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Abstract. In Part |, Deligne-Riemann-Roch isometry is generalized for punctured Riemann
surfaces equipped with quasi-hyperbolic metrics. This is achieved by proving the Mean Value
Lemmas, which explicitly explain how metrized Deligne pairingsdeadmissible metrized line
bundles depend om. In Part Il, we first introduce several line bundles over Knudsen-Deligne-
Mumford compactification of the moduli space (or rather the algebraic stack) of afabtented
algebraic curves of gengswhich are rather natural and include Weil-Petersson, Takhtajan-Zograf
and logarithmic Mumford line bundles. Then we use Delighe-Riemann-Roch isomorphism and
its metrized version (proved in Part I) to establish some fundamental relations among these line
bundles. Finally, we compute first Chern forms of the metrized Weil-Petersson, Takhtajan-Zograf
and logarithmic Mumford line bundles by using results of Wolpert and Takhtajan-Zograf, and
show that the so-called Takhtajan-Zograf metric on the moduli space is algebraic.

Introduction

For smooth metrics, Arakelov theory in dimension one may be essentially sum-
marized as follows:

(1) Intersection. If(L, p) and(L’, p’) are two metrized line bundles on a com-
pact Riemann surfac® of genusg, then we have the so-called Deligne metric
hp(p, p") on Deligne pairingL, L');

(2) Cohomology. Ift is a Hermitian metric onK,, induced from a smooth
base metric o/, then we have the Quillen metrig, (o; ) on Grothendieck-
Mumford determinant (L);

(3) Deligne-Riemann-Roch Isometry: There exists a canonical isometry
®12 ®6
(1) oo D)) = (L L@ K™, hp(p, p @ 75H)

®((Ku. Kun) hp(x: ) - €

wherea(g) = (1 — g)(24{é(—l) — 1) denotes the Deligne constant.
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Thus, to develop an Arakelov theory for singular metrics, there are at least
two difficulties: (1) for intersections, general singular metrics have too wild
singularities; and (2) for conomology, corresponding Laplacians, if exist, have
continuous spectrum.

Clearly, the first is a minor one, as we may use certain growth conditions on
singular metrics to overcome it. On the other hand, the second is an essential
one. As a matter of fact, we even now have no idea on how to do it in general
(along with the line of Ray-Singer-Quillen). However, in this paper, we use a
new principal: the so-called Mean Value Lemma, to develop a new cohomology
theory.

Key ideas are as follows: First, we start with a metfi¢ on a Riemann
surfaceM which has at worse hyperbolic growth near some points. Then, we
define canonically-Arakelov metricsar., andpar.. p ON canonical line bundle
Ky andOy (P) forall P € M, respectively (i.e., Basic Definition | in Sect. 1.2).
We know that (a) these metrics are good in the sense of Mumford ([Mul]) and
(b) their first Chern forms are proportional to the normalized volume forof
ds?. With this, we define»-admissible metrics on line bundles by conditions (a)
and (b). Clearly, on any line bundlg w-admissible metrics exist and are indeed
unique up to constant factors. Moreoverpifand p are admissible (and hence
may be singular), Deligne metric, (o, p’) is well-defined as well.

Now for any w-admissible metripp on L, we can construct canonically a
smoothwgradmissible metrig.anon L. (Herewqa, denotes the standard canon-
ical volume form ofM. See e.g., Sect. 1.1.) In fact, if we writeasOy; (3" a; R;),

there exists a constantsuch thato = ®p§r‘f;;Ri - € by admissible condition,

andpcan := ®p,§’r‘f"wcan;R,_ - € (i.e., Equation (1.2) in Sect. 1.2). Furthermapgy,

is well-defined, i.e., does not depend on the choice of the dijiSarR; used.

Similar construction works for on K, from which we obtain a unique smooth

wcarradmissible metriacan (i.€., Equation (1.1) in Sect. 1.2).
Singularw-admissible metricg on L andt on K, are beautifully related

to smoothwcgr-admissible metric®can and 7.4, by the Mean Value Lemma in

Sect. 1.3, which claims that

(1) on(L,L"); hp(p, p') = hp(pcan Pean);
(2) on <L7 KM); hD(/Oa T) = hD(,Ocam Tcan); and
(3) on(Kp, Km); hp(t, T) = hp(Tean, Tean-

With this, finally, define a determinant mettige«(o; ) on A(L) by setting
hdel(p; T) := ho(pcan Tcan). We show that ifp andt are indeed smooth, then
hael(p; T) = ho(p; T). That is to say, it coincides with the standard Quillen
metric. All this then leads to the Deligne-Riemann-Roch isometry for our ad-
missible metrics in Sect. 1.6, both over arithmetic surfaces and over families
of Riemann surfaces, and hence a quite satisfied Arakelov theory for singular
metrics is developed.
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Naturally, we want to apply our admissible theory to the study of moduli
spaces of punctured Riemann surfaces equipped with complete hyperbolic met-
rics. For doing so, we then meet with another essential difficulty: there exists no
geometrically natural admissible metric on the canonical line bundle, without
which, it is impossible to apply our general admissible theory. (Complete hyper-
bolic metric on a punctured Riemann surface is not canonical when we view it
as a metric on the canonical line bundle of its smooth compactification.)

To overcome this, we introduce an invariant called Arakelov-Po@altime
for a (punctured) Riemann surface. (See the Basic Definition Il(i) in Sect. 1.5.)
Moreover, with the help of the so-called Puncture Democracy in Sect. 1.5, which
claims that metrically, all punctures behavior in the same way, we obtain a natural
decomposition for the canonical metric &1, (P1+ - - - + Py) induced from the
complete hyperbolic metric in terms of these Kk andOy(P1 + --- + Py).

(See the Decomposition Rule and Basic Definition II(ii) in Sect. 1.5.) All this is
done in Part 1.

In Part I, we use Deligne pairing to study moduli spaces of punctured Rie-
mann surfaces, algebraically and metrically. More precisely, for algebraic as-
pect, we first introduce several line bundles over Knudsen-Deligne-Mumford
compactification of the moduli space (or rather the algebraic stack) of stable
N-pointed algebraic curves of gengs which are rather natural and include
Weil-Petersson, Takhtajan-Zograf and logarithmic Mumford line bundles. (See
Basic Definition Il in Sect.2.1.) Then we use Deligne-Riemann-Roch isomor-
phism to establish logarithmic Mumford type isomorphisms (i.e., Fundamental
Relations | in Sect. 2.2). Moreover, by using a result efdi and Tate (resp. a
result of Cornalba-Harris), we give a comparison between Weil-Petersson line
bundles and Takhtajan-Zograf line bundles, (resp. a generalization of Xiao and
Cornalba-Harris’s inequality). (See Fundamental Relations Il and 11l in Sect. 2.3
and Sect. 2.4, respectively.) All this answers some of open problems concerning
line bundles over moduli spaces of marked stable curves.

As for metric aspect, by using decompositions for standard hyperbolic met-
rics in Sect. 1.5, we are able to introduce natural metrics on the restrictions of
Weil-Petersson, Takhtajan-Zograf, and logarithmic Mumford type line bundles
to the open part of the moduli space. (See Basic Definition IV in Sect.2.5.)
And, as a direct consequence of our arithmetic Deligne-Riemann-Roch isome-
try, we obtain logarithmic Mumford type isometries. (See Fundamental Relation
IV in Sect.2.5.) Moreover, our metrized Weil-Petersson and Takhtajan-Zograf
line bundles are naturally related with Weil-Petersson metrics, defined by us-
ing Petersson norm on spaces of cusp forms, and Takhtajan-Zograf metrics,
defined by using Eisenstein series respectively. In fact, as a direct consequence
of our logarithmic Mumford type isometries, by using [Wol] and [TZ1,2], we
show that the first Chern form of metrized Weil-Petersson bundle (resp. metrized
Takhtajan-Zograf bundle) gives theakller form associated to the Weil-Petersson
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metric (resp. the Takhtajan-Zograf metric, together with Fuijiki). (See Fundamen-
tal Relations V and VI in Sect. 2.6.) In this way, we answer affirmatively an open
problem of Takhtajan and Zograf on whether their newly defined metric on the
moduli space is algebraic, and also for the first time clearly point out that the
Weil-Petersson metricis in the nature of intersection (rather than that of conomol-
ogy). As a by-product, we finally show that the metrics on logarithmic Mumford
line bundles introduced in Basic Definition IV can be redefined by using special
values of Selberg zeta functions for punctured Riemann surfaces.
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University. | would like to thank both institutes, in particular, A. Fujiki, T. Mabuchi, M. Miyanishi,
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referee whose suggestions lead to the article in its present form. Finally, | would like to dedicate
this paper to S. Lang.

Part |. £2-admissible theory

In this part, we develop am-admissible intersection theory, introduce a new
determinant metric and use them to prove a Deligne-Riemann-Roch isometry
for w-admissible metrics which may be singular. Key points are the definition of
w-Arakelov metrics and various versions of the Mean Value Lemma.

1.1. Quasi-hyperbolic metrics and their Green'’s functions

Throughout this part, we assume thf is a (punctured) Riemann surface of
genusg. Denote its smooth compactification by, and letM\M° =: (P4, .. .,

Py}.As usual, we calP;,i =1,..., N, puncturesof M°.
Recall that a Hermitian metriés? on M° is said to beof hyperbolic growth
near puncturegf foreachP;,i =1, ..., N, there exists a punctured coordinate

discA* .= {z € C: 0 < |z|] < 1} centered afP; such that for some constant

C]_ > 0,

. C1|dz|?

(i) ds? < %
|z|2(log |z]) ;

and there exists a local potential functipron A* satisfyingds? = %dz ®dz,

and for some constant, C3 > 0,

(i) 1¢i(z)| <= Comax{l, log(—log|z])}, and

d i 8 i C

(iii) ‘i‘ 9. S5 onan,

0 0z |z| llog |z]|

*
9

Z 9
In this case, we calls? aquasi-hyperbolic metriavhich is introduced in [TW1].
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For a quasi-hyperbolic metriés? over a punctured Riemann surfak®, it
follows easily from (i) that VolM, ds®) < oo. Denote the normalized volume
form of ds? by w so that Vo[ M, w) = 1. From now on, we always assume that
w is the normalized volume form oW associated to a smooth metric (&f) or
a quasi-hyperbolic metric (om©°).

Proposition ([TW1, Thm 1]). With respect to the normalized volume form
w associated to a fixed quasi-hyperbolic metric M, there exists a unique
w-Green’s functiong, (-, -). That is, there exists a functiog, (-, -) on M° x
MP\Diagonalsuch that the following conditions are satisfied:

(i) For fixed P € M°, andQ # P nearP,

8o(P, Q) = —log| f(Q)I* + a(Q),

where f is a local holomorphic defining function fa?, and« is some smooth
function defined near;

(i) dodpgu(P, Q) = w(Q) — 8p. Heredy, := %(SQ — dp) Is with respect
to the second variable (so thdpd;, = ‘/gaQéQ), and$p is the Dirac delta
symbol atP;

(i) [ guP. Q@) =0,

. M

(V) 8u(P, Q) = 8,(Q, P) for P # Q;

(V) g (P, Q) is smooth om° x M\ Diagonal

(vi) Near each punctur®; of M%,i =1, ..., N, there exists a punctured coor-

dinate neighborhoodi* centered atP; such that for fixed) € A*, there exists
a constantC > 0 such that

lg,(Q, 2)| < Cmaxl,log(—logl|z|)} onA™.

