
Digital Object Identifier (DOI) 10.1007/s002080100194

Math. Ann. 320, 239–283 (2001) Mathematische Annalen

Ω-admissible theory
II. Deligne pairings over moduli spaces
of punctured Riemann surfaces

Lin Weng

Received February 14, 2000 / Accepted August 18, 2000 /
Published online February 5, 2001 – © Springer-Verlag 2001

Abstract. In Part I, Deligne-Riemann-Roch isometry is generalized for punctured Riemann
surfaces equipped with quasi-hyperbolic metrics. This is achieved by proving the Mean Value
Lemmas, which explicitly explain how metrized Deligne pairings forω-admissible metrized line
bundles depend onω. In Part II, we first introduce several line bundles over Knudsen-Deligne-
Mumford compactification of the moduli space (or rather the algebraic stack) of stableN -pointed
algebraic curves of genusg, which are rather natural and includeWeil-Petersson,Takhtajan-Zograf
and logarithmic Mumford line bundles. Then we use Deligne-Riemann-Roch isomorphism and
its metrized version (proved in Part I) to establish some fundamental relations among these line
bundles. Finally, we compute first Chern forms of the metrizedWeil-Petersson, Takhtajan-Zograf
and logarithmic Mumford line bundles by using results of Wolpert and Takhtajan-Zograf, and
show that the so-called Takhtajan-Zograf metric on the moduli space is algebraic.

Introduction

For smooth metrics, Arakelov theory in dimension one may be essentially sum-
marized as follows:

(1) Intersection. If(L, ρ) and(L′, ρ ′) are two metrized line bundles on a com-
pact Riemann surfaceM of genusg, then we have the so-called Deligne metric
hD(ρ, ρ

′) on Deligne pairing〈L,L′〉;
(2) Cohomology. Ifτ is a Hermitian metric onKM induced from a smooth
base metric onM, then we have the Quillen metrichQ(ρ; τ) on Grothendieck-
Mumford determinantλ(L);

(3) Deligne-Riemann-Roch Isometry: There exists a canonical isometry(
λ(L), hQ(ρ; τ)

)⊗12 �
(
〈L,L⊗K⊗−1

M 〉, hD(ρ, ρ ⊗ τ⊗−1)
)⊗6

⊗
(
〈KM,KM〉, hD(τ ; τ)

)
· ea(g)

wherea(g) = (1− g)(24ζ ′
Q(−1)− 1) denotes the Deligne constant.
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Thus, to develop an Arakelov theory for singular metrics, there are at least
two difficulties: (1) for intersections, general singular metrics have too wild
singularities; and (2) for cohomology, corresponding Laplacians, if exist, have
continuous spectrum.

Clearly, the first is a minor one, as we may use certain growth conditions on
singular metrics to overcome it. On the other hand, the second is an essential
one. As a matter of fact, we even now have no idea on how to do it in general
(along with the line of Ray-Singer-Quillen). However, in this paper, we use a
new principal: the so-called MeanValue Lemma, to develop a new cohomology
theory.

Key ideas are as follows: First, we start with a metricds2 on a Riemann
surfaceM which has at worse hyperbolic growth near some points. Then, we
define canonicallyω-ArakelovmetricsρAr;ω andρAr;ω;P on canonical line bundle
KM andOM(P ) for all P ∈ M, respectively (i.e., Basic Definition I in Sect.1.2).
We know that (a) these metrics are good in the sense of Mumford ([Mu1]) and
(b) their first Chern forms are proportional to the normalized volume formω of
ds2. With this, we defineω-admissible metrics on line bundles by conditions (a)
and (b). Clearly, on any line bundleL,ω-admissible metrics exist and are indeed
unique up to constant factors. Moreover, ifρ andρ are admissible (and hence
may be singular), Deligne metrichD(ρ, ρ ′) is well-defined as well.

Now for anyω-admissible metricρ on L, we can construct canonically a
smoothωcan-admissiblemetricρcanonL. (Hereωcandenotes the standard canon-
ical volume form ofM. See e.g., Sect.1.1.) In fact, if wewriteL asOM(

∑
aiRi),

there exists a constantc such thatρ = ⊗ρ⊗ai
Ar;ω;Ri · ec by admissible condition,

andρcan := ⊗ρ⊗ai
Ar;ωcan;Ri · ec (i.e., Equation (1.2) in Sect.1.2). Furthermore,ρcan

is well-defined, i.e., does not depend on the choice of the divisor
∑

aiRi used.
Similar construction works forτ onKM , from which we obtain a unique smooth
ωcan-admissible metricτcan (i.e., Equation (1.1) in Sect.1.2).

Singularω-admissible metricsρ onL andτ onKM are beautifully related
to smoothωcan-admissible metricsρcan andτcan by the Mean Value Lemma in
Sect.1.3, which claims that

(1) on〈L,L′〉; hD(ρ, ρ ′) = hD(ρcan, ρ
′
can);

(2) on〈L,KM〉; hD(ρ, τ ) = hD(ρcan, τcan); and

(3) on〈KM,KM〉; hD(τ, τ ) = hD(τcan, τcan).

With this, finally, define a determinant metrichdet(ρ; τ) on λ(L) by setting
hdet(ρ; τ) := hQ(ρcan; τcan).We show that ifρ andτ are indeed smooth, then
hdet(ρ; τ) = hQ(ρ; τ). That is to say, it coincides with the standard Quillen
metric. All this then leads to the Deligne-Riemann-Roch isometry for our ad-
missible metrics in Sect.1.6, both over arithmetic surfaces and over families
of Riemann surfaces, and hence a quite satisfied Arakelov theory for singular
metrics is developed.
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Naturally, we want to apply our admissible theory to the study of moduli
spaces of punctured Riemann surfaces equipped with complete hyperbolic met-
rics. For doing so, we then meet with another essential difficulty: there exists no
geometrically natural admissible metric on the canonical line bundle, without
which, it is impossible to apply our general admissible theory. (Complete hyper-
bolic metric on a punctured Riemann surface is not canonical when we view it
as a metric on the canonical line bundle of its smooth compactification.)

To overcome this, we introduce an invariant calledArakelov-Poincar´e volume
for a (punctured) Riemann surface. (See the Basic Definition II(i) in Sect.1.5.)
Moreover, with the help of the so-called Puncture Democracy in Sect.1.5, which
claims thatmetrically, all punctures behavior in the sameway,we obtain a natural
decomposition for the canonical metric onKM(P1+· · ·+PN) induced from the
complete hyperbolic metric in terms of these onKM andOM(P1 + · · · + PN).
(See the Decomposition Rule and Basic Definition II(ii) in Sect.1.5.) All this is
done in Part I.

In Part II, we use Deligne pairing to study moduli spaces of punctured Rie-
mann surfaces, algebraically and metrically. More precisely, for algebraic as-
pect, we first introduce several line bundles over Knudsen-Deligne-Mumford
compactification of the moduli space (or rather the algebraic stack) of stable
N -pointed algebraic curves of genusg, which are rather natural and include
Weil-Petersson, Takhtajan-Zograf and logarithmic Mumford line bundles. (See
Basic Definition III in Sect.2.1.) Then we use Deligne-Riemann-Roch isomor-
phism to establish logarithmic Mumford type isomorphisms (i.e., Fundamental
Relations I in Sect.2.2). Moreover, by using a result of N´eron and Tate (resp. a
result of Cornalba-Harris), we give a comparison between Weil-Petersson line
bundles and Takhtajan-Zograf line bundles, (resp. a generalization of Xiao and
Cornalba-Harris’s inequality). (See Fundamental Relations II and III in Sect.2.3
and Sect.2.4, respectively.) All this answers some of open problems concerning
line bundles over moduli spaces of marked stable curves.

As for metric aspect, by using decompositions for standard hyperbolic met-
rics in Sect.1.5, we are able to introduce natural metrics on the restrictions of
Weil-Petersson, Takhtajan-Zograf, and logarithmic Mumford type line bundles
to the open part of the moduli space. (See Basic Definition IV in Sect.2.5.)
And, as a direct consequence of our arithmetic Deligne-Riemann-Roch isome-
try, we obtain logarithmic Mumford type isometries. (See Fundamental Relation
IV in Sect.2.5.) Moreover, our metrized Weil-Petersson and Takhtajan-Zograf
line bundles are naturally related with Weil-Petersson metrics, defined by us-
ing Petersson norm on spaces of cusp forms, and Takhtajan-Zograf metrics,
defined by using Eisenstein series respectively. In fact, as a direct consequence
of our logarithmic Mumford type isometries, by using [Wo1] and [TZ1,2], we
show that the first Chern form of metrizedWeil-Petersson bundle (resp. metrized
Takhtajan-Zograf bundle) gives the K¨ahler form associated to theWeil-Petersson
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metric (resp. theTakhtajan-Zografmetric, togetherwith Fujiki). (SeeFundamen-
tal RelationsV andVI in Sect.2.6.) In this way, we answer affirmatively an open
problem of Takhtajan and Zograf on whether their newly defined metric on the
moduli space is algebraic, and also for the first time clearly point out that the
Weil-Peterssonmetric is in the nature of intersection (rather than that of cohomol-
ogy). As a by-product, we finally show that the metrics on logarithmic Mumford
line bundles introduced in Basic Definition IV can be redefined by using special
values of Selberg zeta functions for punctured Riemann surfaces.
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University. I would like to thank both institutes, in particular,A. Fujiki, T. Mabuchi, M. Miyanishi,
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Part I. Ω-admissible theory

In this part, we develop anω-admissible intersection theory, introduce a new
determinant metric and use them to prove a Deligne-Riemann-Roch isometry
for ω-admissible metrics which may be singular. Key points are the definition of
ω-Arakelov metrics and various versions of the Mean Value Lemma.

1.1. Quasi-hyperbolic metrics and their Green’s functions

Throughout this part, we assume thatM0 is a (punctured) Riemann surface of
genusq. Denote its smooth compactification byM, and letM\M0 =: {P1, . . . ,

PN }. As usual, we callPi , i = 1, . . . , N , puncturesofM0.

