-prod topology on A which is compatible the locally lin-
early compact topology since (i) A(D) is linearly compact an (ii) A(D1)/A(D2)
is a finite dimensional vector space, being discrete and linearly compact.

Set now |!A| :=
Q!

x2X |!x|. Then, by definition,

µ(
!Y

x2X

Ox) =
!Y

x2X

µ(Ox) =
!Y

x2X

1 = 1

where in the last step, the canonical property of motivic Euler product has been
used. To apply this to A, we recall the following key

Lemma 10. We have

(i) A(0) =
Q!

x2X Ox.

(ii) For an e↵ective divisor D, A(D)/A(0) '
Q!

x2X L
nx
x = L

deg(D)
.

(iii) H0(X,D) = F \ A(D), H1(X,D) = A/(A(D) + F ).

13



Theorem 11. For the linear compact quotient space A/F , its motivic class is

given by

µ(A/F ) = L
g�1.

Proof. First, we have the following 9 diagram with exact columns and rows:

0 0 0
# # #

0 ! F \ A(D) ! A(D) ! A(D)/F \ A(D) ! 0
# # #

0 ! F ! A ! A/F ! 0
# # #

0 ! F/F \ A(D) ! A/A(D) ! A/(A(D) + F ) ! 0
# # #

0 0 0.

Concentrating on the part

0
#

0 ! H0(X,D) ! A(D) ! A(D)/F \ A(D) ! 0
#

A/F
#

H1(X,D)
#

0,

we have

µ(A/F ) = µ(A(D)) · L��(X,D) = L
deg(D)

· L
� deg(D)+(g�1) = L

g�1

since
µ(A(D)) = µ(A(D)/A(0)).

Here we have used the Riemann-Roch theorem, which itself can be proved using
the language of locally linearly compact topology.

3.2 Motivic Measure: Reductive Algebraic Groups

Denote by K = k(X) the field of rational functions of X, and A its adelic ring.
Let G be a semi-simple algebraic group over K, and G a smooth connected
reductive group scheme over X with G its generic fiber.

Before introducing our motivic measure on G(A), let us make some prepa-
rations, following [Weil] and [O, §2].

Let ! be an algebraic di↵erential form on G over K of degree N = dimK G.
Let x0

2 G and x1, . . . , xN be a local coordinate system at x0
2 G. Then

! = f(x) dx1 . . . dxN with f(x) a rational function defined at x0 which can be
written as a formal power series

f(x) =
X

ai1,...,iN (x� x0

1
)i1 . . . (xN � x0

N )iN , (1)

14



convergent in a neighborhood of x0 in G. Accordingly, for any fixed closed point
v 2 X, if we assume that x0 is a regular point of the analytic space Gv(Kv) and
that x0

i 2 Kv, then f is a power series with coe�cients in Kv which converges
in some neighborhood of the origin in KN

v . Moreover, if x0

i are in in A, then
the ai1,...,iN are integers for almost all v. Hence, by a suitable linear change
of coordinates, we can assume that all of them are v-adic integers for all v.
Consequently, for each v, (1) converges for xi ⌘ x0

i (mv). Moreover, for each
v, there exist a neighborhood U of x0 in Gv(Kv) such that we have a natural
measure |f(x)|v(dx1)v . . . (dxN )v which in turn through the pull-back, we get a
well-defined local motivic measure !v, or better, d!,vµ or even d!µ on U and
hence on the open subset of Gv(Kv) consisting of the regular points where ! is
regular and not zero. For details, please refer [Weil, 2.2.1].

To go further, assume that for p 2 X, Gp(Kp) is regular. Then there exists an
algebraic di↵erential form on Gp(Kp) which is regular and no where vanishing,
the so-called gauge form. Fix a translation-invariant gauge form !, which always
exists. Then, by a result of Rosenlicht, any gauge form on Gp(Kp) can be written
as ��(x)! with � 2 K⇤p a constant and � : G ! Gm a character.

Let Gp(Op) be the group scheme associated to G with generic fiber Gp(Kp)
and special fiber Gp. Then the reduction modulo mp gives a one-to-one cor-
respondence between equivalence classes modulo mp of Gp(Op) and the k(p)
rational points of Gk(p). Indeed, locally, at each good reduction point p 2 X
for G, we have natural morphisms Op/mn+1

p ! Op/mn
p . They form a pro-

jective system Gp(Op/mn+1

p ) ! Gp(Op/mn
p ) and lim �n Gp(Op/mn

p ) is noth-
ing but the space Gp(Op) of Op-valued points of Gp. Moreover, one checks
that ⇡n : Gp(Op/mn+1

p ) ! Gp(Op/mn
p ) is a k(p)dimG-fiber space. Indeed, the

morphism ⇡n is a Homk(p)(⌦
1

Gp/Op
⌦Op k(p),mn

p/m
n+1

p )-fiber space. Thus the

smoothness of G at p implies that ⌦1

Gp/Op
⌦Op k(p) ' k(p)dimG and hence the

assertion above since mn
p/m

n+1

p ' k(p).

Consequently, we can introduce a compatible system of normalized motivic
volume on Gp(Op) by the condition that each fiber of the projection Gp(Op) !
Gp(Op/mn

p ) has the motivic volume L
�n dimG
p with Lp = L

deg(p). In particular,
by taking n = 1, we conclude that within this system, the total motivic volume
µ(Gp(Op)) :=

R
Gp(Op)

!p of Gp(Op) is L� dimG
p µ(Gp(k(p))).

To summaries, recall that we start with a (non-zero) maximal degree al-
gebraic di↵erential form ! on G. Via functoriality, we then obtain an analytic
di↵erential form on the analytic variety G(Kx) and hence on its open sub variety
G(Ox). In particular, for the identity section e 2 G(Ox), the relative tangent
Ox-module Te(G) of the scheme Gx/Ox at the section e may be viewed as an
Ox-lattice of the tangent Kx-vector space Te(Gx(Ox)) of the analytic variety
Gx(Ox) at e. Denote by !x the linear form on ⇤dimGTe(Gx(Ox)) induced from
!. The image of ⇤dimGTe(G) of !x then gives a fractional ideal of Kx. Being
principal, we may choose a generator ✓x for this fractional ideal. Define the

motivic module of ! at x by k!k(x) := L
�ordx(✓x)
x . Clearly, this is well-defined,

i.e., independent of the choice of ✓x.