We next sketch a proof. For the details, see e.g., [TW1] or [We2].
First, define the so-called canonical volume favg, on M as follows:
(@)g = 0. ThusM = Plis the projective line. Denote its affine coordinatezby

Set
v=1 dzndz
2r (1412192
(b) ¢ > 0. Let{¢;} be an orthonormal basis of the space of global holomorphic
differentials I" (M, K,;) of M with respect to the natural pairin@, ) +—

L1 b AL Set

Wcan - =

/14 _
Wcan = ? ;dﬁ /\¢j'

Clearly, [,, wcan= 1. Hence, we may solve the partial differential equation

ddC,Bw = W — Wcan
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Moreover, by using conditions (ii) and (iii) for quasi-hyperbolic metrics, we
may further assume that there exist constafitsCs > 0 such that near each
Pl',i =1,...,N,

|Bu(2)| = Camax1, log(—log |z},

’3/3@(1) G
oz | T RlTlogll

‘ 9B, (2)
0z

Clearly, suchs,’s are unique up to additive constants. So if we normalize it by
putting the condition that

/ Bo(w + wcan) =0,
M

then the locally integrable functiof, is unique. Now denote by(P, Q) the
Arakelov-Green’sfunction, i.e., the.,-Green’s function. (See e.g., [La2], where
the existence of (P, Q) is proved following Arakelov [Ar].)

Proposition’ ([TW1]). With the same notation as above,d x M°\Diagonal
the function

8o(P, Q) :=g(P, Q) + Bu(P) + Bu(Q),
satisfies conditions (®}(vi) of the Proposition.

Obviously, using properties of Arakelov-Green’s functions, see e.g., [LaZ2,
Chapter Il], we only need to check condition (iii) of the Proposition. But then by
the growth conditions fo$,, anddj,,, the arguments in the proof of [La2, Chapter
I, Proposition 1.3] involving Stokes’ theorem remain valid. This completes the
proof of the Propositiorand hence the Proposition.

1.2. 2-Arakelov metrics

Our aim here is to introduce canonically metrica®p (P) for any fixed pointP
on M, and on the canonical line bundtg, of M associated t@, the normalized
volume form associated to a quasi-hyperbolic metriowh For this purpose,
motivated by the work of Arakelov [Ar], we may try simply to use thésreen’s
functions. However in doing so, we meet two main difficulties. These are
(i) o-Green’s functiorg, (P, -) is not well-defined wher is a puncture; and
(i) corresponding intersection behaviors very badly.

To overcome these difficulties, we make the following modification. First,
for any P € M9, i.e.,for any point but a punctutedefine a Hermitian metric
Par:w:p ON Oy (P) by setting

log 115112, ,(Q) := —gu(P, Q) + B,(P) for Q( P)in M°.
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Here 1, denotes the canonical defining section@®f;(P). That is to say, we
twist the metric orO,,(P) corresponding ta-Green’s functiong,, (P, -) by a
constanfactor &-("), (Later on, we will see that such a modification is essential.)
Clearly,

dody(—log|1pl2,  .(Q))
= dody(8,(P, Q) — Bu(P))
= deégw(Pv Q)
=w(Q) —ép
= w(Q) — ddiv(ip)-
Hencec1(Oy(P), par.w:p) = o for all P which are not punctures, whete
denotes the first Chern form.
Now, by Propositiohin the previous section,

—8u(P, Q) + fu(P) = —g(P, Q) — Bu(Q).

This leads to the following

Basic definition I(i). For any pointP € M, define thev-Arakelov metrigar. .. p
on Oy (P) by setting

logl|1p12, . ,(Q) :=—g(P, Q) — B,(Q) for Q( P)in M°.

Clearly, now we also have

c1(Ou(P), par:w:p) =w  forall P e M.

To facilitate ensuing discussion, we next recall the definition of ‘good’ Her-
mitian metrics introduced by Mumford [Mul], in the special case of line bundles
over a (punctured) Riemann surface. Salldie a line bundle on/. A smooth
Hermitian metrico on L|,,0 is said to be good o if there exists a finite set of
coordinate disc§U;} covering an open neighborhood of all punctufg such
that foreactl; = A = {z € C : |z] < 1}, there exists a non-vanishing holomor-
phic sectiorw € I'(U;, L}Ui) such thator; "M% = A* = {z € A: z # 0},

2m
() 10, V)], /1p, v)| < Cl(log|z|) for someC; > 0,m > 1, and

(i) 3 log p (v, v) andda log p (v, v) have Poincar growth onJ; — U; N M°, i.e.,
there exist constants,, C3 > 0 such that

13, 109 p (v, V)|? < C20p,Ay0(t1. 1) and

= 2
101,05 109 p (v, V)| < Cawy,Apo(t2, 12) - Wy, AMO(13, 13)
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forallty, to, t3 € T (U; N M°), x € U; N M°. Herew 0 denotes the metric on
U N M° induced by the Poincametricds? = (|dz|/(|z|log|z]))? on eachA*.

One easily sees that the above definition does not depend on the choice of local
coordinate functions and local trivializationsibbn each;. (cf. [Mul,Sect. 1])

With this, by definition, a Hermitian line bundid., p) on M is calledw-
admissibleif it satisfies the following two conditions:

(1) p is a good metric o1 | ,0; and
(2) c1(L, p) = d(L) - w. Hered (L) denotes the degree &f

For example, (from the discussion in the proof of Proposition of Sect.1.1
on the growth of3,, and the above computation on first Chern fortd), (P),
PAr:w:p) IS w-admissible. Thus, over any line bundleon M, we obtainw-
admissible Hermitian metrics dn(by firstwritingL = Oy (>_ a; R;) as adivisor
line bundle, then extendingar... p linearly on P’s). Clearly, from Conditions
(1) and (2), ifp; and p, are twow-admissible metrics ofi, then there exists a
constant such thaip; = p, - €. Hence w-admissible Hermitian metrics over a
fixed line bundle are parametrized By .

Thusin particular, on canonical line bundg, of M, there existr-admissible
Hermitian metrics, which are far from being unique. So to get a canonical one,
we make the following normalization.

Basic definition I(ii). On K, define thev-Arakelov metricca,.., by setting

2(P) QP oy,

——T ) for P € M°.

17 (z) dz|2

TAr®

— 2 i
(P) := |h(P)| 'Q“an

Hereh(z) dz denotes a section & ;.
So
I dzl?, (P) = h@)dz]l%,, _(P)-€-2+2h®),

TAr;ocan
Heretar...., denotes the (canonical) Arakelov metric &, which is smooth.
Therefore by the growth condition gf,, we see thata,.,, is good. Moreover,
SINCeTAr:we, IS Wecarradmissible, (see e.g. [La2, Chapter IV, Theorem 5.4],) we
have

c1(Ku, Tar0)
= (29 — Dwcan+ dd (—[(=2q + 2)B.])
= (29 — 2)wcan+ (29 — 2)(w — wcan)
= (29 — 2w.

Allin all, what we have just said proves the following

Proposition. With the same notation as abou&) (P), par:w:p) and (K,
Tarw) are w-admissible. Moreover, for any line bundle over M, there exist
w-admissible metrics, which are parametrizedmy.
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In particular, ift is anw-admissible metric oK, then there exists a constant
a such that = tar.,, - €. With this, define a smooth,-admissible metriecan
on K, by setting
Tcan := TAr;mean * € - 1.1

Similarly, for anyw-admissible metrized line bund(é., p) on M, we may
introduce a unique smooth,r-admissible metrigp.,, on L as follows.

Write L asL = Oy (> a;R;) for a certain divisor) _ a; R;. Then, by using
w-Arakelov metricspar...z, 0N Oy (R;), we get anothew-admissible metric

®p§r‘f"w;Ri on L. Therefore, by the Proposition above, there is a constanth

thatp = ®p§r‘f;;R[ - €. Define a smooth.,r-admissible metrigean on L by

Pcan ‘= ®,0§r(fia,; R €. (1.2

Note thatin this construction, we use a realizatioh af a divisor line bundle
Ou(Q_a;R;). Thus we should show that,, does not depend on such choices.

Key lemma.With the same notation as aboyeg,,is well-defined. That is to say,
if we haveL = Oy (}_b;S;), andp = @p,i’j;;sf - ¢ for a certain constant/,

then

®a; _ ®bj
®pAr?wcan§Ri € = ®pAriwcan§S/ ’ ed

Proof. From definition, onL, we have the following equality fap-admissible

metrics
®a; _ _ ®b;
®10Ar;w;R,~ : eC =p= ®pAr;w;5, ed

Hence to prove the lemma, it suffices to show that

®a; ®bj
®pAr;wcan;R; _ ®pAT§wcan§Sj (1 3)
® ®ai - ®bj : )
Par:w: R; ®/0Ar;w;5j

Now, by definition, the logarithm of the first ratio (at a fixed poindn M) is

> (= 8o(Ri, ) + Buo(R)) + 8(Ri, ) ),

which by Propositiohin Sect. 1.1 is nothing but " a;8,(x). Similarly, the
logarithm of the second ratio is ) b;B,(x). Clearly, > a; = ) b, is the
degree ofL, so we establish (1.3) and hence show that

®a; _ ®b;
®pAr§wcan§Ri € = ®pAr§wcan§S_/‘ ) ed

This completes the proof of the Lemma.
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The equality (1.3) says that)f’ a; R; is rationally equivalent td _ »;S;, then

®a; ®b;
®’0Ar;lwcan§Ri _ ®'0Ar ;wcan; S
®a; - ®b;
®’0Al‘;ta);R,' ® Ar w; S
That is to say,
®ai ®a;
QPpr; S R ®pAr ‘i R; 14
®IOAr ;wcan Sj ®10Ar;w;5j
®zl,
Clearly, the ratloM is a constant bw-admissible condition and depends
y 0, Yo
®Pprirmes:

onlyonw, Y a;R; and})_ b;S;. Hence if we set

(o ek Ys) = e,

® /—\rwS

then by (1.4), the constaft(w; > a;R;, Y b;S;) does not really depend an
That is to say, we have the following

Mean value lemma |.With the same notation as above, for any two normalized
volume formsv; andw, on M,

C (wl; > aiR;, ijsj) =C (‘“2; > aiRs. besf) :

provided that) " a; R; is rationally equivalent t) _ b;S;.

1.3. Mean value lemma fas-admissible intersections

In this section, we define metrized Deligne pairings for line bundles equipped
with w-admissible metrics, which may be singular. More importantly, we study
their dependence an.

To begin with, let us recall the construction of Deligne pairings and its
metrized version when metrics are smooth.

Letr : X — S be a projective flat morphism whose fibers are algebraic
curves. Then for any two invertible sheaves L, over X, following Deligne
[De2], we may introduce th®eligne pairing (L1, L2)(X/S), which is often
written as(L1, Lo)(r), or (L1, L»), by using the following axioms:

(DP1) (L1, L) is an invertible sheaf of, and is symmetric and bi-linear in
Lis;
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(DP2) (L, L) is locally generated by symbols, I5) with I; sections ofL;,
i = 1, 2, whenever the divisors @fs have no common intersection; moreover,
if f is arational function orX, then

(llv f12> = ®kNormYk/S(f)nk (ll7 lZ)

provided that div/;) = ) _ n,Y; is finite overS and di« f) has no intersection
with Y. Here, as usual, Norgy s denotes the standard norm map for the covering
Yi/S.

(DPJ) For a sectior, of L, such that all componenis, of the divisor dil,) =
> . oYy are flat overs, we have a canonical isomorphism

(L1, L2)(X/S) := ®q(NOrmy, ;s(L1ly,))®".