Recall that a Hermitian metricds2 onM0 is said to beof hyperbolic growth
near punctures, if for eachPi, i = 1, . . . , N , there exists a punctured coordinate
disc∆∗ := {z ∈ C : 0 < |z| < 1} centered atPi such that for some constant
C1 > 0,

(i) ds2 ≤ C1|dz|2
|z|2(log |z|)2 on∆∗,

and there exists a local potential functionφi on∆∗ satisfyingds2 = ∂2φi
∂z∂z̄

dz⊗dz̄,
and for some constantsC2, C3 > 0,
(ii) |φi(z)| ≤ C2max{1, log(− log |z|)}, and
(iii)

∣∣∣∣∂φi∂z

∣∣∣∣ ,
∣∣∣∣∂φi∂z̄

∣∣∣∣ ≤ C3

|z| |log |z|| on∆∗.

In this case, we callds2 aquasi-hyperbolicmetric, which is introduced in [TW1].
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For a quasi-hyperbolic metricds2 over a punctured Riemann surfaceM0, it
follows easily from (i) that Vol(M, ds2) < ∞. Denote the normalized volume
form of ds2 by ω so that Vol(M,ω) = 1. From now on, we always assume that
ω is the normalized volume form onM associated to a smooth metric (onM) or
a quasi-hyperbolic metric (onM0).

Proposition ([TW1, Thm 1]). With respect to the normalized volume form
ω associated to a fixed quasi-hyperbolic metric onM0, there exists a unique
ω-Green’s functiongω(·, ·). That is, there exists a functiongω(·, ·) onM0 ×
M0\Diagonalsuch that the following conditions are satisfied:
(i) For fixedP ∈ M0, andQ �= P nearP ,

gω(P,Q) = − log |f (Q)|2 + α(Q),

wheref is a local holomorphic defining function forP , andα is some smooth
function defined nearP ;
(ii) dQd

c
Qgω(P,Q) = ω(Q)− δP . Here dcQ :=

√−1
4π (∂̄Q − ∂Q) is with respect

to the second variable (so thatdQdcQ =
√−1
2π ∂Q∂̄Q), andδP is the Dirac delta

symbol atP ;

(iii)
∫
M

gω(P,Q)ω(Q) = 0;
(iv) gω(P,Q) = gω(Q,P ) for P �= Q;
(v) gω(P,Q) is smooth onM0 ×M0\Diagonal;
(vi) Near each puncturePi ofM0, i = 1, . . . , N , there exists a punctured coor-
dinate neighborhood∆∗ centered atPi such that for fixedQ ∈ ∆∗, there exists
a constantC > 0 such that

|gω(Q, z)| ≤ Cmax{1, log(− log |z|)} on∆∗.

We next sketch a proof. For the details, see e.g., [TW1] or [We2].
First, define the so-called canonical volume formωcan onM as follows:

(a)q = 0. ThusM = P1 is the projective line. Denote its affine coordinate byz.
Set

ωcan :=
√−1

2π

dz ∧ dz̄

(1+ |z|2)2 ;
(b) q > 0. Let {φi} be an orthonormal basis of the space of global holomorphic
differentialsΓ (M,KM) of M with respect to the natural pairing(φ, ψ) �→√−1
2

∫
M
φ ∧ ψ̄ . Set

ωcan :=
√−1

2q

q∑
j=1

φj ∧ φ̄j .

Clearly,
∫
M
ωcan= 1. Hence, we may solve the partial differential equation

ddcβω = ω − ωcan.
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Moreover, by using conditions (ii) and (iii) for quasi-hyperbolic metrics, we
may further assume that there exist constantsC4, C5 > 0 such that near each
Pi, i = 1, . . . , N ,

|βω(z)| ≤ C4max{1, log(− log |z|)},∣∣∣∣∂βω(z)∂z

∣∣∣∣ ,
∣∣∣∣∂βω(z)∂z̄

∣∣∣∣ ≤ C5

|z| |log |z|| on∆∗.

Clearly, suchβω’s are unique up to additive constants. So if we normalize it by
putting the condition that ∫

M

βω(ω + ωcan) = 0,

then the locally integrable functionβω is unique. Now denote byg(P,Q) the
Arakelov-Green’s function, i.e., theωcan-Green’s function. (Seee.g., [La2],where
the existence ofg(P,Q) is proved following Arakelov [Ar].)

Proposition′ ([TW1]). With the same notation as above, onM0×M0\Diagonal,
the function

gω(P,Q) := g(P,Q)+ βω(P )+ βω(Q),

satisfies conditions (i)∼(vi) of the Proposition.

Obviously, using properties of Arakelov-Green’s functions, see e.g., [La2,
Chapter II], we only need to check condition (iii) of the Proposition. But then by
the growth conditions forβω anddβω, the arguments in the proof of [La2,Chapter
II, Proposition 1.3] involving Stokes’ theorem remain valid. This completes the
proof of the Proposition′ and hence the Proposition.

1.2.Ω-Arakelov metrics

Our aim here is to introduce canonically metrics onOM(P ) for any fixed pointP
onM, and on the canonical line bundleKM ofM associated toω, the normalized
volume form associated to a quasi-hyperbolic metric onM0. For this purpose,
motivated by the work ofArakelov [Ar], wemay try simply to use theω-Green’s
functions. However in doing so, we meet two main difficulties. These are
(i) ω-Green’s functiongω(P, ·) is not well-defined whenP is a puncture; and
(ii) corresponding intersection behaviors very badly.

To overcome these difficulties, we make the following modification. First,
for anyP ∈ M0, i.e., for any point but a puncture, define a Hermitian metric
ρAr;ω;P onOM(P ) by setting

log‖1P ‖2ρAr;ω;P (Q) := −gω(P,Q)+ βω(P ) for Q(�= P) inM0.
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Here 1P denotes the canonical defining section ofOM(P ). That is to say, we
twist the metric onOM(P ) corresponding toω-Green’s functionsgω(P, ·) by a
constantfactor eβω(P ). (Later on,wewill see that such amodification is essential.)
Clearly,

dQd
c
Q(− log‖1P ‖2ρAr;ω;P (Q))

= dQd
c
Q(gω(P,Q)− βω(P ))

= dQd
c
Qgω(P,Q)

= ω(Q)− δP

= ω(Q)− δdiv(1P ).

Hencec1(OM(P ), ρAr;ω;P ) = ω for all P which are not punctures, wherec1
denotes the first Chern form.

Now, by Proposition′ in the previous section,

−gω(P,Q)+ βω(P ) = −g(P,Q)− βω(Q).

This leads to the following

Basic definition I(i). For any pointP ∈ M, define theω-ArakelovmetricρAr;ω;P
onOM(P ) by setting

log‖1P ‖2ρAr;ω;P (Q) := −g(P,Q)− βω(Q) for Q(�= P) inM0.

Clearly, now we also have

c1(OM(P ), ρAr;ω;P ) = ω for all P ∈ M.

To facilitate ensuing discussion, we next recall the definition of ‘good’ Her-
mitianmetrics introduced byMumford [Mu1], in the special case of line bundles
over a (punctured) Riemann surface. So letL be a line bundle onM. A smooth
Hermitian metricρ onL|M0 is said to be good onM if there exists a finite set of
coordinate discs{Ui} covering an open neighborhood of all punctures{Pi} such
that for eachUi = ∆ = {z ∈ C : |z| < 1}, there exists a non-vanishing holomor-
phic sectionv ∈ Γ (Ui, L

∣∣
Ui
) such that onUi ∩M0 = ∆∗ = {z ∈ ∆ : z �= 0},

(i) |ρ(v, v)|,1/|ρ(v, v)| ≤ C1

(
log |z|

)2m
for someC1 > 0,m ≥ 1, and

(ii) ∂ logρ(v, v) and∂∂ logρ(v, v) have Poincar´e growth onUi −Ui ∩M0, i.e.,
there exist constantsC2, C3 > 0 such that

|∂t1 logρ(v, v)|2 ≤ C2ωUi∩M0(t1, t1) and

|∂t2∂t3 logρ(v, v)|2 ≤ C3ωUi∩M0(t2, t2) · ωUi∩M0(t3, t3)
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for all t1, t2, t3 ∈ Tx(Ui ∩M0), x ∈ Ui ∩M0. HereωU∩M0 denotes the metric on
U ∩M0 induced by the Poincar´e metricds2 = (|dz|/(|z| log |z|))2 on each∆∗.

Oneeasily sees that theabovedefinitiondoesnot dependon thechoiceof local
coordinate functions and local trivializations ofL on eachUi . (cf. [Mu1,Sect.1])

With this, by definition, a Hermitian line bundle(L, ρ) onM is calledω-
admissible, if it satisfies the following two conditions:

(1) ρ is a good metric onL|M0; and

(2) c1(L, ρ) = d(L) · ω. Hered(L) denotes the degree ofL.
For example, (from the discussion in the proof of Proposition of Sect.1.1

on the growth ofβω and the above computation on first Chern form,)(OM(P ),

ρAr;ω;P ) is ω-admissible. Thus, over any line bundleL on M, we obtainω-
admissibleHermitianmetricsonL (byfirstwritingL = OM(

∑
aiRi)asadivisor

line bundle, then extendingρAr;ω;P linearly onP ’s). Clearly, from Conditions
(1) and (2), ifρ1 andρ2 are twoω-admissible metrics onL, then there exists a
constantc such thatρ1 = ρ2 · ec. Hence,ω-admissible Hermitian metrics over a
fixed line bundle are parametrized byR+.

Thus inparticular, oncanonical linebundleKM ofM, thereexistω-admissible
Hermitian metrics, which are far from being unique. So to get a canonical one,
we make the following normalization.

Basic definition I(ii). OnKM , define theω-Arakelov metricτAr;ω by setting

‖h(z) dz‖2τAr;ω(P ) := |h(P )|2 · lim
Q→P

|z(P )− z(Q)|2
e−gω(P,Q) · e−2qβω(P ) for P ∈ M0.

Hereh(z) dz denotes a section ofKM .
So

‖h(z) dz‖2τAr;ω(P ) = ‖h(z) dz‖2τAr;ωcan(P ) · e(−2q+2)βω(P ).

HereτAr;ωcan denotes the (canonical) Arakelov metric onKM , which is smooth.
Therefore by the growth condition onβω, we see thatτAr;ω is good. Moreover,
sinceτAr;ωcan is ωcan-admissible, (see e.g. [La2, Chapter IV, Theorem 5.4],) we
have

c1(KM, τAr;ω)
= (2q − 2)ωcan+ ddc(−[(−2q + 2)βω])
= (2q − 2)ωcan+ (2q − 2)(ω − ωcan)

= (2q − 2)ω.