Even in general, A is by no means locally compact, it is locally linearly
compact. So we may introduce motivic measure for the associated spaces as
above using the ind-pro topological structure: Since ⇡n

pOp, n 2 Z, gives a local
ind-pro topological basis for Kp, the motivic measure µp = µ!p on Gp(Kp) is

15



in fact determined by this condition if we set |⇡p|µp = µ(k(p))�1. This gives a
generalization for the classical Haar measure when the space is locally compact.
Such a measure is unique once we assume that

R
A/K dµ = L

g�1. Denote this
canonically determined motivic measure by dcanµ. Moreover, as to be expected,

for a 2 A, we define its motivic module by kak =
Q

x L
�ordx(ax)
x .

Lemma 12. For good reduction closed point of G, denote by mod (!) the

measure on Gp(Op) the module of ! with respect to the motivic measure d!µ.
Then the measure mod (!) on Gp(Op) is of density µ(Op)dimG

k!k with respect

to the canonical measure d!µ.

Proof. This is a motivic version of Thm 2.4 of [Oe]. We check the details in that
proof. Being a local problem, it su�ces to prove the theorem when there exists
an etale morphism u of G on anOp-scheme G0 of the form Spec(Op[T1, . . . , TdimG].
Let !0 = dT1 ^ · · · ^ dTdimG and d!0µ0 be the canonical measure on G

0(Op) =
O

dimG
p . Clearly, we have mod (!0) = µ(Op)dimGd0!µ

0. The analytic mor-

phism u of G(Op) in G
0(Op) = O

dimG
p associated to u is etale in analytic sense,

i.e., for all g 2 G
0
p(Op) = O

dimG
p , the linear morphism between tangent spaces

Tg(u) : Tg(Gp(Op)) ! Tg(G0p(Op)) is an isomorphism and since u is etale, it
transforms Op-lattices of Tg(G) to Tg(G0). Now let f be an analytic function on
G(Op) such that ! = fu⇤(!0), then

k!k(g) = |f(g)|ku⇤(!0)k(g) = |f(g)|.

Moreover, since u is etale, there exists a pair (m,n) of integers, m � n � 1,
such that Gp(Op/mm

p ) coincides with the product of G0p(Op/mn
p ) with its fiber.

Hence

mod (!) =mod(fu⇤(!0)) = |f|u�1(mod(!0))

=|f |u�1(µ(Op)
dimGd0!µ) = |f |µ(Op)

dimGd!µ = k!kµ(Op)
dimGd!µ.

Corollary 13. If !e(⇤dimG(LieGp)) = mn
p and d!µ is the canonical motivic

measure on G(Ox) and µ the motivic measure on Kx. Then

mod (!) = µ(Op)
dimG

L
�n
p d!µ

and its total mass is given by µ(Op)dimG
L
n�dimG
p µ(G(k(p))).

That is to say, if we fix a non-zero section ! of the line bundle ^
dimG
OX

LieG,
we get a motivic measure !x on Gx(Kx). In particular, when x = p is with
good reduction, this is realized via the identification LieGp(Kp) = LieG⌦K Kp.
Moreover,

µ(Gp(Op)) =µ(k(p))�orde(!)

⇣
µ(k(p))� dimGµ(G(k(p)))

⌘

=µ(k(p))�ordp(!)�dimGµ(G(k(p))).

Motivated by this latest calculation, we define a global motivic measure dµ on
G(A) by the motivic Euler product

dµ :=
Y!

x2X
L
�ordep (!p)�dimG
x !x.
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Lemma 14. The global motivic measure dµ is given by

dµ = q(1�g) dimG
Y!

x2X
!x.

Proof. Indeed, by the property of the motivic Euler product, we have

dµ =
!Y

x2X

L
�ordep (!p)

x

!Y

x2X

L
� dimG
x !x

=
Y

x2X

L
�ordep (!p)

x

!Y

x2X

L
� dimG
x !x

=L
�

P
x2X ordep (!p) deg(x)

!Y

x2X

L
� dimG
x !x

=L
(1�g) dimG

Y

x2X

L
!
x!x.

Consequently, for K :=
Q

x2X G(Ox), we have

µ(K) =
Y!

x2X
µ(k(x))�ordx(!)

⇣
µ(k(x))� dimGµ(G(k(x)))

⌘

=
Y!

x2X
L
�ordx(!) deg(x)

Y

x2X

µ(k(x))� dimGµ(G(k(x))

(by the property (⇤))

=
Y

x2X
L
�ordx(!) deg(x)

Y!

x2X
µ(k(x))� dimGµ(G(k(x))

=L
�(g�1) dimG

Y!

x2X
µ(k(x))� dimGµ(G(k(x)),

by the Riemann-Roch theorem. Here we have used the facts that, being semi-
simple, the vector bundle LieG is of degree 0, and that for a fixed !, there are
only finitely many zeros and poles onX. So, the motivic product

Q!
x2XL

ordx(!) deg(x)

consists of only finitely many non-trivial terms. Consequently, this part of mo-
tivic product coincides with the usual product

Q
x2XL

�ordx(!) deg(x).

Theorem 15. For G = SLn,

µ(K) = L
(1�g)(n2

�1)Z�1X (L�2)Z�1X (L�3) · · ·Z�1X (L�n).

Proof. Indeed, by definition, if G = SLr, with Lx = µ(k(x)) = L
deg(x), we have

µ(k(x))� dimSLnµ(SLn(k(x)))

=µ(k(x))� dimGLn+1
µ(GLn(k(x)))

µ(k(x)⇤)

=L
�(n2

�1)

x
(Ln

x � 1)(Ln
x � Lx) · · · (Ln

x � L
n�1
x )

Lx � 1

=(1� L
�n
x )(1� L

�(n�1)
x ) · · · (1� L

�2

x )

Consequently, use the compatibility between the motivic product and the ordi-
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nary multiplication, namely, the relation (⇤), we have

µ(K) =L
(g�1) dimG

Y!

x2X

⇣
(1� L

�n
x )(1� L

�(n�1)
x ) · · · (1� L

�2

x )
⌘

=L
(g�1) dimG

Y!

x2X
(1� L

�n
x )

Y!

x2X
(1� L

�(n�1)
x ) · · ·

Y!

x2X
(1� L

�2

x )

=L
(g�1)(n2

�1)Z�1X (L�2)Z�1X (L�3) · · ·Z�1X (L�n).