(In practice, Deligne pairings may be constructed by using the above axioms
as follows: first, we use (DP3) to reduce to finite flat coverings, by using a certain
choice of sections; then we use axiom (DP2) to show that this construction does
not really depend on the choice of sections.)

Moreover, if 7 is defined ovelC and L,, L, are with smooth metricg;
andp, respectively, we may introduce a natural meirig o1, p2), the so-called
Deligne metric, on(L4, L) as follows:

l0g (171, 1)l p(p1.p0) = / dd*log ||l1]l 5, - 10g Il 5, + 10g(lll1ll p,) (div(i2))

M

+log(l|Z2]l ) (div(ly)). (1.5)
Here,l; andl, are chosen as in (DP2), and by definition, if@y = > a;R;,
then (12l ) (@iv(iz)) =TT, (||zl||,,1(R,-))ai. Quite often, we write{ (L1, L2);
ho(p, p2) ) ls0 ad (L, po); (La, p2)).

Particularly, as a consequence of these axioms, metrized Deligne pairing is
compactible with base change, and that for any metrized line buatlé) on
S,
(L1, p1), w*(H, 1)) () = (H, h)®" ",

Hered, (L) denote the relative degree bf (See e.g. [De2].)

Next, we generalize the above metrized version to that for (possibly singular)
w-admissible metrics. We here will only do it for a single Riemann surface, which
is enough for our application to arithmetic surfaces, while leave a modification
which works for families of Riemann surfaces to Sect.1.6. (Thus, the Deligne
pairing gives a line bundle over a point, i.e., is a one-dimensional vector space.)

Thus letw; and w, be two normalized volume forms oW associated to
two, possibly same, quasi-hyperbolic metrics, and gt p;),i = 1, 2 bew;-
admissible metrized line bundles ov&. Then metricsp; and p, are good,
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which implies in particular that each term of (1.5) is well-defined, as we may
further assume that supports of djy's are away from punctures. Hence we
have a metrid:p (01, p2), Which is also called the Deligne metric fpr and o,

on the Deligne pairingL1, L,) for possibly singulap; andp,. As before, write
(L4, L2): ho(ps, 2)) by (L. p0) (L2, 2)).

To go further, we assume, = w, =: @ and study the dependence of Deligne
metrics onw. Recall that in the previous section for aradmissible metria
on K, the canonical line bundle, we may construct a unigug-admissible
Mmetric tcan by usingw-Arakelov metricza,.,,. Similarly, for anyw-admissible
metrized line bundl€L, p), we construct a uniquecaradmissible metrigcan
by usingw-Arakelov metricsoar. .. p fOr pointsP € M.

Mean value lemma Il. With the same notation as above, for ammadmissible
metrized line bundI€L’, po’) on M, we have
Q) On{L, L"),
hp(p, /0/) = hp(pcan, péan)Q
(2) ON(Kum, Ku),
hp(z, ) = hp(Tcan Tcan);
hp(p, ) = hp(Pcan Tcan)-

Proof. Easily from (1.5), we see that, for any constam@indc’,
hp(p-€,p' - &) =hp(p, p)) - &+ (16)

Hered andd’ denotes the degree éf and L’ respectively. Therefore, by def-
inition, or better, the proof of the Key Lemma above, it suffices to prove the
following

Mean value lemma Il'. For any two normalized volume forms andw, on M,
we have the following equalities for Deligne metrics

() on(On(3_;aiR), Oy (Y ; alR))),

®a; . ®a; _ ®a; . ®a; .
hD(®IOAI‘;a)1;R," ®'0Ar;a)1;R,f) - hD(®pAl’;w2;Ri’ ®'0Ar;w2;R;)’

(i) on (Ku, Ku),
hD(TAr;wl’ TAr;wl) = hD(TAr;wy TAr;w2)§
(iii) on (O (X a; Ry, Ki),
®a;

®ai . .
hD(®/0Ar‘f'w1;Ri» TAr;wl) = hD(®p/_\r;w2;Ria TAr;wz)-
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Proof. We only prove (ii) as the proofs for others are the same. Without loss
of generality, we may assume thad = wcan. DeNOtew; simply by w. Also if

(L, p) is a metrized line bundle, denote by, p) - €/ the line bundld. together
with the twisted metrig - /. With this, for (ii), we have

(¢Kuts Kaads b Carion ac)
= ((KMv fAr;w), (KMv tAr;w))
= ((Ky» TArwe) - € X% 72% (K, Tara))

(by definition)

> (K s Tarsocan) (K, Tarso)) - € 2872 [hocantae)
(by (1.5))

~ ((Ky, TAriwcan)’ (K, TAriwcan) . e—(28—2)ﬂm> . e_(Zg_z)fﬂw'cl((KM,fAr;w))
(by definition)

> (Kt Tharog)s (Kt Thriog)) -6 %2 Porc (Kt Tariocan) . g~ (28=2° [ o
(by (1.5) and admissible condition
~ (K- Thrsasan)» (K- Thriagy)) - € 8727 Portean . g=(@s=2% o
(by admissible condition
(Kbt Thrsocan)s (Kt Thriogyy)) - € %27 fur(carte)
(Kbt Thrsocan)s (Kt Throgay) - € %7270
(by the property ofg in Sect 1.1)
((Kps TAriwean) s (K> TArwean))

= (K nts Kards 1 (Carsonan )

[

[

[

This completes the proof of the Mean Value Lemmahd hence also the Mean
Value Lemma Il

As a direct consequence, we have the following

£2-adjunction isometry. With the same notation as above, for any pamon
M, the natural residue map induces canonically an isometry

(K (P), Ot (P)). hp(taciw ® Pavionrs Pacasr)) = (C. |-

Here| | denotes the standard Euclidean measure @aver

Proof. This is true whenw is the canonical volume formacy, by the result of
Arakelov. See e.g., [La2]. Hence, from (ii) and (iii) above, we complete the proof.
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1.4. New determinant metrics

With respect to the normalized volume form of a quasi-hyperbolic metric
ds? on M°, in the previous section, we define intersections fowadldmissible
line bundles(L, p) on M, the smooth compactification @¢°, and study their
dependence oa. In this section, we introduce its counterpart on Grothendieck-
Mumford determinant of cohomology(L).

To begin with, recall that for a fixed smooth mettion K, if p is a smooth
metric on a line bundlé, then the corresponding Laplacia., on L?-sections
L?(M, L) of L has only discrete spectrum=: Ao < A1 < Ap < Az < ....
Hence we may define the associated zeta functiog,hys) := > .., A, for
Re(s) > 1. Itis well-known that;,., (s) admits a meromorphic continuation to
the whole complex plane which is holomorphicsat= 0. Following Ray and
Singer, define the regularized determinant dat,..) of A,., by setting

det'(A,.,) == e @,

On the other hand, on cohomology spaégsM, L),i = 0,1, we have nat-
ural L2-metrics, which then induces a natural methig(p; t) on A(L) =
detH°(M, L) ® (detH'(M, L))®~1. With this, the Quillen metrid,(o; ) on
A(L) is defined to be

ho(p; T) :=hp2(p; ) - det'(A,.;).

(For details, see e.g.,[Qu], [RS] and [De2].) For example, applying thi§;to
andL equipped withwegr-admissible metrics, we obtain corresponding Quillen
metrics oni(L).

However such a construction cannot be applied when metrics involved are
singular, since, among others, the associated Laplacians, if exist, have continuous
spectrum as well. Thus is the normalized volume form of a quasi-hyperbolic
metric, to introduce metrics oh(L) for w-admissible metrized line bundles
(L, p), we should and will do it very differently, which goes as follows.

First, we fix ametric o4, or better, a metrie on K, which isw-admissible.
Then for anyw-admissible metrized line bundi&, p) on M, define the corre-
sponding determinant metriged(0; T) onA(L), which is indeed a one-dimen-
sional vector space, by setting

hget(p; T) 1= hQ(pcan; Tcan)- 1.7

Here pcanandtcan are smoothweg-admissible metrics oh andK ), correspond-
ingtop andr introducedin (1.1) and (1.2) in Sect. 1.2, respectively. (We reminder
the reader that the metricon L is not related to the metricon K,.)

To justify our definition, we give the following
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Proposition. With the same notation as abovegifis smooth onM, then on
ML)
hael(p; T) = ho(p, 7).

That is to say, when metrics on line bundles and base compact Riemann sur-
faces are smooth, determinant metrics here are the same as the standard Quillen
metrics.

Proof. By definition, it suffices to show that
ho(pcan; Tcan) = ho(p, 7).
But if ¢ is a constant, then
ho(p-€51) =ho(p, 1) €D,

Here x (L) denotes the Euler-Poin@acharacteristic of.. Indeed, if we change

p to p- €, there is no change for eigen-values of the corresponding Laplacians on
L? sections, hence regularized determinants remain the same; while the change
for L2 metrics is easily to seen to b&%") . Therefore, we may assume that

(L. p) = (On (Y ak). ®05t,s,)

Furthermore, by the fact that Quillen metrig, (p; v) satisfies Deligne-
Riemann-Roch isometry, (see e.g., Sect. 1.6,) we have

(ML), ho(p; )%
=~ ((KM9 t)a (KMv T)) ® ((L7 ,0), (Lv p) ® (KMv 7:)®_1>®6 ‘ ea(l])

witha(g) = (1— q)(24§é(—1) —1). In particular, ifa is a constant, we see that

ho(p; T &) =ho(p; ) - € 8& Dabx(ba (1.8)

by (1.6). Therefore, we may further assume that ta.,, the w-Arakelov
metric onK,.

In this way, finally we are lead to the proof of the following identity of Quillen
metrics om (O (3" a; R)));

hQ(®pAr swcan; Ri > TAr; wcan) - hQ(®p§ra;) R; > TAr;w)'

In this form, the identity is then equivalent to thkean Value Lemma 1kt p. 489
of [Wel], which in fact is the starting point of all our discussions. This completes
the proof of the proposition.

We end this section by the following direct consequence of the proof of the
Proposition and the definition of determinant metrics.
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Mean Value Lemma Ill. For any two normalized volume formag and w, on
M, we have
(i) on A(Kw),

hdet(TAr; w13 TArwy) = Mdet(TArwps TARwp);

(i) on A(Om (3_a;iRy)),

®ai . ®a; .
hdet(®PAr;le;Ri ) TAr;wl) = hdet(®pAr;IwZ;Ri ’ TAr;wz)-

1.5. Decomposition of hyperbolic metrics: Arakelov-Poircaolumes

Standard hyperbolic metr'utsﬁyp of a punctured Riemann surfadé¢® defines

a natural metric orK,(P; + --- + Py), WhereM denotes the smooth com-
pactification ofM® with Py, ..., Py the corresponding punctures. Such a metric
is whyp-admissible, wherex,, denotes the normalized volume form &7, .
However, for applications, what we need is a natuigh-admissible metric on
K. Inthis section, we construct canoniea|-admissible metrics on botki,,
andOy(P1+ - - - + Py), by usingwnyp-Arakelov metrics oK'y, andOy (P;)’s,
i=1,...,N. Key points here are the Arakelov-Poinear6lume, a new in-
variant forMO, and the Puncture Democracy, which claims that, metrically, all
punctures behavior in the same way.

Let M° be a punctured Riemann surface of gepusth N puncturesPy, . . .,
Py. Assume always that2— 2 + N > 0. Then by uniformization theory,
there exists a torsion free Fuchsian grdusuch thatM® ~ I"\’H{. Moreover,
by invariance of the Poincametric onH under (PSk(R) and hence)’, we
get an induced metric oM°, which we call the standard hyperbolic metric.
Denote byd tuhyyp its volume form onM. Itis well-known that ifwny, denotes the
corresponding normalized volume form, then(2g — 2 + N) - wnyp = d finyp.