All in all, what we have just said proves the following

Proposition. With the same notation as above,(OM(P ), ρAr;ω:P ) and (KM,

τAr;ω) are ω-admissible. Moreover, for any line bundleL overM, there exist
ω-admissible metrics, which are parametrized byR+.
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In particular, ifτ is anω-admissiblemetric onKM , then there exists a constant
a such thatτ = τAr;ω · ea. With this, define a smoothωcan-admissible metricτcan
onKM by setting

τcan := τAr;ωcan · ea. (1.1)

Similarly, for anyω-admissible metrized line bundle(L, ρ) onM, we may
introduce a unique smoothωcan-admissible metricρcan onL as follows.

Write L asL = OM(
∑

aiRi) for a certain divisor
∑

aiRi . Then, by using
ω-Arakelov metricsρAr;ω;Ri on OM(Ri), we get anotherω-admissible metric
⊗ρ⊗ai

Ar;ω;Ri onL. Therefore, by the Proposition above, there is a constantc such

thatρ = ⊗ρ⊗ai
Ar;ω;Ri · ec. Define a smoothωcan-admissible metricρcan onL by

ρcan := ⊗ρ⊗ai
Ar;ω;Ri · ec. (1.2)

Note that in this construction, we use a realization ofL as a divisor line bundle
OM(

∑
aiRi). Thus we should show thatρcan does not depend on such choices.

Key lemma.With the same notation as above,ρcan is well-defined. That is to say,
if we haveL = OM(

∑
bjSj ), andρ = ⊗ρ⊗bj

Ar;ω;Sj · ed for a certain constantd,
then

⊗ρ⊗ai
Ar;ωcan;Ri · ec = ⊗ρ⊗bj

Ar;ωcan;Sj · ed .

Proof.From definition, onL, we have the following equality forω-admissible
metrics

⊗ρ⊗ai
Ar;ω;Ri · ec = ρ = ⊗ρ⊗bj

Ar;ω;Sj · ed .
Hence to prove the lemma, it suffices to show that

⊗ρ⊗ai
Ar;ωcan;Ri

⊗ρ⊗ai
Ar;ω;Ri

=
⊗ρ⊗bj

Ar;ωcan;Sj
⊗ρ⊗bj

Ar;ω;Sj
. (1.3)

Now, by definition, the logarithm of the first ratio (at a fixed pointx onM) is∑
ai

(( − gω(Ri, x)+ βω(Ri)
) + g(Ri, x)

)
,

which by Proposition′ in Sect.1.1 is nothing but− ∑
aiβω(x). Similarly, the

logarithm of the second ratio is− ∑
bjβω(x). Clearly,

∑
ai = ∑

bj is the
degree ofL, so we establish (1.3) and hence show that

⊗ρ⊗ai
Ar;ωcan;Ri · ec = ⊗ρ⊗bj

Ar;ωcan;Sj · ed .
This completes the proof of the Lemma.
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The equality (1.3) says that if
∑

aiRi is rationally equivalent to
∑

bjSj , then

⊗ρ⊗ai
Ar;ωcan;Ri

⊗ρ⊗ai
Ar;ω;Ri

=
⊗ρ⊗bj

Ar;ωcan;Sj
⊗ρ⊗bj

Ar;ω;Sj
.

That is to say,

⊗ρ⊗ai
Ar;ωcan;Ri

⊗ρ⊗bj
Ar;ωcan;Sj

= ⊗ρ⊗ai
Ar;ω;Ri

⊗ρ⊗bj
Ar;ω;Sj

. (1.4)

Clearly, the ratio
⊗ρ⊗ai

Ar;ω;Ri
⊗ρ⊗bj

Ar;ω;Sj
is a constant byω-admissible condition and depends

only onω,
∑

aiRi and
∑

bjSj . Hence if we set

C
(
ω;

∑
aiRi,

∑
bjSj

)
:= ⊗ρ⊗ai

Ar;ω;Ri
⊗ρ⊗bj

Ar;ω;Sj
,

then by (1.4), the constantC(ω; ∑
aiRi,

∑
bjSj ) does not really depend onω.

That is to say, we have the following

Mean value lemma I.With the same notation as above, for any two normalized
volume formsω1 andω2 onM,

C
(
ω1;

∑
aiRi,

∑
bjSj

)
= C

(
ω2;

∑
aiRi,

∑
bjSj

)
,

provided that
∑

aiRi is rationally equivalent to
∑

bjSj .

1.3. Mean value lemma forω-admissible intersections

In this section, we define metrized Deligne pairings for line bundles equipped
with ω-admissible metrics, which may be singular. More importantly, we study
their dependence onω.

To begin with, let us recall the construction of Deligne pairings and its
metrized version when metrics are smooth.

Let π : X → S be a projective flat morphism whose fibers are algebraic
curves. Then for any two invertible sheavesL1, L2 overX, following Deligne
[De2], we may introduce theDeligne pairing〈L1, L2〉(X/S), which is often
written as〈L1, L2〉(π), or 〈L1, L2〉, by using the following axioms:
(DP1) 〈L1, L2〉 is an invertible sheaf onS, and is symmetric and bi-linear in
Li ’s;
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(DP2) 〈L1, L2〉 is locally generated by symbols〈l1, l2〉 with li sections ofLi ,
i = 1,2, whenever the divisors ofli ’s have no common intersection; moreover,
if f is a rational function onX, then

〈l1, f l2〉 = ⊗kNormYk/S(f )
nk 〈l1, l2〉

provided that div(l1) = ∑
nkYk is finite overS and div(f ) has no intersection

withYk. Here, as usual, NormYk/S denotes the standard normmap for the covering
Yk/S.

(DP3) For a sectionl2 of L2 such that all componentsYα of the divisor div(l2) =∑
α nαYα are flat overS, we have a canonical isomorphism

〈L1, L2〉(X/S) := ⊗α(NormYα/S(L1|Yα ))⊗nα .
(In practice, Deligne pairings may be constructed by using the above axioms

as follows: first, we use (DP3) to reduce to finite flat coverings, by using a certain
choice of sections; then we use axiom (DP2) to show that this construction does
not really depend on the choice of sections.)

Moreover, ifπ is defined overC andL1, L2 are with smooth metricsρ1
andρ2 respectively, we may introduce a natural metrichD(ρ1, ρ2), the so-called
Deligne metric, on〈L1, L2〉 as follows:

log‖〈l1, l2〉‖hD(ρ1,ρ2) :=
∫
π

ddc log‖l1‖ρ1 · log‖l2‖ρ2 + log(‖l1‖ρ1)(div(l2))
+ log(‖l2‖ρ2)(div(l1)). (1.5)

Here,l1 andl2 are chosen as in (DP2), and by definition, if div(l2) = ∑
aiRi ,

then
(
‖l1‖ρ1

)
(div(l2)) := ∏

i

(
‖l1‖ρ1(Ri)

)ai
. Quite often, we write

(
〈L1, L2〉;

hD(ρ1, ρ2)
)
also as

〈
(L1, ρ1); (L2, ρ2)

〉
.

Particularly, as a consequence of these axioms, metrized Deligne pairing is
compactible with base change, and that for any metrized line bundle(H, h) on
S,

〈(L1, ρ1), π
∗(H, h)〉(π) � (H, h)⊗dπ (L1).

Heredπ(L) denote the relative degree ofL. (See e.g. [De2].)

Next, we generalize the abovemetrized version to that for (possibly singular)
ω-admissiblemetrics.Weherewill only do it for a singleRiemann surface,which
is enough for our application to arithmetic surfaces, while leave a modification
which works for families of Riemann surfaces to Sect.1.6. (Thus, the Deligne
pairing gives a line bundle over a point, i.e., is a one-dimensional vector space.)

Thus letω1 andω2 be two normalized volume forms onM associated to
two, possibly same, quasi-hyperbolic metrics, and let(Li, ρi), i = 1,2 beωi-
admissible metrized line bundles overM. Then metricsρ1 andρ2 are good,
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which implies in particular that each term of (1.5) is well-defined, as we may
further assume that supports of div(li)’s are away from punctures. Hence we
have a metrichD(ρ1, ρ2), which is also called the Deligne metric forρ1 andρ2,
on the Deligne pairing〈L1, L2〉 for possibly singularρ1 andρ2. As before, write(
〈L1, L2〉;hD(ρ1, ρ2)

)
by

〈
(L1, ρ1); (L2, ρ2)

〉
.

To go further, we assumeω1 = ω2 =: ω and study the dependence of Deligne
metrics onω. Recall that in the previous section for anω-admissible metricτ
onKM , the canonical line bundle, we may construct a uniqueωcan-admissible
metric τcan by usingω-Arakelov metricτAr;ω. Similarly, for anyω-admissible
metrized line bundle(L, ρ), we construct a uniqueωcan-admissible metricρcan
by usingω-Arakelov metricsρAr;ω;P for pointsP ∈ M.

Mean value lemma II.With the same notation as above, for anyω-admissible
metrized line bundle(L′, ρ ′) onM, we have
(1) On〈L,L′〉,

hD(ρ, ρ
′) = hD(ρcan, ρ

′
can);

(2) On〈KM,KM〉,
hD(τ, τ ) = hD(τcan, τcan);

(3) On〈L,KM〉,
hD(ρ, τ ) = hD(ρcan, τcan).