3.3 Canonical Motivic Mass

In particular, our motivic measure on G(A) defined by

L
(1�g) dimG

Y!

x2X
µ!x

does not depend on the choice of ! by the product formula. Furthermore, set

µx(G) =

Z

Gx(Ox)

!x, 8x 2 X.

Then a set of factors (�x)x2X is called a set of good factors for G if the productQ
x2X ��1x · µx is well-defined as an element in K!

0
(Stak). If (�x) is a set of

good factors, then the motivic measure ⌦ = (!, (�x)) on XA derived from !
by means of (�x) is defined as the measure on XA induced in each productQ

v2S Gx(Kx)⇥
Q

p 62S Gp(Op) the product measure

µdimG
K

Y

x2X

(��1x !v).

In particular, when �x = 1 for all x 2 X, we call the associated motivic measure
canonical and the volume ⌧(G) :=

R
GA/GF

(!, (1)) the canonical mass.

Theorem 16. ([BD]) Let G = SLn be the group scheme associated to the

special linear group. Then ⌧(SLn) = 1.

Proof. For the convenience of the reader, we sketch the proof given in [BD].

First note that from the definition, as argued in [Weil] using motivic Euler
product,

⌧(SLn) · L
(g�1)n2

�1

nY

i=2

Z(X,L�i) = (L� 1)µ(MX,n(OX)).

Here MX,n(OX) denotes the moduli stack of rank n bundles on X with deter-
minant OX , and the factor L� 1 comes from the scalar automorphisms.

To go further, consider the finite type open substackM
m
X,n(OX) ⇢ MX,n(OX)

of bundles of instability  m. It is well-known that by the boundness, for ef-
fective divisors D of su�cient larger degree d, H1(X,E_ ⌦ OX(D)) = 0 for
all E in M

m
X,n(OX). This in particular implies that Hom(E,OX(D)n) form a

vector bundle of rank n2(d � g + 1). Denote this vector bundle by Wm(D).
Clearly, as m ! 1, MmX,n(OX) exhausts the space MX,n(OX). So we only need

to calculate µ(MmX,n(OX), or equivalently, the vector bundle µ(Wm(D).
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For this latest purpose, first following exactly [BD], introduce the open locus
W

0
(D) ⇢ Wm(D) defined by the injective maps E ,! OX(D)n. Denote

accordingly the Quot scheme Div(D) parametrizing subsheaves E ,! OX(D)n

which are locally free of rank n and degree 0, DivOX (D) the closed subschema
of Div(D) for E’s with trivial determinants, and similarly the open subvariety
Divm

OX
(D). By definition, we have

Wm
0

(D) = Divm
OX

(D).

Moreover, by a result of [BGL], we see that the locus of non-injective morphisms
has codimension at least d in Hom(E,OX(D)n). Consequently, ignoring higher
order codimension loci, one concludes as in [BD] that µ(MX,n(OX)) can be

calculated via first the space MmX,n(OX), then the vector bundle Wm(D) over

it, then its open sub variety Wm
0

(D) and hence Divm
OX

and finally DivOX (D).
The up-shot is that µ(MX,n(OX)) is nothing but the coe�cient of dominant

term L
n2

(d+1�g) of µ(DivOX (D)) as d ! 1.

To calculate this leading term, consider then the fixed point of Div(X) in-
duced by the action of Gm on OX(D). They correspond to inclusions of the
form �

n
i=1

OX(D � Ei), where Ei’s are e↵ective divisors with
P

deg(Ei) = nd.
Hence, the components of the fixed locus in Div(D) are indexed by the ordered
partitions n0 = (n1, . . . , nk) of nd and the component indexed by n0 is isomor-

phic to Sym(n0
)X :=

Qk
i=1

Sym(ni)X. Thus in particular, if n1 � 2g � 2, the

intersection of the fixed component Sym(n0
)X with the sub variety DivOX (D)

is then a projective bundle over Sym(n)X with n = (n2, . . . , nk). As argued in
[BD], in the final deduction concentrating on dominant terms of order n2d, we
may ignore the fixed components with n1  2g � 2, consisting of stratifications
of codimensions bounded by nd.

On the other hand, the fixed locus of the G
n
m-action on Div(D) may be

re-catched by a Gm-action given by one-parameter subgroups Gm ! G
n
m in-

duced by t 7! (tw1 , tw2 , . . . , twn) for strictly increasing sequence of integers.
Since the tangent space inside Div(D) to a fixed point (E1, . . . , En) is equal to
�i,jHom(OX(D � Ei),OEj ), and the torus Gn

m acts on the summand for (i, j)
is given through the character �i � �j with �i the i-th projection of Gn

m to
Gm. With the increasing condition on wi’s, we see that Gm-action should with
positive weights.

Now to tide all up, notice that the fixed point locus over Sym(n0
)X is a Zariski

locally trivial a�ne space bundle over Sym(n0
)X, whose rank can been seen to

be
Pk

i=1
(k � i)ni and this works equally well over the subvariety Sym(n0

)X \

DivOX (D). Consequently, the dominant term L
n2

(d�g+1) has the coe�cient

X

n

L
�

Pk
i=2 ni � L

�nd+g�1

L� 1
µ(Sym(n)X)L(n2

�1)(g�1)+
Pk

i=2(1�i)ni

where the sum runs over all ordered partitions n = (n2, . . . , nk) satisfyingPk
i=2

ni  nd� 2g + 2. Easily, the above summation is

=
L
(n2
�1)(g�1)

L� 1

X

n=(n2,...,nk)

µ(Sym(n)X)L�
Pk

i=2 ini =
L
(n2
�1)(g�1)

L� 1

nY

i=2

Z(X,L�i).
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Conjecture 17. (Motivic Tamagawa Number Conjecture) If G is a con-

nected semi-simple group defined over K, then ⌧(G) = 1.