Recall that if the hyperbolic metric is considered as a singular metiié ahe
line bundle naturally attached is the duallbf; (P, + - - - + Py). Moreover, if we
denote the induced Hermitian metric & (P14 - -+ Py) BY phyp Ky (P14 Py)s
then

Cl(KM(Pl + -+ Py), phyp:KM(P1+~~+PN)) = dnyp = (28 — 2+ N)whyp.

That is to sayphyp, k (P1++Py) 1S @Nwhyp-admissible metric ok (P + - - - +
Py). (See e.g., [Del], [Mul] or [Fu]).

However we are not satisfied with th&@nce the metrigny, k,, (py+--+py) IS
not really anwny,-admissible metric on the canonical line bundig, without
which we cannot apply our basic constructions such as determinant metrics.

To construct canonicabnyp-admissible metrics oK, and Oy (Py), .. .,
O (Py) from the hyperbolic metric oM, we go as follows.



£2-admissible theory. Il 255

Denote metrics to be constructed @&, and Oy (Py), ..., Oy (Py) by
Phyp:ky @Nd prhyppr, - - -, Phyp py FESPECctively. Naturally, we assume that they
satisfy the following conditions:

(i) (Admissibility ) pnypk,, ON Ky and ppyg p, 0N Oy (P;) arewnyp-admissible,
i=1...,N;

(if) (Decomposition rulg On K, (P1+ - - - 4+ Py), the hyperbolic metric has the
following decomposition;

Phyp; Ky (PL+-+Py) = Phyp Ky & Phyp Py & -+ @ Phyp py -
Recall that

(1) any twownhyp-admissible metrics on a fixed line bundle differe only by a
constant factor; and

(2) onKy andOy (P;)’s, we_have canonica:bhyp-ArakeIov metricsrA,;whyp_and
PAr.wnye.Pis L = 1, ..., N, which arewnyp-admissible. (In the following discus-
sion, we also Us@ar; wy,, t0 denoterar. ., ,-)

Hence, to construgtyy x,, andpny p,’s, the key is to find a canonical way
to determine all the constants
Phyp; K y and Phyp; P;

, i=1...,N.
PAr,whyp pAr,whypvPi

Let us determine the constant raﬁ@ﬁm (associated t& y) first. For this,
I’,whyp

compare the determinant metfige«(onyp k,,; Phyp k) ONA(K ) introduced in
Sect. 1.4 and Takhtajan-Zograf’s Quillen metricXdtk ,), whose definition we
recall now.

Let Z,,0(s) be the Selberg zeta function °, defined for Rés) > 1 by the
absolutely convergent product

Zyo(s) =[] ﬁ(l _ e GHmllly,

{1} m=0

wherel runs over the set of all simple closed geodesicg/hwith respect to
the hyperbolic metric oM°, and|/| denotes the length af It is known that by
using Selberg trace formula for weight zero forms the func#gn(s) admits a
meromorphic continuation to the whole compleglane which has a simple zero
ats = 1. Thus in particular, it makes sense to talk abzylg(l). (For details,
see e.g., [Hej)

Clearly, A(Ky) =: A1 := detH'(M,Ky) ® (detH (M, Ky))" =
detH°(M, K)) ® C. Hence, there is a naturé-norm /2, on A;. Follow-
ing Takhtajan-Zograf [TZ1], define the Quillen novrg 1 on A1 by setting

1

_ 1.9
Z,o(D) (9

hQ’]_ = hLZ,l .
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With this, we are ready to make the following;

Basic definition 11(i). With the same notation as above, By, define theopy,-
admissible metrignyp x,, Dy the condition that oh(K /), the determinant metric
hdetf(Pnyp: k5 Phyp k) 1S €qual to Takhtajan-Zograf’s Quillen metrig, 1 i.e., by
setting

hdet( Pnyp. Ky > PhypKy) = ho 1. (1.10

We claim that this definition determingsy, x,, uniquely. Indeed, recall that
PAr:Ky = TAr:wnyp- 1HUS if we define thérakelov-Poincag’volumeor the punc-
tured Riemann surfack® by setting

Pnyp;
Anringp(M; MO) := Apppyp(M©) = 202 E0 (1.12)

TAr,whyp

which is a constant, then, by definition,

hdet(ph)/p; Ky s Phyp; Ky)

= hdet(TAr,whyp - Aar;hyp(M; M0)§ TAr whyp * Apr:hyp(M;; MO))

= 110 (Tar wean - Anryp(Ms MO); Tar ean - Anrshyp(M; MO)).
But by the Polyakov variation formula for Quillen metrics, (see e.g., [Fay, For-
mula (3.31)],) we have

1o (PAr wean - Anrtyp(M3 MO); 0Ar wean - Anriyp(M; M©))

1 —
= hQ(PAr,wcana PAr,wcan) : AAr;hyp(M§ Mo)é(zq 2,

Therefore, we finally arrive at, by the definition (1.10),

Liog—
hLz’l ’ TN = hQ(IOAf,wcana pAr,wcan) : AAr,hyp(M, MO)B(Zq 2)
Z,0(1)

This certainly uniquely defines the Arakelov-PoireaslumeAar.nyp(M; M),
and hence the metric

. 0
Phyp Ky = TAr onyp * AAr;hyp(My M.

RemarkThe name of the Arakelov-Poin@avolume is suggested by the follow-
ing;

Proposition ([We1]). With the same notation as aboveM = M is compact,

then
Vol (Ar; hyp)

Apr:hyp(M) =
Ar,hyp( ) 27'[(2g—2) )
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whereVol (Ar; hyp) denotes the volume of with respect to theny,-Arakelov
Metric par.wy,,- Moreover,

1 ( det' Aar o det*Ahyp).

0 _qo. _~ . —
log Aar hyp(M™) = 12 2¢ — 2 9 Vol (Ar) Vol (Hyp)

Here Axr (resp.Anyp) denotes the Laplacian for the Arakelov metric (resp. stan-
dard hyperbolic metric) o/, det denotes the regularized determinant of Ray-
Singer, andvol (Ar) (resp.Vol(Hyp)) denotes the volume af with respect to
the Arakelov metric (resp. the standard hyperbolic metric, 2e(2g — 2)).
Obviously, the Arakelov-Poincarvolume is a very natural invariant for the
punctured Riemann surfadg®, hence can be viewed as a certain interesting
function on the Teichmiler spaceT, y of N-punctured Riemann surfaces of
genusg. The reader may consult [Wel] for the degeneration behavior of this
invariant whenv = 0.

Once the canonicabyy-admissible metri@nyy, «,, is introduced ork;, we
are left only with the problem to define canoniagj-admissible metricgnyy, p,

onOy(P),i = 1,...,N. Or equivalently, we are left to determine constant
factors

Povel 1N,

/OAr;a)hyp;P,-

For this, we introduce the following

Phyp; P,

Puncture democracy.The (constant) rati(f{]yp = g = does not

IOAr;whyp; P;
depend orni.

Clearly, together with the Decomposition Rule (i), the Puncture Democ-
racy determines apnyy, p,’S. Indeed, by the Decomposition Rule, as metrics on
Ky(P1+---+ Py), we have

N anypte ot tel
('OAr;whyp ® ®i:1:0Ar;whyp;Pi> - e P = Phyp Ky (PLt+Py)-

Here for simplicity, we Setnyp := Aar.nyp(M). But by the Puncture Democracy,
cﬁ]yp = céyp =: Chyp, fOri, j=1,...,N.
Basic definition I1(ii) . We define the canonical metrigy, p, by setting

Phyp P = PAr:wnyp: P - €™

wherechyp is a constant defined by

Nocryp o PVDKy(PLttP) 1
= N - .
PAr;wnyp @ &iZ1PAr:wnyp; Pi Anr;hyp(M; M)
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1.6. Arithmetic Deligne-Riemann-Roch isometry for singular metrics

We in this section show that our Deligne metrics and determinant metrics satisfy a
Deligne-Riemann-Roch isometry as well. We work over both arithmetic surfaces
and families of Riemann surfaces.

Arithmetic surfaces: Let F be a number field, by which we mean a finite ex-
tension field ofQ, the field of rational numbers. Denote its ring of integers by
Or andS = Sped the associated scheme. Then by an arithmetic surface over
S we mean a two dimensional regular schekh&gether with a projective flat
morphismz : X — S. Also we assume that the generic fibér of 7 is geo-
metrically irreducible.

An arithmetic surface : X — S is called semi-stable, if all geometric fibers
X, overv € S are reduced, have at most ordinary double points as singularities,
and all rational components intersect with others at least at two points. Denote
by §, the number of double point oK,, and call the divisor ovef defined by
Ay =) 8,[v] the discriminant divisor ofr. Denote the relative dualizing
sheaf ofr by K, which is in particular invertible. (See e.g., [La2].)

Algebraic Deligne-Riemann-Roch isomorphism ([Mu2,3] and [De2]).etx :
X — S be a semi-stable arithmetic surface. Then for any line buhdieer X,
we have the following canonical algebraic isomorphism of line bundles $ver

ML)~ (L, LR K ) ® (K, Ky) ® Os(Ay).

Furthermore, in [De2], for smooth metrics dnand K, by using Deligne
metrics on Deligne pairing and Quillen metrics on determinants of cohomology,
Deligne shows that this algebraic isomorphism is indeed an isometry. (See e.g.,
Arithmetic Deligne-Riemann-Roch Isometry stated below.) We will generalize
this metrized version to the case when metricE.amdK;’s are admissible and
hence may be singular. For this let fix some notation.

Let S, be the collection of all Archimedean places Bf Denote byX,
the collection of all infinite fibers ofr. That is, Xoo = {Xs}ses, With X,

a Riemann surface of genysassociated td corresponding to the natural
inclusionF — F, — C. Here as usuak, denote ther-completion ofF.

Let ds® be a quasi-hyperbolic metric 0K, by which we meanis® =
{ds?},cs., is a collection of quasi-hyperbolic metrics ¢K, },.s, . Denote as-
sociated normalized volume forms by := {w,},es.,. By definition, anw-
admissible Hermitian line bundld., p) on X is a line bundlel. on X together
with a Hermitian metrico = {p,}s<s,, On the line bundlgL,},cs,, over X
induced fromL suchthatL,, p,) is w,-admissible metric oX,, forallo € S,,.

Lett = {7,}scs,, be anw-admissible metric oK. Then by applying con-
structions in Sect. 1.3 and Sect. 1.4 for determinant metrics and Deligne metrics
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for {ps}ses, and{z,}scs,, We get the following metrized line bundles &n
(ML), haet(p; 7)), (L, p), (L, p) @ (Kr, T)®1), (K7, 1), (Kr, 7)). (That is

to say, for eacly € S, apply the constructions of Deligne metrics and deter-
minant metrics forw, -admissible metrice, andzt,.) Put the trivial metric 1
on Ogs(Ay), i.e., in terms of [La2], the metrized line bundi®s(A,), 1) on S
corresponding to the Arakelov divisar, .

With this, we may state our main result in this Part.

Arithmetic Deligne-Riemann-Roch isometry for singular metrics. Let 7 :
X — S be a semi-stable regular arithmetic surface. kebe the normalized
volume form for quasi-hyperbolic metrics &n,. Let(L, p) be anw-admissible

metrized line bundle oX, and r be anw-admissible metric on the relative
dualizing bundlex , of =. Then we have a canonical isometry

®12 ®6
(D). heeto. D) = (L0 p). Ly p) ® (K, )27
&((Cr. 7). (rs 1)) ® (O5(47), 1) - €9,
Here A, := ) _¢8,[v] (with 8, the number of double points on the fibgy

of X at v) denotes the discriminant divisor ghassociated tor anda(g) :=
(1 —q)(24¢5(—1) — 1) denotes the Deligne constant.