Proof. Easily from (1.5), we see that, for any constantc andc′,

hD(ρ · ec, ρ ′ · ec′) = hD(ρ, ρ
′) · ecd ′+c′d (1.6)

Hered andd ′ denotes the degree ofL andL′ respectively. Therefore, by def-
inition, or better, the proof of the Key Lemma above, it suffices to prove the
following

Mean value lemma II′. For any two normalized volume formsω1 andω2 onM,
we have the following equalities for Deligne metrics
(i) on 〈OM(

∑
i aiRi),OM(

∑
i a

′
iR

′
i)〉,

hD(⊗ρ⊗ai
Ar;ω1;Ri ; ⊗ρ⊗a′

i

Ar;ω1;R′
i
) = hD(⊗ρ⊗ai

Ar;ω2;Ri ; ⊗ρ⊗a′
i

Ar;ω2;R′
i
);

(ii) on 〈KM,KM〉,
hD(τAr;ω1, τAr;ω1) = hD(τAr;ω2, τAr;ω2);

(iii) on 〈OM(
∑

aiRi),KM〉,
hD(⊗ρ⊗ai

Ar;ω1;Ri ; τAr;ω1) = hD(⊗ρ⊗ai
Ar;ω2;Ri ; τAr;ω2).
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Proof.We only prove (ii) as the proofs for others are the same. Without loss
of generality, we may assume thatω2 = ωcan. Denoteω1 simply byω. Also if
(L, ρ) is a metrized line bundle, denote by(L, ρ) ·ef the line bundleL together
with the twisted metricρ · ef . With this, for (ii), we have

(
〈KM,KM〉, hD(τAr;ω, τAr;ω)

)
= 〈(KM, τAr;ω), (KM, τAr;ω)〉
= 〈(KM, τAr;ωcan) · e−(2g−2)βω , (KM, τAr;ω)〉

(by definition)

� 〈(KM, τAr;ωcan), (KM, τAr;ω)〉 · e−(2g−2)
∫
βω·c1((KM,τAr;ω))

(by (1.5))

� 〈(KM, τAr;ωcan), (KM, τAr;ωcan) · e−(2g−2)βω〉 · e−(2g−2)
∫
βω·c1((KM,τAr;ω))

(by definition)

� 〈(KM, τAr;ωcan), (KM, τAr;ωcan)〉·e−(2g−2)
∫
βω·c1((KM,τAr;ωcan)) ·e−(2g−2)2

∫
βω·ω

(by (1.5) and admissible condition)

� 〈(KM, τAr;ωcan), (KM, τAr;ωcan)〉 · e−(2g−2)2
∫
βω·ωcan · e−(2g−2)2

∫
βω·ω

(by admissible condition)

� 〈(KM, τAr;ωcan), (KM, τAr;ωcan)〉 · e−(2g−2)2
∫
βω·(ωcan+ω)

� 〈(KM, τAr;ωcan), (KM, τAr;ωcan)〉 · e−(2g−2)2·0

(by the property ofβ in Sect.1.1)

� 〈(KM, τAr;ωcan), (KM, τAr;ωcan)〉
=

(
〈KM,KM〉, hD(τAr;ωcan, τAr;ωcan)

)

This completes the proof of the MeanValue Lemma II′ and hence also the Mean
Value Lemma II.

As a direct consequence, we have the following

Ω-adjunction isometry. With the same notation as above, for any pointP on
M, the natural residue map induces canonically an isometry

(
〈KM(P ),OM(P )〉, hD(τAr;ω ⊗ ρAr;ω;P ; ρAr;ω;P )

)
� (C, | |).

Here| | denotes the standard Euclidean measure overC.

Proof. This is true whenω is the canonical volume formωcan by the result of
Arakelov. See e.g., [La2]. Hence, from (ii) and (iii) above, we complete the proof.
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1.4. New determinant metrics

With respect to the normalized volume formω of a quasi-hyperbolic metric
ds2 onM0, in the previous section, we define intersections for allω-admissible
line bundles(L, ρ) onM, the smooth compactification ofM0, and study their
dependence onω. In this section, we introduce its counterpart on Grothendieck-
Mumford determinant of cohomologyλ(L).

To begin with, recall that for a fixed smooth metricτ onKM , if ρ is a smooth
metric on a line bundleL, then the corresponding Laplacian∆ρ;τ onL2-sections
L2(M,L) of L has only discrete spectrum 0= λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . .
Hence we may define the associated zeta function byζρ;τ (s) := ∑

i≥1 λ
−s
i for

Re(s) > 1. It is well-known thatζρ;τ (s) admits a meromorphic continuation to
the whole complex plane which is holomorphic ats = 0. Following Ray and
Singer, define the regularized determinant det∗(∆ρ;τ ) of ∆ρ;τ by setting

det∗(∆ρ;τ ) := e−ζ ′
ρ;τ (0).

On the other hand, on cohomology spacesHi(M,L), i = 0,1, we have nat-
ural L2-metrics, which then induces a natural metrichL2(ρ; τ) on λ(L) :=
detH 0(M,L) ⊗ (detH 1(M,L))⊗−1. With this, the Quillen metrichQ(ρ; τ) on
λ(L) is defined to be

hQ(ρ; τ) := hL2(ρ; τ) · det∗(∆ρ;τ ).

(For details, see e.g.,[Qu], [RS] and [De2].) For example, applying this toKM

andL equipped withωcan-admissible metrics, we obtain corresponding Quillen
metrics onλ(L).

However such a construction cannot be applied when metrics involved are
singular, since, amongothers, the associated Laplacians, if exist, have continuous
spectrum as well. Thus ifω is the normalized volume form of a quasi-hyperbolic
metric, to introduce metrics onλ(L) for ω-admissible metrized line bundles
(L, ρ), we should and will do it very differently, which goes as follows.

First, we fix ametric onM, or better, ametricτ onKM which isω-admissible.
Then for anyω-admissible metrized line bundle(L, ρ) onM, define the corre-
sponding determinant metrichdet(ρ; τ) onλ(L), which is indeed a one-dimen-
sional vector space, by setting

hdet(ρ; τ) := hQ(ρcan; τcan). (1.7)

Hereρcanandτcanare smoothωcan-admissible metrics onL andKM correspond-
ing toρ andτ introduced in (1.1) and (1.2) inSect.1.2, respectively. (We reminder
the reader that the metricρ onL is not related to the metricτ onKM .)

To justify our definition, we give the following
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Proposition. With the same notation as above, ifω is smooth onM, then on
λ(L)

hdet(ρ; τ) = hQ(ρ, τ ).

That is to say, when metrics on line bundles and base compact Riemann sur-
faces are smooth, determinant metrics here are the same as the standard Quillen
metrics.

Proof.By definition, it suffices to show that

hQ(ρcan; τcan) = hQ(ρ, τ ).

But if c is a constant, then

hQ(ρ · ec; τ) = hQ(ρ, τ ) · ec·χ(L).
Hereχ(L) denotes the Euler-Poincar´e characteristic ofL. Indeed, if we change
ρ toρ ·ec, there is no change for eigen-values of the corresponding Laplacians on
L2 sections, hence regularized determinants remain the same; while the change
for L2 metrics is easily to seen to be ec·χ(L). Therefore, we may assume that

(L, ρ) =
(
OM

(∑
aiRi

)
,⊗ρ⊗ai

Ar;ω;Ri
)
.

Furthermore, by the fact that Quillen metrichQ(ρ; τ) satisfies Deligne-
Riemann-Roch isometry, (see e.g., Sect.1.6,) we have

(λ(L), hQ(ρ; τ))⊗12

� 〈
(KM, τ), (KM, τ)〉 ⊗ 〈(L, ρ), (L, ρ)⊗ (KM, τ)

⊗−1
〉⊗6 · ea(q)

with a(q) = (1− q)(24ζ ′
Q(−1)− 1). In particular, ifa is a constant, we see that

hQ(ρ; τ · ea) = hQ(ρ; τ) · e− 1
6 (g−1)a− 1

2χ(L)a (1.8)

by (1.6). Therefore, we may further assume thatτ = τAr;ω, theω-Arakelov
metric onKM .

In this way, finally we are lead to the proof of the following identity of Quillen
metrics onλ(OM(

∑
aiRi));

hQ(⊗ρ⊗ai
Ar;ωcan;Ri ; τAr;ωcan) = hQ(⊗ρ⊗ai

Ar;ω;Ri ; τAr;ω).
In this form, the identity is then equivalent to theMeanValue Lemma IIIat p. 489
of [We1], which in fact is the starting point of all our discussions. This completes
the proof of the proposition.

We end this section by the following direct consequence of the proof of the
Proposition and the definition of determinant metrics.
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Mean Value Lemma III. For any two normalized volume formsω1 andω2 on
M, we have
(i) on λ(KM),

hdet(τAr;ω1; τAr;ω1) = hdet(τAr;ω2; τAr;ω2);
(ii) on λ(OM(

∑
aiRi)),

hdet(⊗ρ⊗ai
Ar;ω1;Ri ; τAr;ω1) = hdet(⊗ρ⊗ai

Ar;ω2;Ri ; τAr;ω2).

1.5. Decomposition of hyperbolic metrics: Arakelov-Poincar´e volumes

Standard hyperbolic metricds2hyp of a punctured Riemann surfaceM0 defines
a natural metric onKM(P1 + · · · + PN), whereM denotes the smooth com-
pactification ofM0 with P1, . . . , PN the corresponding punctures. Such ametric
is ωhyp-admissible, whereωhyp denotes the normalized volume form ofds2hyp.
However, for applications, what we need is a naturalωhyp-admissible metric on
KM . In this section, we construct canonicalωhyp-admissible metrics on bothKM

andOM(P1 + · · · +PN), by usingωhyp-Arakelov metrics onKM andOM(Pi)’s,
i = 1, . . . , N . Key points here are the Arakelov-Poincar´e volume, a new in-
variant forM0, and the Puncture Democracy, which claims that, metrically, all
punctures behavior in the same way.

LetM0 be a puncturedRiemann surface of genusq withN puncturesP1, . . . ,

PN . Assume always that 2q − 2 + N > 0. Then by uniformization theory,
there exists a torsion free Fuchsian groupΓ such thatM0 � Γ \H. Moreover,
by invariance of the Poincar´e metric onH under (PSL2(R) and hence)Γ , we
get an induced metric onM0, which we call the standard hyperbolic metric.
Denote bydµhyp its volume form onM. It is well-known that ifωhyp denotes the
corresponding normalized volume form, then 2π(2q − 2+N) · ωhyp = dµhyp.

Recall that if thehyperbolicmetric is consideredasasingularmetric onM, the
line bundle naturally attached is the dual ofKM(P1+· · ·+PN). Moreover, if we
denote the inducedHermitianmetric onKM(P1+· · ·+PN) byρhyp;KM(P1+···+PN),
then

c1

(
KM(P1 + · · · + PN), ρhyp;KM(P1+···+PN)

)
= dµhyp = (2g − 2+N)ωhyp.

That is to say,ρhyp;KM(P1+···+PN) is anωhyp-admissible metric onKM(P1 + · · · +
PN). (See e.g., [De1], [Mu1] or [Fu]).

However we are not satisfied with this, since the metricρhyp;KM(P1+···+PN) is
not really anωhyp-admissible metric on the canonical line bundleKM , without
which we cannot apply our basic constructions such as determinant metrics.