We end this discussion by the following standard, (see e.g. [BD],)

Proposition 18. For a split connected semi-simple group G over F , we have

µ(G) = L
dim(G)

·

Y

d

(1� L
�d)dimVd

where M

d

Vd :=
⇣
SymX⇤(T )Q

⌘W
,

with T a maximal split sub-torus of G, X⇤(T ) its group of characters, and W
the corresponding Weyl group.

Proof. If B is the associated Borel for G defined over F , then, using the Levi
decomposition B = Ru(B) · T , where Ru(B) denotes the unipotent radical of
B, we have

µ(G) = µ(G/B) · µ(Ru(B)) · µ(T ).

We need to evaluate each terms.

The parts of T and Ru(B) are easy. Since T is a torus, we have T ' G
r
m

and hence µ(T ) = (L� 1)r. Similarly, using the structural filtration for Ru(B),
whose graded quotients are isomorphic to Ga, we have µ(Ru(B)) = L

dimRu(B).

To treat the projective variety G/B, we use the Bruhat decomposition
G/B = tw2WBwB/B. Then we find that

µ(G/B) =
X

w2W

L
l(w)

where l(w) denotes the length of w. This completes the proof using the Lie
theory.

4 Parabolic Reduction, Stability and the Mass

4.1 Motivic Measure of M total
X,n (d)

To go further, we fix a vector bundle E0 = O
(n�1)
X �A with A 2 PicX(d) a line

bundle of degree d. Then any vector bundle of rank n with determinant A may
be obtained via the following procedure.

First, shift from the vector bundle E0 on X to its generic fiber, we obtain
an n-dimensional K-vector space E0. With the bases chosen, we may identify
SLn(A) with the adelic group associated to SL(E0). As such then consider for
each g = (gx) 2 SLn(A) the associated bundle E

g
0
defined by the Ox-lattices

E
gx
0,x obtained from g�1x E0,x, where E0,x denotes (the completion of) the stack of

E0 at x:
�(U, Eg

0
) := {v 2 E0 : gxv 2 E0,x 8x 2 U}.
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Thus we conclude that the isomorphism class of the vector bundle E
g
0
depends

only on the double coset K g SLn(A), and the natural morphism

K\SLn(A)/SLn(K) ! M total

X,n (A]

is surjective. Here M total

X,n (A] denotes the moduli stack of semi-stable bundle

of rank n and determinant A. Moreover, if we set eK =
Q

x2X GLn(Ox) be
the corresponding subgroup in GLn(A) determined by E0, then the group of

automorphism of Eg
0
is given by g�1eKg \ GLn(K) and E

g
0
' E

g0

0
if and only if

g0 2 K̃gGLn(K). Consequently, as argued in [HN, p.230], we see that there is a
natural one-to-one correspondence between the quotient space k⇤/ImdetAut Eg

0

to the double cosets which map to E
g
0
for a fixed g. Here ImdetAut Eg

0
denotes

the image of the determinant of Aut Eg
0
in k⇤. Thus, as in [DR, p.234], for a

fixed vector bundle E on X, from the exact sequence

1 ! (Aut E with det 1) ! Aut E
det
! k⇤ ! (k⇤/ImdetAut E) ! 1

we conclude that

(L� 1)

Z

Mtotal
X,n (A]

1

µ(Aut E)
dµ

=

Z

[g]2K\SLn(A)/SLn(K)

1

µ(g�1Kg \ SLn(K))
dµ

=
1

µ(K)

Z

SLn(A)/SLn(K)

dµ

Theorem 19. We have

Z

Mtotal
X,n (d)

1

µ(Aut E)
dµ =

⇣
b⇣!X(1) · b⇣!X(2) · · · · · b⇣!X(n)

⌘
·

Z

SLn(A)/SLn(K)

dµ.

Here b⇣!X(i) := bZX(L�1) for i = 1, 2, . . . n. In particular, it is independent of d.

Proof. A direct calculation with the help of the following relations

µ(M total

X,n (d)) =µ(M total

X,n (A]) · µ(PicX(d)),

�X,q(d) = b⇣!X(L�1).

For later use, set,

�total

X,n (d) =

Z

Mtotal
X,n (d)

1

µ(Aut E)
dµ.

4.2 Invariants ↵ and �

In this section, we give a universal relation between �!
X,n(0) and ↵

!
X,n(0).

Theorem 20. (Counting Miracle) ([WZ, g=1]; [S, general g])

↵!
X,n+1

(0) = L
(g�1)n�!

X,n(0)
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Proof. ([S]) By definition, in order to contribute to the invariant ↵!
X,n+1

(0),
rank n+ 1 semi-stable vector bundle E of degree zero should have a non-trivial
global section. So for such E ’s, we have a non-trivial morphism OX ! E . But
the semi-stability of E then implies that the morphism OX ! E yields an exact
sequence 0 ! OX ! E ! Q ! 0 with Q a semi-stable vector bundle of rank
n and degree 0. Moreover, we know that H0(X, E)\{0} = Hom(OX , E)\{0}.
With these said, consider the action of AutOX ⇥ AutQ on Ext1(Q,OX). Its

orbits then are parametrized via [e] 2
⇣
Hom(OX , E)\{0}

⌘�
Aut(OX), for which

the stabilizer is given by Aut E/I + Hom(Q,OX). That is to say, we have the
decomposition

Ext1(Q,OX) = [(Hom(OX ,E)\{0})/Aut(OX)AutOX⇥AutQ
�
Aut E/(Id+Hom(Q,OX)).