Proof. First use (1.1) and (1.2), from singul@aradmissible metricg andp on

K, and L, we obtain smootlw.,r-admissible metricsc.a, and pcan. (That is to

say, we first do it for all infinite fiber,, then put them together ovéf...)

With this, by definition igei(0; T) = ho(pcan; Tcan)- IN particular, now we may
apply the original Deligne-Riemann-Roch isometry for smooth metrics to get
the isometry

<)‘(L)’ ho(pean Tcan))®12 =~ <(L, pean)s (L, pcan) ® (K, rcan)®7l>®6

&((Cx, Toan, (G, Tean)) ® (Os(A7), 1) - €9,

On the other hand, by the Mean Value Lemma I, we have (first fiberwise at
infinity then globally) the isometries

(L pcan). (L. poan) ® (K, ean® ™) = (L, p), (L p) @ (K, )7

and
(s Zeands (K, Tean) = (U ), 0, ).
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Therefore,
(ML)’ el t))®12 = (A (L), ho(pcan Tcan))®12
~ <(L, p), (L, p) ® (Ky, _[)®_1>®6

®((Kln, ), (Kx, r)> ® (O5(A,). 1) - €@

This completes the proof.

Family of Riemann surfaces:Next, we indicate a necessary modification in
order to get a Deligne-Riemann-Roch isometry for singular metrics over families
of Riemann surfaces.

Let7r : X — S be a flat family of compact Riemann surfaces of genus
q. Clearly is also projective. Denote bk, the relative canonical line bun-
dle of 7. Let Py, ..., Py be C*-sections ofr. Let « be a smooth metric on
Ky |x\uy ,p,- Moreover we assume that for any poimte S, on X,, := 7 ~1(m),
the restriction(K, ©)ly,\x,.nu¥ p, induces a quasi-hyperbolits? on X0 :=
X\ X N UY_,P;. Denote the corresponding normalized volume formuhy
By definition, anw-admissible metrized line bundld., p) on X consists of a
line bundleL on X and a Hermitian metrip on L|X\UiN:1P,_ such thatL, p)|x,,
is w,,-admissible.

From the definition, by the Proposition of Sect. 1.2p{ifand p, are twow-
admissible metrics on the same line bunb]¢hen there exists a smooth function
f on S such thatp; = p, - € /. Moreover, it is easy to see that the gluing of
wp-Arakelov metricsrar.,, 0N Kx,, gives anw-admissible metriga.,, on K.
And, if we have a holomorphic sectiéhof r, the gluing otw,,-Arakelov metrics
PAr:w,: R:=RNX,, ON Oy, (R) gives anw-admissible metripar...r 0N Ox (R).

To facilitate the ensuing discussion, let us recall the Deligne-Riemann-Roch
isometry for smooth metrics.

So let(L, p) be a metrized line bundle ok with p smooth. Then for any
smooth metricr on K, we have the corresponding Quillen metkig(p; 7)
on A(L). (See Sect. 1.4 for details.) Also, (L', p") is another metrized line
bundle onX with p, smooth, by (1.5), we have the metrized Deligne pairing
((L, p), (L', p))) onS, whichis usually denoted &L, L'), hp(p, p’)) as well.

As above, we calk 5 (p, p’) the Deligne metric.

Deligne-Riemann-Roch isometry for smooth metrics ([De2]Letr : X — S
be a flat family of compact Riemann surfaces vidththe relative canonical line
bundle. Then for any smooth metrized line bur(dlep) on X, and any smooth
metrict on K, we have the following canonical isometry

(ML), ho(o; T2~ (L, p), (L, p) ® (Kr, T)® )0
(K, 1), (K, 7)) - €@,
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To give a corresponding isometry feradmissible metrics, we do as before
by using the projection formula for metrized Deligne pairing. More precisely,
this goes as follows:

First, note that for any poinz € S, we may choose a small neighborhood
U,, suchthat|, -1, , may be written as a divisor line bundig, -1, , (3 a;R;)
with R; holomorphic sections ot ~1(U,,) — U, disjoint fromP;’s, as a di-
rect consequence of the fact thats projective. Thus, in particular, there exists
a smooth functiory,, on U,, such that overr—1(U,,), p = ®p/‘§ﬁ;};Ri g ()
Hence, in particular, we get a natural smooth metgig := ®px", g -€ ).
Herewcan corresponds to the standard canonical volume forms on fibers. More-
over, as in the Key Lemma of Sect. 124, depends only op and in particular
does not depend on the choice of the divisors used in the definition. By moving
m € S, we then get a unique smoath,-admissible metric, also denote pyan,
of L on the wholeX. Similarly, from w-admissible metric on K, by using
w-Arakelov metricza,.,,, as above, we get a smoath,-admissible metriacan
on K. With this, we define the determinant metkig(o; ) onA(L) for (L, p)
with respect tad K, t) by setting

haet(p; T) = ho(Pcan; Tcan) (1.12

which is compactible with (1.7).

Secondly, by using the same proof of the Mean Value Lemma Il, we obtain
also the family version of Mean Value Lemma Il for Deligne metrics. More
precisely, we have the following

Mean value lemma II”. With the same notation as above,
(D) on(L, L,
hp(p, p") = hp(pcar Pean)

(2) on(Ky, K),
hp(t, T) = hp(Tcan Tcan);

(3) 0n<L, Kﬂ)l
hp(p, T) = hp(pcan; Tcan)-

Proof. We only prove (1) as the proof for others are similar. That is to say,
on (L, L") over S, we should check that two metrics are the same. Hence, it
suffices to do it locally. With the same notation as above, avé(U,,), we have
p=@purir € D ONLl g, = Oy, (X a;R;) for a certain smooth
function f on U,,. Moreover, if necessary, by shrinkirig,,, we may assume
that L'| -1y, = Or10,,(>_a/R}) for some section®, disjoint fromP;’s
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andR;’s. Thusp’ = ®,offi)ﬂf - @) for a certain smooth functiofi’ on U,,,.
Clearly, from the definition of Deligne metrics (1.5), we have dvgr

<(Or1(Um) (Z a,-Ri) , ®p;~®r6:;;R,- ) e”*(f)) ’
(00 (Ze) 0 )
= <<Oﬂ*1(u,,,) (Z a Ri) ,
or (0 (ZR). o)) -7r00)

which is what we usually would call a projection formula for metrized Deligne
pairings. But, by using the Mean Value LemmaWe have first pointwise then
overU,,

aj ® l/
<<On‘1(Um) (Z a; Ri) ) ®p§r;w;Ri> ; <O7r‘1(Um) (Z a{le) ) ®,0A,(fw;Rl/_>>
a; ® 1/
= <<O7T_1(Um) (Z a; Rl) ’ ®p§';wcan;R,') ’ (Oﬂ_l(um) <Z al{ Rl/) ’ ®pA:jwcan; R;)> ’

Therefore, by using the standard projection formula for metrized Deligne pairing
again, we have finally

<(Oﬂ‘1<um) (Z ai Ri) L ® PR, .eﬂ*(f>>’
! ®a; ®0 !
((’)n—l(um (Z aiR,/-) » ®PpruiR! e (f)>>
- <<O”’1(Um) <Z a; Ri) , ®p§fa:ivcan;R,~ . e”*(f)) 7

That is to say,
hp(p, :0/) = hp(pcan; P(/;an)-

This completes the proof.
Now by definition and the above Deligne-Riemann-Roch isometry for smooth
metrics, we have

(M(L), haer p; T)®2 = (ML), ho(pcar; Tear)®*?
~ ((L, pean), (L, pcan) ® (K, Tcan® ) ® ((Ky, Tean), (K, Tcan) - €.

Therefore, by applying the above Mean Value Lemnfiawle finally obtain the
following generalization of the fundamental Deligne-Riemann-Roch isometry.

Deligne-Riemann-Roch isometry for singular metrics.Letz : X — S be
a flat family of compact Riemann surfaces with the relative canonical line
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bundle. Then for ang-admissible metrized line bundl€, p) on X, with respect
to a fixedw-admissible metrie on K, we have the following canonical isometry

<A(L), ho(p; ‘L’))®12 ~ <(L, p), (L, p) @ (K, T)®7l>®6

®<(Kn, 7), (K, 1)> . e@)

Part I1. Deligne pairings over moduli spaces of marked stable curves

In this part, we first introduce several line bundles over Knudsen-Deligne-
Mumford compactification of the moduli space (or rather the algebraic stack) of
stableN-pointed algebraic curves of gengisvhich are rather natural and include
Weil-Petersson, Takhtajan-Zograf and logarithmic Mumford line bundles. Then
we use Deligne-Riemann-Roch isomorphism and its metrized version (proved in
Part ) to establish some fundamental relations among these line bundles. Finally,
we compute first Chern forms of the metrized Weil-Petersson, Takhtajan-Zograf
and logarithmic Mumford line bundles by using results of Wolpert and Takhtajan-
Zograf, and show that the so-called Takhtajan-Zograf metric on the module space
is algebraic.

As for the language, we have the following remarks. Of course, | am working
with moduli stacks rather than with moduli spaces. For the reader who is not
familiar with stacks, this means that | am allowed to pretend that moduli spaces
are smooth and that there are universal families over them. Thus, it is more
economic to simply use ordinary language rather than those in stacks.

2.1. Weil-Petersson line bundles and Takhtajan-Zograf line bundles

We start with some general facts about moduli spaces of marked stable curves.
For details, please consult [DM], [Kn] and [KM].

Denote byM, y the moduli space of smooth projective irreducible curMes
of genusg together withV ordered marked pointB, ..., Py. Itis well-known
that M, v is not compact and has a natural compactificafidp y constructed
by Knudsen, Deligne and Mumford by adding the so-called stable marked curves.

As algebraic stack language is assumed here, we may assume that there exists
a universal curve

=1y N :Con = Mg,

which hasN-sectionsPy, ... Py such thatP;, N P; = ¢ for all i # j with
1<i,j <N.Soforanyx = [(M; Py, ..., Py)] € Mgy, n 1(x) = M and
P.NM = P,i =1,..., N, which are not only ordered but distinct. In fact,
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C, n = M, n11, andr is essentially the map of dropping the last marked points
Pyy1's. (More correctly, if by droppingPy .1, we get a rational curve together
with only two marked points, then we have to contract this component.)

The boundary of\1,, y has a natural algebraic structure, from which we may
obtain naturally a normal crossing divisdgqy 0of Knudsen-Deligne-Mumford,
which may be described roughly as follows.

As a divisor onM, y,

(4]

Apgy==Y A+ Y As

i=0 SC{l,....N},#5>2

Here irreducible divisorg\; and Ag may be understood via the universal curve
as follows: (See e.g., [Kn].)

(1) A;’s come from degenerations of compact Riemann surfaces. In particular,
for ageneral point ofAg, the corresponding fiber afis a genug curve with one

non-separating node, together wNhpuncturesPs, . .., Py; while for a general
pointofA;,i =1,...,[4], the corresponding fiber is a genusurve with one
separating node, together witti-marked pointsPy, ..., Py, so that the only

two irreducible components are smooth and of geharadg — i respectively.

(2) As’'s come from degenerations of punctures. In particular, for any subset
of {1, ..., N} with cardinal number & at least two, the fiber of over a general
point in Ag consists of two irreducible components, one is the original curve
M together withN — #S marked points, and the other is the projective te
together with remaining $f > 2 marked points.