To construct canonicalωhyp-admissible metrics onKM andOM(P1), . . . ,

OM(PN) from the hyperbolic metric onM, we go as follows.
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Denote metrics to be constructed onKM and OM(P1), . . . ,OM(PN) by
ρhyp;KM

and ρhyp;P1, . . . , ρhyp;PN respectively. Naturally, we assume that they
satisfy the following conditions:

(i) (Admissibility ) ρhyp;KM
onKM andρhyp;Pi onOM(Pi) areωhyp-admissible,

i = 1, . . . , N ;

(ii) (Decomposition rule) OnKM(P1+· · ·+PN), the hyperbolic metric has the
following decomposition;

ρhyp;KM(P1+···+PN) = ρhyp;KM
⊗ ρhyp;P1 ⊗ · · · ⊗ ρhyp;PN .

Recall that

(1) any twoωhyp-admissible metrics on a fixed line bundle differe only by a
constant factor; and

(2) onKM andOM(Pi)’s, we have canonicalωhyp-Arakelov metricsτAr;ωhyp and
ρAr,ωhyp,Pi , i = 1, . . . , N , which areωhyp-admissible. (In the following discus-
sion, we also useρAr;ωhyp to denoteτAr;ωhyp.)

Hence, to constructρhyp;KM
andρhyp;Pi ’s, the key is to find a canonical way

to determine all the constants
ρhyp;KM

ρAr,ωhyp
and

ρhyp;Pi
ρAr,ωhyp,Pi

, i = 1, . . . , N.

Let us determine the constant ratio
ρhyp;KM
ρAr,ωhyp

(associated toKM ) first. For this,

compare the determinant metrichdet(ρhyp;KM
; ρhyp;KM

) onλ(KM) introduced in
Sect.1.4 and Takhtajan-Zograf’s Quillen metric onλ(KM), whose definition we
recall now.

LetZM0(s) be the Selberg zeta function ofM0, defined for Re(s) > 1 by the
absolutely convergent product

ZM0(s) :=
∏
{l}

∞∏
m=0

(1− e−(s+m)|l|),

wherel runs over the set of all simple closed geodesics onM0 with respect to
the hyperbolic metric onM0, and|l| denotes the length ofl. It is known that by
using Selberg trace formula for weight zero forms the functionZM0(s) admits a
meromorphic continuation to thewhole complexs-planewhich has a simple zero
at s = 1. Thus in particular, it makes sense to talk aboutZ′

M0(1). (For details,
see e.g., [Hej])

Clearly, λ(KM) =: λ1 := detH 0(M,KM) ⊗ (detH 1(M,KM))
∨ =

detH 0(M,KM) ⊗ C. Hence, there is a naturalL2-norm hL2,1 on λ1. Follow-
ing Takhtajan-Zograf [TZ1], define the Quillen normhQ,1 onλ1 by setting

hQ,1 := hL2,1 · 1

Z′
M0(1)

. (1.9)
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With this, we are ready to make the following;

Basic definition II(i). With the same notation as above, onKM , define theωhyp-
admissiblemetricρhyp;KM

by the condition that onλ(KM), thedeterminantmetric
hdet(ρhyp;KM

; ρhyp;KM
) is equal to Takhtajan-Zograf ’s Quillen metrichQ,1 i.e., by

setting
hdet(ρhyp;KM

; ρhyp;KM
) := hQ,1. (1.10)

We claim that this definition determinesρhyp;KM
uniquely. Indeed, recall that

ρAr;KM
= τAr;ωhyp. Thus if we define theArakelov-Poincar´e volumefor the punc-

tured Riemann surfaceM0 by setting

AAr;hyp(M;M0) := AAr;hyp(M0) := ρhyp;KM

τAr,ωhyp
, (1.11)

which is a constant, then, by definition,

hdet(ρhyp;KM
; ρhyp;KM

)

= hdet(τAr,ωhyp · AAr;hyp(M;M0); τAr,ωhyp · AAr;hyp(M;M0))

= hQ(τAr,ωcan · AAr;hyp(M;M0); τAr,ωcan · AAr;hyp(M;M0)).

But by the Polyakov variation formula for Quillen metrics, (see e.g., [Fay, For-
mula (3.31)],) we have

hQ(ρAr,ωcan · AAr;hyp(M;M0); ρAr,ωcan · AAr;hyp(M;M0))

= hQ(ρAr,ωcan, ρAr,ωcan) · AAr;hyp(M;M0)
1
6 (2q−2).

Therefore, we finally arrive at, by the definition (1.10),

hL2,1 · 1

Z′
M0(1)

= hQ(ρAr,ωcan, ρAr,ωcan) · AAr;hyp(M;M0)
1
6 (2q−2).

This certainly uniquely defines the Arakelov-Poincar´e volumeAAr;hyp(M;M0),
and hence the metric

ρhyp;KM
= τAr,ωhyp · AAr;hyp(M;M0).

Remark.The name of theArakelov-Poincar´e volume is suggested by the follow-
ing;

Proposition ([We1]).With the same notation as above, ifM0 = M is compact,
then

AAr;hyp(M) = Vol(Ar;hyp)
2π(2g − 2)

,
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whereVol(Ar;hyp) denotes the volume ofM with respect to theωhyp-Arakelov
metricρAr;ωhyp. Moreover,

logAAr,hyp(M
0) = 12 · 1

2g − 2
·
(
log

det∗∆Ar

Vol(Ar)
− log

det∗∆hyp

Vol(Hyp)

)
.

Here∆Ar (resp.∆hyp) denotes the Laplacian for the Arakelov metric (resp. stan-
dard hyperbolic metric) onM, det∗ denotes the regularized determinant of Ray-
Singer, andVol(Ar) (resp.Vol(Hyp)) denotes the volume ofM with respect to
the Arakelov metric (resp. the standard hyperbolic metric, i.e.,2π(2g − 2)).

Obviously, the Arakelov-Poincar´e volume is a very natural invariant for the
punctured Riemann surfaceM0, hence can be viewed as a certain interesting
function on the Teichm¨uller spaceTg,N of N -punctured Riemann surfaces of
genusg. The reader may consult [We1] for the degeneration behavior of this
invariant whenN = 0.

Once the canonicalωhyp-admissible metricρhyp;KM
is introduced onKM , we

are left only with the problem to define canonicalωhyp-admissible metricsρhyp;Pi
on OM(Pi), i = 1, . . . , N . Or equivalently, we are left to determine constant
factors

ρhyp;Pi
ρAr;ωhyp;Pi

, i = 1, . . . , N.

For this, we introduce the following

Puncture democracy.The (constant) ratioCi
hyp := ec

i
hyp := ρhyp;Pi

ρAr;ωhyp;Pi
does not

depend oni.

Clearly, together with the Decomposition Rule (ii), the Puncture Democ-
racy determines allρhyp;Pi ’s. Indeed, by the Decomposition Rule, as metrics on
KM(P1 + · · · + PN), we have(

ρAr;ωhyp ⊗ ⊗N
i=1ρAr;ωhyp;Pi

)
· eahyp+c1hyp+···+cNhyp = ρhyp;KM(P1+···+PN).

Here for simplicity, we setahyp := AAr;hyp(M). But by the Puncture Democracy,
cihyp := c

j

hyp =: chyp, for i, j = 1, . . . , N .

Basic definition II(ii) .We define the canonical metricρhyp;Pi by setting

ρhyp;Pi = ρAr;ωhyp;Pi · echyp

wherechyp is a constant defined by

eN ·chyp := ρhyp;KM(P1+···+PN)
ρAr;ωhyp ⊗ ⊗N

i=1ρAr;ωhyp;Pi
· 1

AAr;hyp(M;M0)
.
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1.6. Arithmetic Deligne-Riemann-Roch isometry for singular metrics

We in this section show that ourDelignemetrics anddeterminantmetrics satisfy a
Deligne-Riemann-Roch isometry as well.Wework over both arithmetic surfaces
and families of Riemann surfaces.

Arithmetic surfaces: Let F be a number field, by which we mean a finite ex-
tension field ofQ, the field of rational numbers. Denote its ring of integers by
OF andS = SpecO the associated scheme. Then by an arithmetic surface over
S we mean a two dimensional regular schemeX together with a projective flat
morphismπ : X → S. Also we assume that the generic fiberXF of π is geo-
metrically irreducible.

An arithmetic surfaceπ : X → S is called semi-stable, if all geometric fibers
Xv overv ∈ S are reduced, have at most ordinary double points as singularities,
and all rational components intersect with others at least at two points. Denote
by δv the number of double point onXv, and call the divisor overS defined by
∆π := ∑

v δv[v] the discriminant divisor ofπ . Denote the relative dualizing
sheaf ofπ byKπ which is in particular invertible. (See e.g., [La2].)

Algebraic Deligne-Riemann-Roch isomorphism ([Mu2,3] and [De2]).Letπ :
X → S be a semi-stable arithmetic surface. Then for any line bundleL overX,
we have the following canonical algebraic isomorphism of line bundles overS

λ(L)⊗12 � 〈L,L⊗K⊗−1
M 〉⊗6 ⊗ 〈Kπ,Kπ 〉 ⊗ OS(∆π).

Furthermore, in [De2], for smooth metrics onL andKπ , by using Deligne
metrics on Deligne pairing and Quillen metrics on determinants of cohomology,
Deligne shows that this algebraic isomorphism is indeed an isometry. (See e.g.,
Arithmetic Deligne-Riemann-Roch Isometry stated below.) We will generalize
this metrized version to the case whenmetrics onL andKπ ’s are admissible and
hence may be singular. For this let fix some notation.

Let S∞ be the collection of all Archimedean places ofF . Denote byX∞
the collection of all infinite fibers ofπ . That is,X∞ = {Xσ }σ∈S∞ with Xσ

a Riemann surface of genusq associated toXF corresponding to the natural
inclusionF ↪→ Fσ ↪→ C. Here as usualFσ denote theσ -completion ofF .

Let ds2 be a quasi-hyperbolic metric onX∞, by which we meands2 =
{ds2σ }σ∈S∞ is a collection of quasi-hyperbolic metrics on{Xσ }σ∈S∞ . Denote as-
sociated normalized volume forms byω := {ωσ }σ∈S∞ . By definition, anω-
admissible Hermitian line bundle(L, ρ) onX is a line bundleL onX together
with a Hermitian metricρ = {ρσ }σ∈S∞ on the line bundle{Lσ }σ∈S∞ overX∞
induced fromL such that(Lσ , ρσ ) isωσ -admissiblemetric onXσ for all σ ∈ S∞.