Consequently,

↵!
X,n+1

(0) =

Z

MX,n+1(0)

µ(Hom(OX , E)\{0})

µ(Aut(E)
dµ

=

Z

MX,n(0)

µ(AutOX) ·
1

µ(AutOX ⇥AutQ)

µ(Ext1(Q,OX)

µ(Id + Hom(Q,OX))
dµ

=

Z

MX,n(0)

1

µ(AutQ)

µ(Ext1(Q,OX))

µ(Hom(Q,OX))
dµ

=

Z

MX,n(0)

1

µ(AutQ)
L
��(X,Q_

)dµ =

Z

MX,n(0)

1

µ(AutQ)
L
(g�1)ndµ

=L
(g�1)n

· �!
X,n(0)

by the Riemann-Roch theorem.

To properly appreciate this result and understand how the motivic integra-
tions are calculated, we compute the ↵ invariant for rank two vector bundles of
degree zero on elliptic curves over C.

By the classification of Atiyah ([A]), we know that MX,2(0) is parametrized
by the P

1-bundle over PicX(0). Indeed, recall that for a fixed A 2 PicX(0), the
semi-stable bundles E of rank two with A as determinant is classified by Gr(E) =
L1�L2 with L1⇥L2 = A. Here Gr denotes the associated graded Jordan-Holder
bundle. Thus the map L1 7! [L1 � L2] gives a morphism PicX(0) ! MX,2(A]
the moduli space of rank two semi-stable bundles with A as determinant. Since
L2 also gives the same bundle, this morphism is 2:1. Moreover, since there exist
exactly 4 line bundles L1 such that L2

1
= A. So this morphism is ramified at 4

points TA,i (i = 1, 2, 3, 4). So the target is P1.

Thus, motivically, not only we need to calculate

(i) a motivic integration over this P1 bundles over PicX(0), but

(ii) the 4 additional non-reduced sections TA,i which give the bundles TA,i⌦I2
(i = 1, 2, 3, 4). Here I2 is the unique non-trivial extension of OX by OX .

However, by noticing that within this P
1-bundle, only the bundles lie on

the section corresponding to [OX � A] have a nontrivial global sections and
at [OX � OX ], which is also the intersection of this section with the section
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(corresponding to) T1,A at A = OX , h0 jumps. Consequently, we have

↵!
X,2(0) =

Z

PicX(0)\{OX}

H0(X,OX ⌦A)\{0})

µ(Aut(OX �A))
dµ

+
µ(H0(X,O2

X)\{0})

µ(Aut(O2

X))
+

µ(H0(X, I2)\{0})

µ(Aut(I2))

=

Z

PicX(0)\{OX}

L� 1

µ(C⇤ ⇥ C⇤)
dµ+

L
2
� 1

(L2 � 1)(L2 � L)
+

L� 1

µ(C⇤ ⇥ C)

=
1

L� 1

⇣Z

PicX(0)\{OX}

dµ+ 1
⌘
= �!

X,1(0)

For high ranks, this proves to be quite complicated, even it is a quite fun
game. Similarly, when k = Fq, we can use general Atiyah bundles, namely,
direct sums of Ir’s, where Ir denotes the non-trivial extension of Ir�1 by OX ,
to establish a similar result. However, due to the rationality problems involved,
that process is much more complicated. For details, please refer to [WZ].

Consequently, we have

Corollary 21. For elliptic curves E/k, its associated non-abelian rank n zeta

function is given by

bZE,n(u) = �!
X,n�1(0) + �!

E,n(0)
un(Ln

� 1)

(1� un)(1� unLn)
.

In fact [WZ] gives much more: the Riemann Hypothesis for all ⇣E/Fq
(s) is

proved. This is based on the following

Theorem 22. (Multiplicative structure of beta invariants)

X

n

�!
E,n(0)u

n =
Y

m

ZE(uL
m).

For a proof, please refer to [WZ].

4.3 Parabolic Reduction and Geometric Partition

For simplicity, in the following two sections, we will work over algebraic closed
k unless otherwise stated. Let G be a reductive group scheme on X and E a
G-torsor on X. For a fixed parabolic subgroup P of G, denote by EP the induced
P -torsor. Following [HN], and more generally, [B] and [R] (see also [AB]), there
is a unique canonical parabolic P such that E has its Harder-Narasimhan type
P. Consequently, if we setM total

X,G (⌫0G) be the stack of G-torsors of degree ⌫0G with
⌫0G 2 X⇤(A0G), where A0G denotes the maximal quotient split torus of G and X⇤
denotes the collection of the associated one-parameter groups, then M total

X,G (⌫0G)
admits a natural partition by the stacks MX,G,P (⌫0P ) corresponding to these
having canonical type P for ⌫0P 2 X⇤(A0P ) satisfying [⌫0P ]G = ⌫0G and [⌫0P ]

G
2

aG+

P the positive acute Weyl chamber in aGP . Here following [A] (see also [LR]),

we write aP := X⇤(AP )0R = aQP �aGQ�aR for standard parabolic subgroups P ⇢

Q ⇢ R and [·]Q, [·]RQ and [·]R denote the canonical projections of aP onto aQP , a
R
Q

23



and aR respectively. In particular, MX,G,G(⌫0G) = MX,G(⌫0G), the moduli stack
of semi-stable G-torsors of degree ⌫0G. For our own use, for a parabolic Q and
⌫0Q 2 X⇤(A0Q), set alsoM

total

X,G,Q(⌫
0

Q) be the substack ofM total

X,G (⌫0G) whose induced
Q-torsors are of degree ⌫0Q. Similarly, then we have the substack MX,Q,P (⌫0P ).
Moreover, by an abuse of notation, denote the corresponding subspace in the
double coset K\G(A)/G(K) with the same letter. What we have just said then
proves the following

Theorem 23. (Parabolic Reduction and Stability) Determined by the parabolic

reduction using stability, within the space M total

X,G,Q(⌫
0

Q), we have a natural par-

tition

M total

X,G,Q(⌫
0

Q) =
[

P⇢Q

[

⌫0
P2X⇤(A

0
P )

[⌫0
P ]Q=⌫0

Q,[⌫0
P ]

Q
2aQ+

P

MX,Q,P (⌫
0

P ).

Consequently, if for a subset ⌃ ⇢ K\G(A)/G(K), we write 1⌃ for its charac-
teristic functions, then we may restate the partition of the theorem quantitively
as

1Mtotal
X,G,Q(⌫0

Q)
=

X

P⇢Q

X

⌫0
P2X⇤(A

0
P )

[⌫0
P ]Q=⌫0

Q

⌧QP ([⌫0P ]
Q) · 1MX,Q,P (⌫0

P ).