Moreover, we know that is flat. (See e.g., [Kn].) Hence, the relative dualiz-
ing sheaf ofr is indeed invertible. Denote the coresponding line bundI€,gn
by K, and call it the relative canonical line bundlesof

With this, we may state a fundamental result of Deligne-Mumford as follows:

Deligne-Riemann-Roch isomorphism for stable curves ([De2], [Mu3], see
also [We2]). With the same notation as above, for any line burnidlen C, v,
there exists a canonical isomorphism

ML)~ (L LR KX ) ® (K, Ky) ® Apay.

Before ending the discussion (A_P[g,N, we recall a few standard relations be-
tween relative canonical line bundkg, and line bundle@m(P,-)’s of sections
P;’s from [Kn]. For this, we need the following commutative diagram, which
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may be checked from the definition:

¢g,N
Mg,N+l = Cg,N — Cg,N—l :Mg,N
TgN b e n-1
g, N-1

Men = Mgy

Hereg, y viewed as a morphism frooM, .1 to M, y is essentially the mor-
phism defined by dropping the second to the last marking. Moreover, for sim-
plicity, we often useP; to denote@c (P;). Also, if we need to emphasis the
fact that the number of marked pomtsN’s we write K, ask,, , andP; asP; y.

Standard facts ([Kn 1]). With the same notation as above, ovef, ,

(@) (P;,P;) =0, ifi, j=1,...,N andi # j;

(b) (K, (P;),P;) ~0O,ifi=1,..., N,

(C) TN lN) = (n;,N—]_(K?Tg,Nfl’ i,N— 1))(Pl N— 1) Ifl - l - 11

(d) (Kr, y» Py.n) = Ky y 1 (Piyv-1+ -+ Pyoan-1).

As usual, we call (b) the relative adjunction isomorphism. (Deligne pairings are
not used in Knudsen’s original papers [Kn]. But the verbatim change is rather
trivial.)

Now we are ready to use Deligne-pairing formalism and Grothendieck-
Mumford determinant formalism to construct the following new line bundles
over Mg y.

Basic definition Il. (i) The Weil-Petersson line bundtgyp overM, y is defined
by setting

Awp 1= <Kﬂ(Pl+ e+ Py), K (P4 + PN));

(if) The (total) Takhtajan-Zograf line bundierz overM, y is defined by setting

Avz = <Kn, O (Pt + PN)>;

(iif) Them-th logarithmic Mumford type line bundlg, overM, y is defined by
setting

A(K2"(n = DPy+ -+ (n = DP)), ifm > 1
A(((Kn(Pl 4t pN))V)®*’”), if m < 0.
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Proposition. With the same notation as above, there exists the following canon-
ical isomorphism
Am = A—, form <O.

Proof. This is a direct consequence of the Serre duality for the cohomology, by
definition.

2.2. Logarithmic Mumford type isomorphisms

In this section, we prove the following

Fundamental relation I. (Logarithmic Mumford Type Isomorphism&ver the
moduli spaceM, y of N-punctured Riemann surfaces of gerghere exist
the following canonical isomorphisms:

2— —
AB12 o AZOMOmD o AL @ Apgy  for m > 0.

Proof. There are three ingredients in this proof.
(1) The algebraic Deligne-Riemann-Roch isomorphism

ML)~ (L, L @ K; 1% ® (Kyr, Ky) ® Apay;

(2) Standard Fact (a), which comes from the fact that two sectprasdP;
never meetir, v, i..,
(Pi, Pj) ~ 0

if i £ j. Here for simplicity, we us®; to denote the line bundi®(P;). (This
convention applies to all calculations.)
(3) Standard Fact (b), the Relative Adjunction Isomorphism, i.e.,

(Kx(P)),P;) >~ 0.
Indeed, ifm = 0, by (1), we have
12 20,00 K1 ® (K, Kr) ® Abdy = (K, Ki) © Abay.
So it suffices to prove the following

Lemma. With the same notation as aboV&;, K;) >~ Awp ® A??Z‘l.
Proof of the lemmaBY definition,
Awp ® A% = (Ko (Py+ -+ +Py), K (Py+ -+ Py))

&(Ky, P14+ PN>®_1
= (Kr, Kz) ® (Kz (P14 - +Py),Pr+---+Py).
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Hence, we only need to prove the following
Lemma’. With the same notation as above,

(Kz(P1+---4+Py),P14+---+Py)=0.

Proof of the lemmfa Use an induction owv. If N = 0, there is nothing to prove.

If N =1, the resultis given by (3), the relative adjunction isomorphism. Hence
we may assume that the latest isomorphism holdg$vf@nd try to show that it
also holds forNV + 1, i.e.,

(Kz(P1+ -+ +Py+Pyy1),Pr+---+Py+Pyu) 0.
Clearly, the left hand side is simply
(Kp(P1+---+Py),PL+ -+ Py)
(K (P1+ -+ Pn), Pyy1) ® (Pyy1, PL+ -+ + Py) ® (Pyy1, Pyia)-

Moreover, by the induction hypothesis and (2) above, both the first and the third
factors are isomorphic t@. Hence we only need to show that

(Kz(P1+ -+ Py), Pni1) ® (Pyt1, Pyi1) = O.

But by (2) again, the left hand side is simpli,;, Py.11) ® (Pyi1, Pyy1), OF
better{K,, (Py.1), Py+1), Whichisindeed trivial from (3), the relative adjunction
isomorphism. This completes the proof of the lemyttee lemma, and hence the
Fundamental Relation | when = 0.

Now form > 1, by definition, and (1), we have

A2 (K + (n = DPy+ -+ (n = DPy), mKs

HOn = DP1 - (= DPy) — Ka) @ (K, Ka) ® Ay
= (mKx+ (n = DPL+ -+ (m = DPy),
Ka(Pyt -+ Py))*" Y @ (Ky, Kr ) ® Avay.
Thus by the lemma above, it suffices to show that

(mKy + ((m — DP1+ -+ (m — DPy), Kx (P14 -+ + Py)) = ARR.

Clearly, by the linearity, the left hand side is isomorphic to

(Ka(Prt -+ P, K (Pt -+ P))®”

®-1
@(Py+ -+ Py, Kz (Py+ - +Py))

Thus by the lemniabove, we completes the proof of the Fundamental Relation 1.
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2.3. Comparision between Weil-Petersson and Takhtajan-Zograf line bundles

Weil-Petersson metrics have been studied for many years. By contrast, very
little is known about Takhtajan-Zograf metrics on moduli spaces defined by
using Eisenstein series. In this section, we prove a result which compares Weil-
Petersson line bundles with Takhtajan-Zograf line bundles.

We begin with the following definition: A line bundlg on M, y, for our
own convinence, is callegenerically positive in dimension oa@&d denoted by
L > 0 if for any irreducible curveC with support not all in the boundary of
M., degL]|.) = 0.

Fundamental relation Il. (Comparison between Weil-Petersson and Takhtajan-
Zograf) Over the moduli spacg1, v,

N2 ®(2g—2+N)?
Awp = A7z .

Before proving this relation, we would like to recall a result in a recent book
of Harris and Morrison on: Moduli of Curves. At pages 308 and 309, they show
the following

Basic inequality ([HM]). Over M, 4, i.e., on the universal curve over moduli
space of compact Riemann surfaces,,

4g(8 — DKy, o > 120 — Apgy.

Harris and Morrison emphasize the importance of this inequality by calling
it the basic inequalitand ask in general how to find such an inequality for all
g, N, which | learned at the beginning of 1999, after the first version of this paper
was written.

Claim. The Basic Inequality is equivalent to the special case wtea 1 of our
Fundamental Relation II.

Indeed, since Harris and Morrison work ovéf, 1, so the total Takhtajan-
Zograf line bundleArz is simply (K, P1), which by standard fact (d) in Sect.
2.1 is nothing but the relative canonical line bunflle= K, of the morphism

01 Mg 1 — M,. Hence, the Basic Inequality may be rewritten as
4g(g — D Arz = 1201 — Apgy.
On the other hand, by our Fundamental Relation | witk= 1,

1201 — Apgy = Awp — A7z,
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Thus, the Basic Inequality is equivalent to
4g(g — D A7z > Awp — Arz.
That is,(2g — 1)°A1z > Awp, Or better,

®12 ®(2g—2+1)2
Awp = Az )

which certainly is the special case of our Fundamental Relation Il vhen1.
Proof of Fundamental relation [IWe start with the following

Standard fact (e). Let f : S — C be a fibration of curves from a regular
projective surface to aregular projective curv€'. Assumethat isaline bundle

on S which has relative degree zero, i.e., for any filFeof f, degL‘F) = 0.
Then the self-intersectiofl, L) < 0.

Proof. By a result of Nfron-Tate (see e.g. [La]), we know that there exists a
unique vertical divisol _; a; F; such that
(i) the self-intersection oL(Zj a;j F;) is negative, possibly zero;

(ii) for any irreducible vertical prime divisoF’, dei(L(Zj aij)>‘ ) =0.

Therefore, if we denote b§X, Y) the intersection number of the line bundles
or divisorsX andY on S, then, by (ii),

(Y aFi. Y ki) =Y ajai(Fr. Fo) = = 3 ax(L. Os(Fo) ).
X X ik X

But, by (i), we have

0>(L,L)+ Zzak(L, Os(Fk)> + (deFka Zaka>
k k k
=(L,L)— (Zaka, Zaka)
k X

> (L, L),

since the matri><(F,~, Fk)) is negative definite. This completes the proof of the
standard fact (e).

Now on the universal cur, v, consider the differenc¥ K, — (2g —2) (P1+
.-+ + Py). Obviously, the vertical degree of this difference is simply zero. Thus

by using the standard fact (e), and putting it in the form of Deligne pairing, we
see that

(NKr — (28 =2)(Pr+ -+ Pyn), NK; — (28 = 2)(P1+--- +Py)) < 0.



270 L. Weng

That is to say,
0= <N(KN(P1+---+PN)) — (28 =2+ N)(Py+---+Py),

N(Kx(Py+ - +Py)) = g = 2+ N)(Py+ -+ Py))

= N*(Kr(PL+ -+ Py), Kz (Pr+ -+ Py))
—2N(2g =2+ N)(K7 (P14 ---+Py),P1+ - +Py)
+(2g =24 N)*(Py+ -+ Py, Pr+--- + Py).

But by the lemmain the previous section, we conclude that
(Kx(P1+---+Py),P1+---+Py)=0
and that
(Pr+---+Py,Pi+---+Py)=—(K,P1+---+Py).
So, by definition, we finally have
N%2Awp < (2g — 24 N)?Ary.
This completes the proof of the Fundamental Relation Il.

We suggest the reader to compare our Fundamental Relation Il with the Basic
Inequality of Harris-Morrison: While the basic inequality does give an exact
relation between various line bundles over universal curves, our Fundamental
Relation Il exposes an intrinsic relation betwetgp andA+z. It is in this sense
we prefer the Fundamental Relation II. Indeed, with our Fundamental Relation
II, we may use Weil-Petersson metric to guide the study of Takhtajan-Zograf
metric. This is in fact very fruitful. For examples,

(1) Recently, K. Obitsu [Ob] shows that Takhtajan-Zograf metric is incomplete,
motivated by a result of Wolpert for Weil-Petersson metric.

(2) Motivated by our Fundamental Relation Il and the fact that holomorphic
sectional curvature of Weil-Petersson metric on the TeidlenSpace7, y is
bounded from above bym, as proved in the appendix, we make the
following

Conjecture. The holomorphic sectional curvature of the Takhtajan-Zograf met-
ric is bounded from above by L.