Let τ = {τσ }σ∈S∞ be anω-admissible metric onKπ . Then by applying con-
structions in Sect.1.3 and Sect.1.4 for determinant metrics and Deligne metrics
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for {ρσ }σ∈S∞ and {τσ }σ∈S∞ , we get the following metrized line bundles onS:
(λ(L), hdet(ρ; τ)), 〈(L, ρ), (L, ρ) ⊗ (Kπ, τ )

⊗−1〉, 〈(Kπ, τ ), (Kπ, τ )〉. (That is
to say, for eachσ ∈ S∞, apply the constructions of Deligne metrics and deter-
minant metrics forωσ -admissible metricsρσ andτσ .) Put the trivial metric 1
onOS(∆π), i.e., in terms of [La2], the metrized line bundle(OS(∆π),1) on S
corresponding to the Arakelov divisor∆π .

With this, we may state our main result in this Part.

Arithmetic Deligne-Riemann-Roch isometry for singular metrics.Let π :
X → S be a semi-stable regular arithmetic surface. Letω be the normalized
volume form for quasi-hyperbolic metrics onX∞. Let(L, ρ) be anω-admissible
metrized line bundle onX, and τ be anω-admissible metric on the relative
dualizing bundleKπ of π . Then we have a canonical isometry

(
λ(L), hdet(ρ, τ )

)⊗12 �
〈
(L, ρ), (L, ρ)⊗ (Kπ , τ )

⊗−1
〉⊗6

⊗
〈
(Kπ , τ ), (Kπ , τ )

〉
⊗ (OS(∆π),1) · ea(q).

Here∆π := ∑
v∈S δv[v] (with δv the number of double points on the fiberXv

of X at v) denotes the discriminant divisor onS associated toπ anda(q) :=
(1− q)(24ζ ′

Q(−1)− 1) denotes the Deligne constant.

Proof.First use (1.1) and (1.2), from singularω-admissible metricsτ andρ on
Kπ andL, we obtain smoothωcan-admissible metricsτcan andρcan. (That is to
say, we first do it for all infinite fibersXσ , then put them together overX∞.)
With this, by definition,hdet(ρ; τ) = hQ(ρcan; τcan). In particular, now we may
apply the original Deligne-Riemann-Roch isometry for smooth metrics to get
the isometry

(
λ(L), hQ(ρcan, τcan)

)⊗12 �
〈
(L, ρcan), (L, ρcan)⊗ (Kπ , τcan)

⊗−1
〉⊗6

⊗
〈
(Kπ , τcan), (Kπ , τcan)

〉
⊗ (OS(∆π),1) · ea(q).

On the other hand, by the Mean Value Lemma II, we have (first fiberwise at
infinity then globally) the isometries

〈
(L, ρcan), (L, ρcan)⊗ (Kπ , τcan)

⊗−1
〉
�

〈
(L, ρ), (L, ρ)⊗ (Kπ , τ )

⊗−1
〉

and 〈
(Kπ , τcan), (Kπ , τcan)

〉
�

〈
(Kπ , τ ), (Kπ , τ )

〉
.
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Therefore,(
λ(L), hdet(ρ, τ )

)⊗12 �
(
λ(L), hQ(ρcan, τcan)

)⊗12

�
〈
(L, ρ), (L, ρ)⊗ (Kπ , τ )

⊗−1
〉⊗6

⊗
〈
(Kπ , τ ), (Kπ , τ )

〉
⊗ (OS(∆π),1) · ea(q).

This completes the proof.

Family of Riemann surfaces:Next, we indicate a necessary modification in
order to get aDeligne-Riemann-Roch isometry for singularmetrics over families
of Riemann surfaces.

Let π : X → S be a flat family of compact Riemann surfaces of genus
q. Clearlyπ is also projective. Denote byKπ the relative canonical line bun-
dle of π . Let P1, . . . ,PN beC∞-sections ofπ . Let κ be a smooth metric on
Kπ |X\∪N

i=1Pi
. Moreover we assume that for any pointm ∈ S, onXm := π−1(m),

the restriction(Kπ, κ)|Xm\Xm∩∪N
i=1Pi

induces a quasi-hyperbolicds2m onX0
m :=

Xm\Xm ∩ ∪N
i=1Pi . Denote the corresponding normalized volume form byωm.

By definition, anω-admissible metrized line bundle(L, ρ) onX consists of a
line bundleL onX and a Hermitian metricρ onL|X\∪N

i=1Pi
such that(L, ρ)|Xm

isωm-admissible.
From the definition, by the Proposition of Sect.1.2, ifρ1 andρ2 are twoω-

admissiblemetrics on the same line bundleL, then there exists a smooth function
f on S such thatρ1 = ρ2 · eπ∗f . Moreover, it is easy to see that the gluing of
ωm-Arakelov metricsτAr;ωm onKXm

gives anω-admissible metricρAr;ω onKπ .
And, if we have a holomorphic sectionR ofπ , the gluing ofωm-Arakelovmetrics
ρAr;ωm;R:=R∩Xm

onOXm
(R) gives anω-admissible metricρAr;ω;R onOX(R).

To facilitate the ensuing discussion, let us recall the Deligne-Riemann-Roch
isometry for smooth metrics.

So let(L, ρ) be a metrized line bundle onX with ρ smooth. Then for any
smooth metricτ on Kπ , we have the corresponding Quillen metrichQ(ρ; τ)
on λ(L). (See Sect.1.4 for details.) Also, if(L′, ρ ′) is another metrized line
bundle onX with ρ2 smooth, by (1.5), we have the metrized Deligne pairing
〈(L, ρ), (L′, ρ ′)〉 onS, which is usually denoted as(〈L,L′〉, hD(ρ, ρ ′)) as well.
As above, we callhD(ρ, ρ ′) the Deligne metric.

Deligne-Riemann-Roch isometry for smooth metrics ([De2]).Letπ : X → S

be a flat family of compact Riemann surfaces withKπ the relative canonical line
bundle. Then for any smooth metrized line bundle(L, ρ) onX, and any smooth
metricτ onKπ , we have the following canonical isometry

(λ(L), hQ(ρ; τ))⊗12 � 〈(L, ρ), (L, ρ)⊗ (Kπ, τ )
⊗−1〉⊗6

⊗〈(Kπ, τ ), (Kπ, τ )〉 · ea(q).
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To give a corresponding isometry forω-admissible metrics, we do as before
by using the projection formula for metrized Deligne pairing. More precisely,
this goes as follows:

First, note that for any pointm ∈ S, we may choose a small neighborhood
Um such thatL|π−1(Um)may bewritten as a divisor line bundleOπ−1(Um)(

∑
aiRi)

with Ri holomorphic sections ofπ−1(Um) → Um, disjoint fromPi ’s, as a di-
rect consequence of the fact thatπ is projective. Thus, in particular, there exists
a smooth functionfm onUm such that overπ−1(Um), ρ = ⊗ρ⊗ai

Ar;ω;Ri
· eπ∗(fm).

Hence, in particular, we get a natural smoothmetricρcan := ⊗ρ⊗ai
Ar;ωcan;Ri

·eπ∗(fm).
Hereωcan corresponds to the standard canonical volume forms on fibers. More-
over, as in the Key Lemma of Sect.1.2,ρcandepends only onρ and in particular
does not depend on the choice of the divisors used in the definition. By moving
m ∈ S, we then get a unique smoothωcan-admissible metric, also denote byρcan,
of L on the wholeX. Similarly, fromω-admissible metricτ onKπ , by using
ω-Arakelov metricτAr;ω, as above, we get a smoothωcan-admissible metricτcan
onKπ .With this, we define the determinant metrichdet(ρ; τ) onλ(L) for (L, ρ)
with respect to(Kπ, τ ) by setting

hdet(ρ; τ) := hQ(ρcan; τcan) (1.12)

which is compactible with (1.7).
Secondly, by using the same proof of the Mean Value Lemma II, we obtain

also the family version of Mean Value Lemma II for Deligne metrics. More
precisely, we have the following

Mean value lemma II′′.With the same notation as above,

(1) on〈L,L′〉,
hD(ρ, ρ

′) = hD(ρcan; ρ ′
can);

(2) on〈Kπ,Kπ 〉,
hD(τ, τ ) = hD(τcan; τcan);

(3) on〈L,Kπ 〉,
hD(ρ, τ ) = hD(ρcan; τcan).

Proof. We only prove (1) as the proof for others are similar. That is to say,
on 〈L,L′〉 over S, we should check that two metrics are the same. Hence, it
suffices to do it locally.With the same notation as above, overπ−1(Um), we have
ρ = ⊗ρ⊗ai

Ar;ω;Ri
· eπ∗(f ) onL|π−1(Um) = Oπ−1(Um)(

∑
aiRi) for a certain smooth

function f on Um. Moreover, if necessary, by shrinkingUM , we may assume
thatL′|π−1(Um) = Oπ−1(Um)(

∑
a′
iR

′
i) for some sectionsR′

i , disjoint fromPi ’s
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andRj ’s. Thusρ ′ = ⊗ρ⊗a′
i

Ar;ω;R′
i
· eπ∗(f ′) for a certain smooth functionf ′ onUm.

Clearly, from the definition of Deligne metrics (1.5), we have overUm,〈(
Oπ−1(Um)

(∑
aiRi

)
,⊗ρ⊗ai

Ar;ω;Ri
· eπ∗(f )

)
,(

Oπ−1(Um)

(∑
a′
iR

′
i

)
,⊗ρ⊗a′

i

Ar;ω;R′
i
· eπ∗(f ′)

)〉
=

〈(
Oπ−1(Um)

(∑
aiRi

)
,

⊗ρ⊗ai
Ar;ω;Ri

,
(
Oπ−1(Um)

(∑
a′
iR

′
i

)
,⊗ρ⊗a′

i

Ar;ω;R′
i

)〉
· ef ·dπ (L′)+f ′·dπ (f )

)
,

which is what we usually would call a projection formula for metrized Deligne
pairings. But, by using the Mean Value Lemma II′, we have first pointwise then
overUm〈(

Oπ−1(Um)

(∑
aiRi

)
,⊗ρ⊗ai

Ar;ω;Ri

)
,
(
Oπ−1(Um)

(∑
a′
iR

′
i

)
,⊗ρ⊗a′

i

Ar;ω;R′
i

)〉
=

〈(
Oπ−1(Um)

(∑
aiRi

)
,⊗ρ⊗ai

Ar;ωcan;Ri

)
,
(
Oπ−1(Um)

(∑
a′
iR

′
i

)
,⊗ρ⊗a′

i

Ar;ωcan;R′
i

)〉
.