Here ⌧QP denotes the characteristic function of the acute positive Weyl chamber

in aQP ([A]). Thus if we set b⌧QP to be the characteristic function of the obcute

positive Weyl chamber in aQP (as in [A]), then we have

Theorem 24. (Parabolic Reduction and Stability) We have

1Mtotal
X,G,Q(⌫0

Q)
=

X

P⇢Q

X

⌫0
P2X⇤(A

0
P )

[⌫0
P ]Q=⌫0

Q

⌧QP ([⌫0P ]
Q) · 1MX,Q,P (⌫0

P );

1MX,G,Q(⌫0
Q) =

X

P⇢Q

(�1)dim aQ
P

X

⌫0
P2X⇤(A

0
P )

[⌫0
P ]Q=⌫0

Q

b⌧QP ([⌫0P ]
Q) · 1Mtotal

X,Q,P (⌫0
P )
.

Proof. The first is a reformulation of the previous theorem and the second is a
direct consequence of the Langlands’ (combinatorial) lemma.

4.4 Reduction to Levi Factors

For a standard parabolic subgroup P of G, we have then the Levi decomposition
P = MPNP with NP its unipotent radical and MP its Levi factor. With MP

reductive, it makes sense to talk about the moduli stack MX,MP (⌫
0

P ) of semi-
stable MP -torsors of degree ⌫0P 2 X⇤(A0P ) since A0MP

= A0P . Moreover, by
a result of [B], the natural morphism MX,G,P (⌫0P ) ! MX,MP (⌫

0

P ) defined by
E 7! EP /NP is a stack fibration of a�ne spaces, whose dimension is known to
be 2h⇢GP , ⌫

0

P i + dim(NP )(g � 1). Here ⇢GP 2 aG⇤P denotes the associated Weyl
vector for P . For details, please refer to [AB], [LR], and in particular, [DR]. In
fact, we have the following
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Example 2. (Motivic Hall Algebra) For the time being assume that k is gen-

eral. Then for a vector bundle E over X, denote its associated Harder-Narasimhan

filtration by

0 = E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ Ek = E .

From the uniqueness, Ei are also defined over k. To go further, consider then

the exact sequence

0 ! E1 ! E ! Q1 ! 0.

Then it is well known that there is no non-trivial morphism from E1 to Q1.

Consequently, for the natural action of Aut E1 ⇥ AutQ1 on Ext1(Q1, E1), the

stabilizer corresponding to [E ] is given by Aut E/(Id + Hom(Q1, E1). Here we

have used the fact that being canonical, any automorphism of E fixes E1 and Q1

and that (Id + Hom(Q1, E1)) is a normal subgroup of Aut E. That is to say, we

have the following natural decomposition:

Ext1(Q1, E1) = [[E]2Ext1(Q1,E1)
(Aut E1 ⇥AutQ1)

�
(Aut E/(Id + Hom(Q1, E1)).

Consequently, we arrive at the following generating relation for the associated

motivic Hall algebra

L
�(X,Q_

1⌦E1)

Z
1

µ(Aut E)
dµ(E) =

1

µ(Aut E1)⇥ µ(AutQ1)

which has its root from [DR, p.235].

Consequently, we have

µ(M total

X,G,Q(⌫
0

Q))

=
X

P⇢Q

X

⌫0
P2X⇤(A

0
P )

[⌫0
P ]Q=⌫0

Q

⌧QP ([⌫0P ]
Q) · L2h⇢G

P ,⌫0
P i+dim(NP )(g�1)

· µ(MX,MP (⌫
0

P ));

Hence, by the Langlands’ combinatorial lemma,

L
2h⇢G

Q,⌫0
Qi+dim(NQ)(g�1)

· µ(MX,MQ(⌫
0

Q))

=
X

P⇢Q

(�1)dim aQ
P

X

⌫0
P2X⇤(A

0
P )

[⌫0
P ]Q=⌫0

Q

b⌧QP ([⌫0P ]
Q) · µ(M total

X,Q,P (⌫
0

P )).

These formulas while very close to the original geometric picture involve
infinite summations due to the terms involving ⌧ and b⌧ . To get finite closed
formulas, we introduce the following spaces

⇤Q
P = X⇤(A

0

P )
� X

↵2�Q
P

Z↵_, ⇧Q
P = X⇤(A

0

P )
� X

↵2�Q
P

Z$_↵ .

Also, as usual, for each � 2 R/Z, h�i 2 R is the representative of the class �
such that 0 < h�i  1. And we write {�} = 1� h�i. Set then

L
dim(NP )(g�1)

· µ(MX,MP (⌫
0

P )) = eµ(MX,MP (⌫
0

P ))

L
dim(NP )(g�1)

· µtotal(MX,MP (⌫
0

P )) = eµ(M total

X,MP
(⌫0P ))

And denote by AP the maximal split subtorus in (the center of) P .
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Theorem 25. (Parabolic Reduction : Quantitive Version) We have

eµ(M total

X,MQ
(⌫0Q)) =

X

P⇢Q

X

⌫0
P2(⇤

Q
P )?

eµ(MX,MP (⌫
0

P ))
X

⇡2⇧Q
P

[⇡]Q=⌫0
Q

Y

↵2�Q
P

L
2h⇢Q

P ,$_Q
↵ i·{↵_Q

(⇡)}

L
2h⇢Q

P ,$_Q
↵ i � 1

,

eµ(MX,MQ(⌫
0

Q)) =
X

P⇢Q

(�1)dim aQ
P eµ(M total

X,MP
(0))

X

�2⇤Q
P

[�]Q=⌫0
Q

Y

↵2�Q
P

L
2h⇢Q

P ,↵_
i·{$Q

↵ (�)}

L
2h⇢Q

P ,↵_i � 1
.

Proof. ([LR]) Note that for each x 2 R we have

X

n2Z,n+x>0

tn =
thx+Zi�x

1� t
.