2.4. Xiao and Cornalba-Harris type inequalities

In this section, we prove Xiao and Cornalba-Harris type inequalitiesbvgy,
N > 1, which hence answer a question asked in [CH]. For simplicity, we here
assume thav > 3. (N = 1, 2 cases pave a similar way.)
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Clearly, then the Chow point for any regular projective cutveorrespond-
ing to the map given by the complete linear systgtg (P + --- + Py)| is
automatically stable. (See e.g., [Mu2, Thm 4.15].) In additidiC, K- (Py +
---+4 Py)) = g — 1+ N. Hence, by applying a fundamental result of Cornalba-
Harris, i.e., Theorem 1.1, or better, Proposition 2.9 of [CH], we know that the
line bundle

(g =14+ N)(Ke(Prt -+ Py)) = (K (PLt -+ P)),
(¢ = 1+ N)(KxPrt -+ Py)) = w*A(Kx(Py+ -+ Py)))

is generically positive in dimension one. That s to say, in our notation introduced
in Sect. 2.3,

0= (g =14+ M) (KePrt - +Py)) + 74 (Ke(Pr+ -+ Py),

(¢ =1+ N)(Ka(Pr+ - +Pw) + 4 (Ka(Pr+ -+ Py)))

= (¢ = 1+ NHKa(Pr+ -+ + Py, Ka P+ + Py))
~2g — 1+ M)Ke Py + -+ Po), w4 (K Pyt 4+ Py )
(K Prt -+ Py) ), 74 (Ka Py 4+ P ))

= (¢ = 1+ NKa P+ +Py), Ke(Pr+ -+ Py)
—2(g — 1+ N)@2g — 2+ Ni(Kx(Pr+ -+ Py)).

Therefore,

(8 = 1+ N)Awp = 22 — 2+ N)A(Kx (Pr+ -+ Py)).
Next we compara(K,,(P1 + -+ PN)) with Aj.

Lemma. With the same notation as above, up to torsk(rKn (P1+-- -+PN)) =

Al

Proof. One actually can prove this relation without modulo torsions. But, as
our final goal in this section is to show a certain generic positivity, so we pay no

attention to torsion bundles. Indeed, by the Deligne-Riemann-Roch isomorphism
recalled in Sect. 2.1, we see that

MEePrt -+ P)”

:)\.?2(@ (Ky(P1+---4+Py), K;(PL+---+Py)— Ky)
=A?2®(KN(P1+..'+PN),P1+---+PN>
=1$%  (by the lemmain Sect2.3).
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This completes the proof of the lemma.
As a direct consequence, we have the following
Corollary. Withthe same notation as aboveg;— 1+ N)Awp > 2(2g—2+ N)A;.

To go further, we first recall the Xiao and Cornalba-Harris inequality. As
usual, seh := Aj.

Fundamental relation 111(i). ([Xi] and [CH]) Over the moduli spacéA,,

4
(8+ —> A > Apgy.
8

Thus to get a generalization of the Xiao and Cornalba-Harris inequality from
N = 0to generalV, in the corollary above, we should remoxgp. This can
be done, since by the Fundamental Relation |, we have

120 = Awp — A1z + Apgy-
Therefore, from Corollary, we have

2(2g — 2+ N)

1241 > — A1z + Apay +
1= TZ bdy e 14N

1-

This then implies the following

Fundamental relation Il1(ii). (Xiao and Cornalba-Harris Type Inequalityyer
M, n, N > 1, we have

2N

(8+m

))» + Atz > Apgy.

Recently, Moriwaki brings to our attention a result of R. Hain [H], in which a
result similar to the Fundamental Relation llI(ii) in the case= 1 is established,
by using intermediate Jacobian, Morita fundamental cycles, and Moriwaki’s
sharp result in [Mo] for line bundles OVQ‘E.

We end our study on algebiarc aspect of Deligne pairings with the following
comment. In this paper, we only study Deligne pairings associated to universal
curves over moduli spaces. Similarly, we may use Deligne pairings to study the
tower of moduli spaces. For details, see e.g., [WZ].
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2.5. Logarithmetic Mumford type isometries

From now on, we study the corresponding metric aspect of Deligne pairings.
Hence, we only work oveiM, y, view it as the moduli space of punctured
Riemann surfaces of gengswith N-punctures. Thu¥ -manifold language is
assumed here.

Letw : C, v — M, n denote the universal curve over the (open) moduli
spaceM, y corresponding punctured Riemann surfak&sof genusg with N
punctures. Denote bl, ..., Py the sections corresponding M punctures.
Naturally, we then obtain o, » the following line bundles: the relative canon-
ical line bundlek,, Oc, , (P1+ - -- + Py), andK, (Py + - - - + Py).

To metrize these line bundles, we usg-admissible metrics introduced
in Sect.1.5. So assume that 2 2+ N > 0. Then by uniformization theory,
the fibersM® of 7 naturally admit standard hyperbolic metrics (induced from
the Poincag metric on the upper half plane). Moreover, by the decomposition
introduced in Sect. 1.5, we get the fiberwise canonigg)-admissible metrics
Phyp: K> Phyp; P AN phyp K4y (Prtt-Py) ON K g, Opr (P) @and Ky (P14 - - - + Py)
respectively. Heré/ denotes the smooth compactificationméf and P; denotes
P, N M, i.e., the punctures a#/°, i = 1,..., N. Hence, gluing them along
with M, n, we finally obtain naturatny,-admissible metricnyp &, » Phypp;
andpnyp k., (P, +-+Py) ON line bundlek,, Oc, , (P;), andK, (P1+-- -+ Py) on
Con,i =1,..., N.For simplicity, denote these resulting metrized line bundles
by Kj,hyp P+ -+ PN_hyp’ andK,(Py+---+ PN)hyp respectively.

Now form > 1, setL = K" ((m — DPy+ -+ + (m — 1)PN)hyp’ i.e., the
@m—1

tensor of the admissibly metrized line bunm;a Wlth (Pl + o+ Py

Moreover, assume that the base metric is glven by the metrized line bundle
Ky Clearly all these metrized line bundles asg,-admissible in the sense of
Sect. 1.6, hence we may apply our Deligne-Riemann-Roch isometry for singular

metrics proved in Sect. 1.6, which says that the determinant ng;(;ahyp K.

(®N1 prypp,) et Phyp K, ) ON A, satisfies the Deligne-Riemann-Roch isome-
try. That is to say, we have the canonical isometry

®Rm-—1

®12
> Phyp; Kﬂ))

~ <K7(§T§m((m _ 1)P1 + ...+ (m — l)PN)hyp’

<)"m7 hdet(p%& Ky b ( ®1N:1 Phyp; Pi)

®6
KE"((m — 1P+ + (m — 1)PN)h ® K”hyp >

®< K &hyp

L a(8)
T hyp’ > e
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Thus,

om—1 ®12
()»m, hdet(Pr%’&K” ® (®,N:1 /Ohyp,P,-) " ; Phyp,K,,))

®6m(m—1)
= (Ka(Prt -+ Py)y o Ka(Prt o+ Py), )
®—6(m—1)
Pyt Py, KaPyt -+ Py, )
®<&hyp’ &hyp> ) ea(g)
®6m(m—1)
= (KaPrt -+ Py)y  Ka(Prt Py, )

( ®—6(m—1)
®\P1 4+ 4 PNhyp’ Kﬂ(Pl + -+ PN)hyp)
®<Kn(P1 +---+ PN)hyp’ Kr(Pit---+ PN)hyp)
®—-1
®-1
®(KH<P1 oA Py P 4 Py )
®6m2—6m+1
= (Kn(Pl + -+ PN)hyp’ Ki(PLt---+ PN)hyP>
®-1
®<_”hyp’ P+ PNhyp>
( ®=omtS (o)
®\P1+'--+PNhyp’Kn(P1+"'+PN)hyP> e

In other words, we have the canonical isometry

am—1 ®12
()\'mv hdet(pr?;,’g;l(” b (®l{v:1 /Ohyp,P,-) " ; Phyp,K,,))

)®—6(m—1)

®Pyt -+ Py Ka(Put - +Py),

®6m2—6m+1)
s Kz (P1+---+Py) >

Z(Kn(Pl-i-"'-i-PN)

hyp hyp,

®—1
@Ky Pt o+ Py, )

Pyt -+ Pyy o Ka(Prt o+ Py )&,

hyp

On the other hand, by the Lemfia Sect. 2.1,

(Pot -t Puy Ka(Prt o+ Py )
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is indeed the trivial line bundle equipped with the metric by using the Deligne
pairing formalism developed in Part 1. Hence, we may indeed take the square
root for such a metrized line bundle: for the line bundle, it is still the trivial one,
while for the metric, we simply take the positive square root pointwise. Denote
the resulting metrized line bundle simply by

NI

®
<P1 +---+ PNhyp, Ki(Pi+---+ PN)hyp)

by abuse of notation.

Basic definition IV. With the same notation as above, .0, y, define
() the metrized logarithmic Mumford type line bundﬁhyp with respect to

hyperbolic metrics by setting

A
ZMhyp

®m—1
= (km,hdet(pﬁ;’;K” ® (®L1 phypp,) ;,Ohyp,x,,))

_m=1
®Pt Py KaPrt kP ) 7

(i) the metrized Weil-Petersson line bundie\,phyp with respect to hyperbolic
metrics by setting

Awpyyy = (Ka(Pyt -+ Py) o K (Put e+ P

(iii) the metrized Takhtajan-Zograf line bund@hyp with respect to hyperbolic
metrics by setting

A
ZTZhyp

= (Kapyp

®-1
Pt 4 Py KaPrt PV

P1+"'+PNhyp)

We here in particular reminder the reader that the base line bundieAf |
(resp.Athyp, )ﬁhyp) is indeed the restrictions of Takhtajan-Zograf line bundle

Atz (resp. the Weil-Petersson line bundig,p, the logarithmic Mumford type
line bundlex,,) introduced in Sect. 2.1 t81, 5. Moreover, ifm = 1, we have

m

N -1,
)”—1hyp - (k’”’ hda(p%rﬁkn ® (®i:1 phynpi) ; Phyp,Kn))

= ()‘-mv hdet(ﬁhyp,]g,; Phyp, K,,))
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is simply the line bundle.; together with the determinant metric introduced in
Part 1; while form > Z,A_mhyp is not simply the line bundlg,, together with the
determinant metric introduced in Rdr — we should multiple the determinant
metric introduced in Part 1 by the metric induced from

m—1
(Pit -+ Py Kx(Prt - +Py) )77

which is indeed a smooth positive function 8, .
With this basic definition, all in all, what we have just proved may be restated
as the following

Fundamental relation IV. Over M, y, there exist the canonical isometries

2
1,812~ ApR0n Bl o A @1 (g) m > 0.
“Mhyp ﬂhyp ® jhyp -

2.6. Weil-Petersson and Takhtajan-Zograf metrics in terms of intersections

With the Basic Definition IV and the Fundamental Relation IV established in the
previous section, next we show that indeed, the metrized line buagieg |

and ﬂhyp are naturally associated to the so-called Weil-Petersson metric and
the Takhtajan-Zograf metric ovev!, y, definition of which we recall next.