Therefore, by using the standard projection formula for metrizedDeligne pairing
again, we have finally〈(

Oπ−1(Um)

(∑
aiRi

)
,⊗ρ⊗ai

Ar;ω;Ri
· eπ∗(f )

)
,(

Oπ−1(Um)

(∑
a′
iR

′
i

)
,⊗ρ⊗a′

i

Ar;ω;R′
i
· eπ∗(f ′)

)〉
=

〈(
Oπ−1(Um)

(∑
aiRi

)
,⊗ρ⊗ai

Ar;ωcan;Ri
· eπ∗(f )

)
,(

Oπ−1(Um)

(∑
a′
iR

′
i

)
,⊗ρ⊗a′

i

Ar;ωcan;R′
i
· eπ∗(f ′)

)〉
.

That is to say,
hD(ρ, ρ

′) = hD(ρcan; ρ ′
can).

This completes the proof.
Nowbydefinitionand theaboveDeligne-Riemann-Roch isometry for smooth

metrics, we have

(λ(L), hdet(ρ; τ))⊗12 = (λ(L), hQ(ρcan; τcan))⊗12

� 〈(L, ρcan), (L, ρcan)⊗ (Kπ, τcan)
⊗−1〉⊗6 ⊗ 〈(Kπ, τcan), (Kπ, τcan)〉 · ea(q).

Therefore, by applying the above Mean Value Lemma II′′, we finally obtain the
following generalization of the fundamental Deligne-Riemann-Roch isometry.

Deligne-Riemann-Roch isometry for singular metrics.Let π : X → S be
a flat family of compact Riemann surfaces withKπ the relative canonical line
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bundle. Then for anyω-admissiblemetrized line bundle(L, ρ) onX, with respect
to a fixedω-admissiblemetricτ onKπ , we have the following canonical isometry(

λ(L), hQ(ρ; τ)
)⊗12 �

〈
(L, ρ), (L, ρ)⊗ (Kπ, τ )

⊗−1
〉⊗6

⊗
〈
(Kπ, τ ), (Kπ, τ )

〉
· ea(q).

Part II. Deligne pairings over moduli spaces of marked stable curves

In this part, we first introduce several line bundles over Knudsen-Deligne-
Mumford compactification of the moduli space (or rather the algebraic stack) of
stableN -pointedalgebraic curvesof genusg,whichare rather natural and include
Weil-Petersson, Takhtajan-Zograf and logarithmic Mumford line bundles. Then
we use Deligne-Riemann-Roch isomorphism and its metrized version (proved in
Part I) to establish some fundamental relations among these line bundles. Finally,
we compute first Chern forms of the metrizedWeil-Petersson, Takhtajan-Zograf
and logarithmicMumford line bundles by using results ofWolpert andTakhtajan-
Zograf, and show that the so-calledTakhtajan-Zografmetric on themodule space
is algebraic.

As for the language, we have the following remarks. Of course, I amworking
with moduli stacks rather than with moduli spaces. For the reader who is not
familiar with stacks, this means that I am allowed to pretend that moduli spaces
are smooth and that there are universal families over them. Thus, it is more
economic to simply use ordinary language rather than those in stacks.

2.1. Weil-Petersson line bundles and Takhtajan-Zograf line bundles

We start with some general facts about moduli spaces of marked stable curves.
For details, please consult [DM], [Kn] and [KM].

Denote byMg,N themoduli space of smooth projective irreducible curvesM

of genusg together withN ordered marked pointsP1, . . . , PN . It is well-known
thatMg,N is not compact and has a natural compactificationMg,N constructed
byKnudsen,DeligneandMumfordbyadding the so-called stablemarked curves.

As algebraic stack language is assumed here, wemay assume that there exists
a universal curve

π := πg,N : Cg,N → Mg,N ,

which hasN -sectionsP1, . . .PN such thatPi ∩ Pj = ∅ for all i �= j with
1 ≤ i, j ≤ N . So for anyx = [(M;P1, . . . , PN)] ∈ Mg,N , π−1(x) = M and
Pi ∩ M = Pi , i = 1, . . . , N , which are not only ordered but distinct. In fact,
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Cg,N = Mg,N+1, andπ is essentially the map of dropping the last marked points
PN+1’s. (More correctly, if by droppingPN+1, we get a rational curve together
with only two marked points, then we have to contract this component.)

The boundary ofMg,N has a natural algebraic structure, from which wemay
obtain naturally a normal crossing divisor∆bdy of Knudsen-Deligne-Mumford,
which may be described roughly as follows.

As a divisor onMg,N ,

∆bdy =:=
[ q2 ]∑
i=0

∆i +
∑

S⊂{1,...,N},#S≥2
∆S.

Here irreducible divisors∆i and∆S may be understood via the universal curve
as follows: (See e.g., [Kn].)

(1)∆i ’s come from degenerations of compact Riemann surfaces. In particular,
for a general point of∆0, the corresponding fiber ofπ is a genusq curvewith one
non-separating node, together withN -puncturesP1, . . . , PN ; while for a general
point of∆i , i = 1, . . . , [ q2], the corresponding fiber is a genusq curve with one
separating node, together withN -marked pointsP1, . . . , PN , so that the only
two irreducible components are smooth and of generai andq − i respectively.

(2)∆S ’s come from degenerations of punctures. In particular, for any subsetS

of {1, . . . , N} with cardinal number #S at least two, the fiber ofπ over a general
point in∆S consists of two irreducible components, one is the original curve
M together withN − #S marked points, and the other is the projective lineP1

together with remaining #S > 2 marked points.

Moreover, we know thatπ is flat. (See e.g., [Kn].) Hence, the relative dualiz-
ing sheaf ofπ is indeed invertible. Denote the coresponding line bundle onCg,N
byKπ , and call it the relative canonical line bundle ofπ .

With this, wemay state a fundamental result of Deligne-Mumford as follows:

Deligne-Riemann-Roch isomorphism for stable curves ([De2], [Mu3], see
also [We2]).With the same notation as above, for any line bundleL on Cg,N ,
there exists a canonical isomorphism

λ(L)⊗12 � 〈L,L⊗K⊗−1
π 〉⊗6 ⊗ 〈Kπ,Kπ 〉 ⊗∆bdy.

Before ending the discussion onMg,N , we recall a few standard relations be-
tween relative canonical line bundleKπ and line bundlesOCg,N (Pi)’s of sections
Pi ’s from [Kn]. For this, we need the following commutative diagram, which
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may be checked from the definition:

Mg,N+1 = Cg,N
φg,N→ Cg,N−1 = Mg,N

πg,N ↓ ↓ πg,N−1

Mg,N

πg,N−1→ Mg,N−1 .

Hereφg,N viewed as a morphism fromMg,N+1 toMg,N is essentially the mor-
phism defined by dropping the second to the last marking. Moreover, for sim-
plicity, we often usePi to denoteOCg,N (Pi). Also, if we need to emphasis the
fact that the number of marked points isN , we writeKπ asKπg,N andPi asPi,N .

Standard facts ([Kn II]). With the same notation as above, overMg,N ,
(a) 〈Pi ,Pj 〉 � O, if i, j = 1, . . . , N andi �= j ;
(b) 〈Kπ(Pi),Pi〉 � O, if i = 1, . . . , N ;

(c) 〈Kπg,N ,Pi,N 〉 �
(
π∗
g,N−1〈Kπg,N−1,Pi,N−1〉

)
(Pi,N−1), if i = 1, . . . , N − 1;

(d) 〈Kπg,N ,PN,N 〉 � Kπg,N−1(P1,N−1 + · · · + PN−1,N−1).
As usual, we call (b) the relative adjunction isomorphism. (Deligne pairings are
not used in Knudsen’s original papers [Kn]. But the verbatim change is rather
trivial.)

Now we are ready to use Deligne-pairing formalism and Grothendieck-
Mumford determinant formalism to construct the following new line bundles
overMg,N .

Basic definition II. (i) TheWeil-Petersson line bundle∆WPoverMg,N is defined
by setting

∆WP :=
〈
Kπ(P1 + · · · + PN),Kπ(P1 + · · · + PN)

〉
;

(ii) The (total) Takhtajan-Zograf line bundle∆TZ overMg,N is defined by setting

∆TZ :=
〈
Kπ,OCg,N (P1 + · · · + PN)

〉
;

(iii) Them-th logarithmic Mumford type line bundleλm overMg,N is defined by
setting

λm :=


λ
(
K⊗m
π ((m− 1)P1 + · · · + (m− 1)PN)

)
, if m ≥ 1;

λ
((
(Kπ(P1 + · · · + PN))

∨)⊗−m)
, if m ≤ 0.
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Proposition.With the same notation as above, there exists the following canon-
ical isomorphism

λm � λ1−m for m ≤ 0.

Proof. This is a direct consequence of the Serre duality for the cohomology, by
definition.

2.2. Logarithmic Mumford type isomorphisms

In this section, we prove the following

Fundamental relation I. (Logarithmic Mumford Type Isomorphisms)Over the
moduli spaceMg,N of N -punctured Riemann surfaces of genusg, there exist
the following canonical isomorphisms:

λ⊗12
m � ∆

⊗(6m2−6m+1)
WP ⊗∆⊗−1

TZ ⊗∆bdy for m ≥ 0.

Proof. There are three ingredients in this proof.
(1) The algebraic Deligne-Riemann-Roch isomorphism

λ(L)⊗12 � 〈L,L⊗K−1
π 〉⊗6 ⊗ 〈Kπ,Kπ 〉 ⊗∆bdy;

(2) Standard Fact (a), which comes from the fact that two sectionsPi andPj
never meet inCg,N , i.e.,

〈Pi ,Pj 〉 � O
if i �= j . Here for simplicity, we usePi to denote the line bundleO(Pi). (This
convention applies to all calculations.)
(3) Standard Fact (b), the Relative Adjunction Isomorphism, i.e.,

〈Kπ(Pi),Pj 〉 � O.

Indeed, ifm = 0, by (1), we have

λ⊗12
0 � 〈O,O ⊗K−1

π 〉⊗6 ⊗ 〈Kπ,Kπ 〉 ⊗∆bdy � 〈Kπ,Kπ 〉 ⊗∆bdy.