Then the proof may be given as in [LR, Thm 2.4] for the second equality by
noticing that eµ(M total

X,MQ
(⌫0Q)) = eµ(M total

X,MQ
(0)) is in fact independent of ⌫0P as

proved in Theorem 2. As for the first, we use the fact that eµ(MX,MP (⌫
0

P ))
depends only on the class ⌫̄0P 2 X⇤(A0P )/X⇤(AP ).

By comparing with the results on Poincare series for the moduli stacks of
G-torsors on Riemann surfaces in [LR], our motivic class formluas should be
viewed as the roots of them. Hence our motivic measures answer the existence
question of such measures raised by Atiyah and Bott in [AB]2.

To end this section, with a similar discussion, we have the following gener-
alization of a result of La↵orgue for GLn, which will not be used in the sequel:

Corollary 26. The Arthur’s analytic truncation

⇤T1(g) =
X

P

(�1)dim aP
X

�2P (K)\G(K)

b⌧P (HP (�g))

defines a characteristic function of a certain compact subset ⌃T
X,G for all T � 0.

In particular, when T = 0, ⌃0

X,G = MX,G(⌫0G). Here H : P (A) ! aP the usual

logarithmic map.

4.5 Semi-Simple Group Schemes

Back to general base field. Let G be a connected semi-simple group scheme
and G0 be the constant reductive group scheme over X having the same type
as G. Then the scheme Isomext(G,G0) is quasi-isotrivial, since G is by [SGA3,
XXIV, Thm 1.3 and XXIV, Cor 2.3]. Thus, from [SGA3, X, Cor 5.4], we
know that Isomext(G,G0) is etale and finite over X. Consequently, by taking
one of the components Y , we may assume that over the finite Galois etale
cover f : Y ! X, f⇤G is an inner form, since then Isomext(f⇤G, f⇤G0) has a

2This and other aspects of the comparison suggest that the basic relation between num-
bers of points and Betti numbers for algebraic varieties may have some extension to infinite
dimensions in which counting of points is replaced by a suitable measure. . . . Comparison
with the number theory suggests that there might be a natural measure, . . . so that what we
have been computing as Poincaré series actually turn out to be measures. – From [AB, p.598]
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tautological section. Denote by L/K the finite Galois extension corresponding
to the Galois etale covering Y/X. Let then B be a Borel subgroup and T ⇢ B a
maximal torus. Then the Weyl group W = (NG(T )/T )(L) acts naturally on the
symmetric algebra of X⇤(G⌦KL)Q. By a theorem of Chevelley, the invariants of
this action is isomorphic to an algebra of polynomials Q[I1, . . . , Idim aG

0
], where

I1, . . . , Idim aG
0
are algebraically independent homogeneous polynomials on aG

0
of

degrees di(� 2) given by �#{↵ > 0 : h⇢G,↵_i = i} + #{↵ > 0 : h⇢G,↵_i =
i � 1}. Clearly, this works also locally for each x 2 X. Thus by a result of
Steinberg [S, 11.16], we may assume that

⌫(G(kx)) = L
dimG
x ·

Y

i�2

(1� L
i
x)

ni

with Lx = L
deg(x). Thus, if K =

Q
x2X G(Ox), with the formula that

µ(K) = L
(1�g) dimG

Y

x2X

µ(k(x))� dimGµ(G(k(x)),

we, using the motivic Euler product, conclude that

µ(K) =
Y

i�2

b⇣!X(i)ni .

Consequently, if we set

�!
X,G(⌫

0

G) :=

Z

MX,G(⌫0
G)

1

⌫(AutG(E))
dµ,

or the same, in terms of semi-simple group G,

�!
X,G(⌫

0

G) =

Z

K\G(A)/G(K)

1

µ(gKg�1 \G(K))
dµ,

we have the following

Theorem 27. The total mass of G-torsors of degree ⌫0G for a semi-simple group

scheme G is given by

�X,G(⌫
0

G) =
Y

i�2

b⇣!X(i)�ni .

In particular, it is independent of the degree.

4.6 Simple Factors

Even we start with a semi-simple groups, with parabolic reductions, we are
led to the study of the associated Levi factors, which are reductive but may
not be semi-simple. So to finally close the ring, we need to investigate the
relation between reductive groups and its associated semi-simple counter part,
its derived group.

Recall that we have the following decomposition theorem for reductive groups.
If G is a connected semi-simple group over a field K, then the set {Gi}i2I of
minimal non-trivial normal smooth connected K-subgroups of G is finite, each

27



Gi is K-simple, the G0i pairwise commute, and the multiplication homomor-
phism

Q
i2I Gi ! G is a cantral isogeny. More generally, if G is a connected

reductive group over a field K, Z its maximal central K-torus, and G0 = D(G)
its semi-simple derived group. Let {Gi} be the K-simple factors of G0. Then
Gi are precisely the minimal non-trivial normal smooth connected non-central
K-subgroups of G and the multiplication Z⇥

Q
i2I Gi ! G is a central isogeny.

(See e.g., [C].) Thus up to a central isogeny, reductive groups may be viewed as
direct product of the central torus and its simple semi- simple factors. But for
Z ⇥

Q
i Gi it is clear that

µ(M total

X,Z⇥
Q

i2I Gi
(⌫0G)) =

Y

i2I

Y

j�2

b⇣!X(1)nj1b⇣!X(2)n2 · · · b⇣!X(ji)
nji

since µ(M total

X,Z (⌫0Z)) =
b⇣dimZ
X (1). So it is left to consider how the total motivic

mass �! changes under central isogeny. For this, we use Ono’s relative theory
of Tamagawa numbers ([O1,2]). Thus, the factors related to the Tamagawa
measure of the universal cover G̃ of G and the motivic classes associated to Sh
and H0 of the kernel of the natural covering G̃ ! G should be added. With
the works of Ono ([O1,2]) and of Lang on the lifting ([L]), this theory is now
becoming quite standard. We leave the details to the reader.