For anN-punctured Riemann surfadé® of genusg (with 2g + N > 3), let
I" be a torsion free Fuchsian group uniformizis, i.e., M® ~ "'\'’H, where
‘H denotes the complex upper-half plane. Denotdy. . ., I'y the set of non-
conjugate parabolic subgroupsiiy and forevery =1, ..., N, fix an element
o; € PSL(2,R) such thabi‘ll“iai = Iy, Where the groug, is generated by
the parabolic transformatian+— z + 1. As usual, define the Eisenstein series
E; (s, z) corresponding to th&th cusp of the groug™ for Re(s) > 1 by

Ei(s,2) = Zyerprlm(o;tyz)', i=1,...,N.

Denote the Teichmiller space ofN-punctured Riemann surfaces of genus
g by T, n. Then at the poinfM°] corresponding to a punctured Riemann sur-
face M°, the tangent spach o, T, v can be naturally identified with the space
2-51(MO) of harmonicL?-tensors or/° of type (-1,1), harmonic with respect
the hyperbolic metriany, on I"\H. By definition, the\Weil-Petersson metrion
T, v is given by

(¢, ¥)wp := ¢y - dpnyp,
M

whereg, ¢ € 2-11(M°) are considered as tangent vectorgof, at[M°] via
the deformation theory, anfluny, = 27(2¢ — 2 + N) whyp is the Kahler form
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corresponding to the metrigy,. It is well-known that the Weil-Petersson metric
is Kahler. For later use, denote its correspondirdnl€r form onM, y by wwe.

Proposition ([Wo1l]). Over M, y,

wwp

2
/(cl(K”(PlJr"'JrPN)hyp) T onz

Here as usualg; denotes the first Chern form of a metrized line bundle.

In a certain sense, the Weil-Petersson metric reflects the deformation of com-
plex structures forr : C, y — M, y. But for 7, there exists another defor-
mation, i.e., the deformation for punctures. For this, we have then the so-called
Takhtajan-Zograf metric oM, y.

By definition, fori = 1, ..., N, define the-th Takhtajan-Zograf metri¢, );
onT, y by setting

(@, ) = oY - Ei(-,2) -dunp, ¢, ¥ € 271(MO).

N\H

More globally, we define the (totallpkhtajan-Zograf metrion 7, » by setting

N
(¢ ¥)rz =) . ¢V - Ei(z,2) -dpnyp. ¢, ¥ € 2711 (MO).
i=1

In [TZ2], it is proved that(, );, i = 1,..., N, are Kahler metrics or, y.
Moreover, Efil(, ); is invariant under the action of the Teichi®r modular
group. And hence, we get an induced neat#er metric onM, y. Often, we

also call it the Takhtajan-Zograf metric ov(, », and denote the corresponding
Kahler form bywrz. It is an open question whether such a metric is algebraic.
(See e.g., [TZ2].) We next want to solve this problem. For this purpose, let us
recall the fundamental work of Takhtajan-Zograf on a local family index theorem
for punctured Riemann surfaces ([TZ1,2]).

Note that forcompact Riemann surfaced, a work of D’Hoker-Phong
[D’HP] shows that the so-called regularized determinant dgtassociated to
K 3™ with respect to hyperbolic metrics defined via the zeta function formalism
of Ray-Singer, is equal, up to a constant multiplier depending only amdm,
to Z},(1) form = 1, andZ,, (m) form > 2 respectively. Her& y (s) denotes the
Selberg zeta function associatedWo Motivated by this and the Quillen metric
on determinant of cohomology, fpunctured Riemann surfacgegakhtajan and
Zograf ([TZ1,2]) define dét, A, with respect to hyperbolic metrics by simply
setting

7! oD, if m=1;

det, A, = .
fz Zyo(m), if m> 2.
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HereZ,,0(s) denotes the Selberg zeta functiomé?. (See e.g., Sect. 1.5.) With
this, for anym > 1, ona,, := A(Ky" ® Oy (P1+ - - - + Py)®™~D), following
Takhtajan-Zograf, the corresponding Quilleorm#, ,, is defined by setting

hQ;m = hLz,m : defSI'ZA;l’

whereh; 2, is defined as follows:

(1) If m > 2, thenh,, is simply the determinant df,, := I'(M, K" @ Oy (P1+

-+ Py)®m=D)y je., the determinant of the spaLg of cusp forms of weight

2m. By definition/i; 2 ,, :== dethp ,, wherehp ,, denotes the standard Petersson
norm onrl,,. (See e.g., [Sh].)

(2) If m =1,theni, =detlr’' (M, Ky) @ I'(M, Oy)Y = detl" (M, Ky) ® C.

We define; 2 ; to be the determinant of the natural pairinglot, K,,). (Note

that our base manifold is of dimension one. Hence the canonical pairing may
also be understood as the one introduce by using the singular volumejgsmn

Fundamental theorem. (Local Family Index Theorem [TZ1,2\Vith the same
notation as above, fon > 1, as (1,1) forms ofT, y and hence oo\, v,
w\wp 4

12¢1 oy Bgim) = (6m? — 6m 4 1) - —- — —wr7. (2.1)
’ 72 3

Now let us go back to the discussion on Takhtajan-Zograf metrics. Recall that
from our Fundamental Relation IV proved in Sect. 2.5,

12C1()»m

2
Amp) = (6m% —6m +1) - ca(Awey ) — c1(A1z, ). (2.2

Thus by comparing with the local family index theorem of Takhtajan-Zograf
above, we may expect the follows:
(I) cl()\'ihyp) = Cl()\'m» hQ;m);

, wwWp
(i) c1(Awpy, ) = 2 and

4
(ii) Cl(ﬂhyp) = 3@z

We claim that all these are correct. Roughly, the proof is given as follows.
First, we use the result of Wolpert recalled above to show that (ii) holds. Then
we compare the above two relations of (1,1) forms, i.e., Takhtajan-Zograf's
fundamental result (2.1) and our fundamental relation (2.2) above, but only with
m = 1, based on the fact that an, by our Basic Definition Il(i), the metric on
)L_lhyp used by us and the metric @k, /1 1) used by Takhtajan-Zograf are exactly
the same. Hence, clearly, (iii) holds as well. Finally, by applying Takhtajan-
Zograf’s fundamental result (2.1) and our fundamental relation (2.2) above again
but this time for alln > 2, we conclude that (i) holds faz > 2 as well.

That is to say, we have the following
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Theorem. With the same notation as above,

(i) (Fundamental relation V)~ c1(Awp, ) = Lwe,
—=Thyp 72 .
(ii) (Fundamental relation VI) (Together with Fujiki) Cl(ﬂhyp) = ész;

(iii) (Determinant metrics in terms of Selberg zeta function} For a fixed
m > 1, upto a constant factor depending only@n N), there exists an isometry

()\ms hQ,m) = X—mhyp'

Proof. By the definition of metrized Deligne pairing, we have

cA({KaPit -+ +Py),  Ka(Prt o+ Py, L))

=/ﬂcl(1<n(P1+---+PN)hyp)2.

On the other hand, by the result of Wolpert recalled above as the Proposition at
the beginning of this section, this latest (1,1) form is simg}. Hence we get
the Fundamental Relation V.

Here we should reminder the reader that essentially the Fundamental Relation
V is due to Wolpert. Our contribution, if any, is that our Fundamental Relation V
for the first time points out clearly that indeed the Weil-Petersson metric is in the
nature of intersection, rather than in the nature of conomology. (See e.g., [Wo2]
and the fundamental work done by Fujiki and Schumacher [FS].)

Now note that by Basic Definition II(i), we have the isometry

Mpyp = (1, hoi0).

Thus from Takhtajan-Zograf’s fundamental result (2.1) and our fundamental
relation (2.2), we see that

wWWwWp 4
c1(Awey, ) — c1(A1zy, ) = —2 39T
Therefore,
c1(Awey, ) = 312

by the Fundamental Relation V. This then gives the Fundamental Relation VI.

Now, clearly, with the help of our Fundamental Relations V and VI and
Takhtajan-Zograf’s fundamental result (2.1), we see that up to some universal
constant depending only dig, N), there exists an isometry

()\m, hQ,m) i )\—mhyp’
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which in particular gives an interpretation of our new determinant metric in terms
of the Selberg zeta function. This completes the proof of the Theorem.

As a direct consequence, we have the following

Corollary. The Takhtajan-Zograf metric on moduli space of punctured Riemann
surfaces is algebraic.

Fundamental relation IV'. With the same notation as above, 81, v, for a
fixedm > 1, up to some universal constant depending onlyoN, such that
there exists canonical isometry

®12,\, ®6m —6m+1 ®-1
()\mv th) A h vp ®A Zhyp

We end this paper by noticing that the Weil-Petersson and Takhtajan-Zograf
line bundles are well-defined even oué, 5. Thus we naturally expect to
get factorizations for Weil-Petersson and Takhtajan-Zograf metrics and hence
degenerations of Selberg zeta functions by using our Fundamental Relations.
For details, please see [We3].

Appendix: Holomorphic sectional curvature
of Weil-Petersson metric onM, y

Many of Wolpert’s results on Weil-Petersson metrics for compact Riemann sur-
faces may be generalized to these for punctured Riemann surfaces. As an exam-
ple, we in this appendix, prove the following

Proposition. The holomorphic sectional curvature of Petersson-Weil metric on

the Teichraller space7, y is bounded from above bywlzw).

Proof. We will mainly follow Wolpert, and hence without any further explanation

use parallel notation as in [Wo1]. In particular, by a verbatim change of Wolpert's
computations of Riemann curvature tensor of Weil-Petersson metrics, we see that
Riemann tensor for Weil-Petersson metrics on the Teidlanspace of punctured
Riemann surfaces has the same form as in compact case. That is to say, we have
the following

Lemma. ([Wo1l]) With the same notation as in [Wo1], the Riemannian tensor of
Weil-Petersson norm is given by

2

RaﬁyS(O) 8l 7

——=8a5(0) = (A(aftp), iy 1s) + (A(alls), Ly lip)-
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To estimate the holomorphic sectional curvature, we chpgse B(I") such
that (uq, 1) = 1. Then, by the lemma, the holomorphic sectional curvature is
given by
—Rogaa = —2(Apal? l11al).
Now aspu, € B(I), |pqel? € L2(I'\H, dnp), i.€., it is L? with respect to the
natural (singular) hyperbolic metric on the punctured Riemann suifadé.
Therefore, by spectral decomposition,

lal® = Zjzoca ¥ + N, / <—2 / l1a|*E, (5 — F—u) dA)
0 JT

1
XEa (5 + —lt> dt.

Here E,’ are Eisenstein serieg); are orthonormal discrete spectrum eigen-
functions of Dy with the eigen-values; andc, ; =< |u.l% ¥; >. (See e.g.
[Hej, Ch. 6, Sect.9].)

In particular,.o = 0 andyg = so that< p,, e >= 1implies

1
V2t (2g—2+N)’
1
¢2 (2g—2+N)

a0 =< |1al?, Yo >

Moreover,
(Do —2)'E }+«/—1z 4 +¢ 1t
0 “\2 “o1a2t
SO
—2 © /1
Alpel? = 05— c,,»-vf,+2;ilf (—/wz
8
( rt)dA)g - (+rt)

Using Parseval formula, we have

4
=2 - <‘/’./’ Wj> —-250,

</Ooo (% / |ua|2Ea(% —V=1r)dA)E, (% + ¢_—1t) dr
Sy G [ (=) )5

x E, (§ + «/—_1t) dt>

—Rugaa = Xj>0
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— j>0)\j;4;2 AR <1/fj’ ‘/’j>_ 22£=1</000 ‘%/“’Lalz

an(% — d—_lt)dA‘zﬁaﬁ
(by [Hej., Ch.6, (9.33)])

(by 1; < 0 andy;; are not constants
1
n(2g —2+N)’

=< Ejzo

< —26‘20 =

which proves the proposition.
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