4.7 Analytic Zetas are Motivic

To end this paper, let us ask whether our analytic zeta functions constructed
here is motivic. In particular, whether the quantitive version of the parabolic
reduction and stability stated in Theorem 9 holds. Note that, under the motivic
assumption, the coe�cients in the parabolic reduction and stability relation is
totally independent of the complex structures of the Riemann surfaces used in
the definition. In this sense, we may say that being motivic is some intrin-
sic property which is compatible with the conformal fields theory claiming the
existence of projective flat connections on conformal blocks.
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Appendix: Invariants ↵X,n(0) and �X,n�1(0)

K. Sugahara

Abstract

In this appendix, we establish the following intrinsic relation between
alpha and beta invariants for genus g curves X:

↵X,n+1(0) = qn(g�1)�X,n(0).

Let X be an irreducible reduced regular projective curve of genus g over Fq, the
finite field with q elements. For any coherent sheaves A, B and E on X, for our
own use, we introduce the auxiliary spaces

Fil(A,B; E) :={0 ⇢ F ⇢ E : F ' A, E/F ' B},

W(A,B; E) :={(f, g) 2 Hom(A, E)⇥Hom(E ,B) : f injective, g surjective, g � f = 0},

U(A,B; E) :={f 2 Hom(A, E) : f injective, 9 surjective g 2 Hom(E ,B) s.t. g � f = 0},

the associated morphisms

' : W(A,B; E) ! Fil(A,B; E); (f, g) 7! (0 ⇢ Im (f) ⇢ E)

 : W(A,B; E) ! Ext1(B,A); (f, g) 7! (0 ! A
f
�! E

g
�! B ! 0)

⇡ : W(A,B; E) ! U(A,B; E); (f, g) 7! f

and the following natural actions:

� : {(AutA)op ⇥AutB}⇥W(A,B; E) ! W(A,B; E); (⇢,�, (f, g)) 7! (f � ⇢,� � g)

µ : Aut E ⇥W(A,B; E) ! W(A,B; E); (⌧, (f, g)) 7! (⌧ � f, g � ⌧�1)

We know that

(i) ' is surjective, and

(ii) there is a natural bijection between the fiber of ' and (AutA)op ⇥AutB.

This is a direct consequence of the five lemma. Indeed, this follows from the
facts that '(f, g) = '(f 0, g0) if and only if there exists (⇢,�) 2 (AutA)op⇥AutB
such that (f 0, g0) = �(⇢,�, (f, g)), and that the action � is free. Hence, we have

#W(A,B; E)
��

#(AutA) ·#AutB
�
= #Fil(A,B; E). (1)

(iii) The image of  is exactly the set Ext1
E
(B,A) of isomorphism classes of

extensions of B by A the middle term of which is isomorphic to E . Moreover,
any fiber of  is an orbit of W(A,B; E) under the action µ.

Indeed, this follows from the fact that  (f, g) =  (f 0, g0) if and only if there
exists ⌧ 2 Aut E such that (f 0, g0) = µ(⌧, (f, g)). Besides,

(iv) The stabilizer group of (f, g) 2 W(A,B; E) under the action µ is isomorphic
to Hom(B,A).

To prove, for any element ⌧ 2 Aut E , we write it as

⌧ =

✓
⌧A ⌧AB

⌧BA ⌧B

◆
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with

⌧A 2 AutA, ⌧B 2 AutB, ⌧AB 2 Hom(A,B), ⌧BA 2 Hom(B,A).

A direct calculation shows that f = ⌧ � f if and only if

⌧ =

✓
IdA 0
⌧BA ⌧B

◆
.

Here we have used the claim that Hom(A,B) part ⌧AB must be 0 since we have
the inclusion ⌧(f(A)) ⇢ f(A) by condition. Similarly, g = g � ⌧�1 if and only if
g � ⌧ = g if and only if

⌧ =

✓
⌧A 0
⌧BA IdB

◆
.

Thus, (f, g) = µ(⌧, (f, g)) if and only if

⌧ =

✓
IdA 0
⌧BA IdB

◆
2

✓
IdA 0

Hom(B,A) IdB

◆
.

Consequently, the stabilizer group of (f, g) 2 W(A,B; E) under the action µ is
isomorphic to Hom(B,A).

Therefore, we obtain the following relation

#W(A,B; E)
��

#AutE
�
#(Hom(B,A))

�
= #Ext1

E
(B,A). (2)

By (1) and (2), we have

#Fil(A,B; E) =
#Ext1

E
(B,A) ·#AutE

#AutA ·#AutB ·#(Hom(B,A))
. (3)

This is an analogue of the formula given by [Ri].

(v) ⇡ is surjective, and any fiber of ⇡ is isomorphic to AutB.

This follows from the fact that ⇡(f, g) = ⇡(f 0, g0) if and only if f = f 0 and
there exists � 2 AutB, by the five lemma. Consequently, we have

#W(A,B; E)
�
#AutB = #U(A,B; E). (4)

Thorem. Let E0 be a stable vector bundle of rank m (< n) and degree 0. Then

X

E2MX,n(0)

q#Hom(E0,E) � 1

#Aut E
= qm(n�m)(g�1)

X

F2MX,n�m(0)

1

#AutF
.

In particular,

↵X,n+1(0) = qn(g�1)�X,n(0).
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Proof. We have the following calculation:

X

E2MX,n(0)

q#Hom(E0,E) � 1

#Aut E

=
X

E2MX,n(0)

#{f 2 Hom(E0, E) : f injective}

#Aut E

(by the stability of E0)

=
X

E2MX,n(0)

1

#Aut E
#U(E0, E/E0; E)

(since the category of semistable bundles

of degree 0 is an abelian category)

=
X

E2MX,n(0)

1

#Aut E
·
#W(E0, E/E0; E)

#Aut(E/E0)

(by (4))

=
X

E2MX,n(0)

1

#Aut E
·

#Ext1
E
(E/E0, E0) ·#AutE

#Aut (E/E0) ·#Hom(E/E0, E0)

(by (3))

=
X

F2MX,n�m(0)

#Ext1(F , E0)

#AutF ·#Hom(F , E0)

(since the category of semistable bundles

of degree 0 is an abelian category)

= qm(n�m)(g�1)
X

F2MX,n�m(0)

1

#AutF

(by the Riemann-Roch Thm).
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