So it suffices to prove the following

Lemma. With the same notation as above,〈Kπ,Kπ 〉 � ∆WP ⊗∆⊗−1
TZ .

Proof of the lemma.By definition,

∆WP ⊗∆⊗−1
TZ = 〈Kπ(P1 + · · · + PN),Kπ(P1 + · · · + PN)〉

⊗〈Kπ,P1 + · · · + PN 〉⊗−1

= 〈Kπ,Kπ 〉 ⊗ 〈Kπ(P1 + · · · + PN),P1 + · · · + PN 〉.
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Hence, we only need to prove the following

Lemma′. With the same notation as above,

〈Kπ(P1 + · · · + PN),P1 + · · · + PN 〉 � O.

Proof of the lemma′. Use an induction onN . If N = 0, there is nothing to prove.
If N = 1, the result is given by (3), the relative adjunction isomorphism. Hence
we may assume that the latest isomorphism holds forN and try to show that it
also holds forN + 1, i.e.,

〈Kπ(P1 + · · · + PN + PN+1),P1 + · · · + PN + PN+1〉 � O.

Clearly, the left hand side is simply

〈Kπ(P1 + · · · + PN),P1 + · · · + PN 〉
⊗〈Kπ(P1 + · · · + PN),PN+1〉 ⊗ 〈PN+1,P1 + · · · + PN 〉 ⊗ 〈PN+1,PN+1〉.

Moreover, by the induction hypothesis and (2) above, both the first and the third
factors are isomorphic toO. Hence we only need to show that

〈Kπ(P1 + · · · + PN),PN+1〉 ⊗ 〈PN+1,PN+1〉 � O.

But by (2) again, the left hand side is simply〈Kπ,PN+1〉 ⊗ 〈PN+1,PN+1〉, or
better,〈Kπ(PN+1),PN+1〉,which is indeed trivial from (3), the relativeadjunction
isomorphism. This completes the proof of the lemma′, the lemma, and hence the
Fundamental Relation I whenm = 0.

Now form ≥ 1, by definition, and (1), we have

λ⊗12
m �

〈
mKπ + ((m− 1)P1 + · · · + (m− 1)PN),mKπ

+((m− 1)P1 + · · · + (m− 1)PN)−Kπ

〉⊗6 ⊗ 〈Kπ,Kπ 〉 ⊗∆bdy

=
〈
mKπ + ((m− 1)P1 + · · · + (m− 1)PN),

Kπ(P1 + · · · + PN)〉⊗6(m−1) ⊗ 〈Kπ,Kπ

〉
⊗∆bdy.

Thus by the lemma above, it suffices to show that

〈mKπ + ((m− 1)P1 + · · · + (m− 1)PN),Kπ(P1 + · · · + PN)〉 � ∆⊗m
WP.

Clearly, by the linearity, the left hand side is isomorphic to〈
Kπ(P1 + · · · + PN),Kπ(P1 + · · · + PN)〉⊗m

⊗〈P1 + · · · + PN,Kπ(P1 + · · · + PN)
〉⊗−1

.

Thusby the lemma′ above,we completes the proof of theFundamentalRelation I.
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2.3. Comparision betweenWeil-Petersson and Takhtajan-Zograf line bundles

Weil-Petersson metrics have been studied for many years. By contrast, very
little is known about Takhtajan-Zograf metrics on moduli spaces defined by
using Eisenstein series. In this section, we prove a result which compares Weil-
Petersson line bundles with Takhtajan-Zograf line bundles.

We begin with the following definition: A line bundleL onMg,N , for our
own convinence, is calledgenerically positive in dimension oneand denoted by
L ≥ 0 if for any irreducible curveC with support not all in the boundary of
Mg,N , deg(L

∣∣
C
) ≥ 0.

Fundamental relation II. (Comparison betweenWeil-Petersson andTakhtajan-
Zograf)Over the moduli spaceMg,N ,

∆⊗N2

WP ≤ ∆
⊗(2g−2+N)2
TZ .

Before proving this relation, we would like to recall a result in a recent book
of Harris and Morrison on: Moduli of Curves. At pages 308 and 309, they show
the following

Basic inequality ([HM]). OverMg,1, i.e., on the universal curve over moduli
space of compact Riemann surfacesMg,

4g(g − 1)Kπg,0 ≥ 12λ1 −∆bdy.

Harris and Morrison emphasize the importance of this inequality by calling
it the basic inequalityand ask in general how to find such an inequality for all
g,N , which I learned at the beginning of 1999, after the first version of this paper
was written.

Claim. The Basic Inequality is equivalent to the special case whenN = 1of our
Fundamental Relation II.

Indeed, since Harris and Morrison work overMg,1, so the total Takhtajan-
Zograf line bundle∆TZ is simply 〈Kπ,P1〉, which by standard fact (d) in Sect.
2.1 is nothing but the relative canonical line bundleK = Kπg,0 of the morphism
πg,0 : Mg,1 → Mg. Hence, the Basic Inequality may be rewritten as

4g(g − 1)∆TZ ≥ 12λ1 −∆bdy.

On the other hand, by our Fundamental Relation I withm = 1,

12λ1 −∆bdy = ∆WP −∆TZ.
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Thus, the Basic Inequality is equivalent to

4g(g − 1)∆TZ ≥ ∆WP −∆TZ.

That is,(2g − 1)2∆TZ ≥ ∆WP, or better,

∆⊗12
WP ≤ ∆

⊗(2g−2+1)2

TZ ,

which certainly is the special case of our Fundamental Relation II whenN = 1.

Proof of Fundamental relation II.We start with the following

Standard fact (e). Let f : S → C be a fibration of curves from a regular
projectivesurfaceS toa regular projectivecurveC.Assume thatL is a linebundle

on S which has relative degree zero, i.e., for any fiberF of f , deg(L
∣∣∣
F
) = 0.

Then the self-intersection(L,L) ≤ 0.

Proof. By a result of Néron-Tate (see e.g. [La]), we know that there exists a
unique vertical divisor

∑
j ajFj such that

(i) the self-intersection ofL(
∑

j ajFj ) is negative, possibly zero;

(ii) for any irreducible vertical prime divisorF ′, deg
((
L(

∑
j ajFj )

)∣∣∣
F ′

)
= 0.

Therefore, if we denote by(X, Y ) the intersection number of the line bundles
or divisorsX andY onS, then, by (ii),( ∑

k

akFk,
∑
k

akFk

)
=

∑
j,k

ajak

(
Fj , Fk

)
= −

∑
k

ak

(
L,OS(Fk)

)
.

But, by (i), we have

0 ≥ (L,L)+ 2
∑
k

ak

(
L,OS(Fk)

)
+

( ∑
k

akFk,
∑
k

akFk

)

= (L,L)−
( ∑

k

akFk,
∑
k

akFk

)
≥ (L,L),

since the matrix
(
(Fj , Fk)

)
is negative definite. This completes the proof of the

standard fact (e).

Nowon theuniversal curveCg,N , consider thedifferenceNKπ−(2g−2)(P1+
· · · + PN). Obviously, the vertical degree of this difference is simply zero. Thus
by using the standard fact (e), and putting it in the form of Deligne pairing, we
see that

〈NKπ − (2g − 2)(P1 + · · · + PN),NKπ − (2g − 2)(P1 + · · · + PN)〉 ≤ 0.
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That is to say,

0 ≥ 〈N
(
Kπ(P1 + · · · + PN)

)
− (2g − 2+N)(P1 + · · · + PN),

N
(
Kπ(P1 + · · · + PN)

)
− (2g − 2+N)(P1 + · · · + PN)〉

= N2〈Kπ(P1 + · · · + PN),Kπ(P1 + · · · + PN)〉
−2N(2g − 2+N)〈Kπ(P1 + · · · + PN),P1 + · · · + PN 〉
+(2g − 2+N)2〈P1 + · · · + PN,P1 + · · · + PN 〉.

But by the lemma′ in the previous section, we conclude that

〈Kπ(P1 + · · · + PN),P1 + · · · + PN 〉 = 0

and that

〈P1 + · · · + PN,P1 + · · · + PN 〉 = −〈K,P1 + · · · + PN 〉.
So, by definition, we finally have

N2∆WP ≤ (2g − 2+N)2∆TZ.

This completes the proof of the Fundamental Relation II.

We suggest the reader to compare our Fundamental Relation II with the Basic
Inequality of Harris-Morrison: While the basic inequality does give an exact
relation between various line bundles over universal curves, our Fundamental
Relation II exposes an intrinsic relation between∆WP and∆TZ. It is in this sense
we prefer the Fundamental Relation II. Indeed, with our Fundamental Relation
II, we may use Weil-Petersson metric to guide the study of Takhtajan-Zograf
metric. This is in fact very fruitful. For examples,

(1) Recently, K. Obitsu [Ob] shows that Takhtajan-Zograf metric is incomplete,
motivated by a result of Wolpert for Weil-Petersson metric.
(2) Motivated by our Fundamental Relation II and the fact that holomorphic
sectional curvature of Weil-Petersson metric on the Teichm¨uller spaceTg,N is
bounded from above by− 1

π(2g−2+N) , as proved in the appendix, we make the
following

Conjecture.The holomorphic sectional curvature of the Takhtajan-Zograf met-
ric is bounded from above by− 1

πN
.

2.4. Xiao and Cornalba-Harris type inequalities

In this section, we prove Xiao and Cornalba-Harris type inequalities overMg,N ,

N ≥ 1, which hence answer a question asked in [CH]. For simplicity, we here
assume thatN ≥ 3. (N = 1,2 cases pave a similar way.)



Ω-admissible theory. II 271

Clearly, then the Chow point for any regular projective curveC correspond-
ing to the map given by the complete linear system|KC(P1 + · · · + PN)| is
automatically stable. (See e.g., [Mu2, Thm 4.15].) In addition,h0(C,KC(P1 +
· · · +PN)) = g− 1+N . Hence, by applying a fundamental result of Cornalba-
Harris, i.e., Theorem 1.1, or better, Proposition 2.9 of [CH], we know that the
line bundle

〈(g − 1+N)
(
Kπ(P1 + · · · + PN)

)
− π∗λ

(
Kπ(P1 + · · · + PN)

)
,

(g − 1+N)
(
Kπ(P1 + · · · + PN)

)
− π∗λ

(
Kπ(P1 + · · · + PN)

)
〉

is generically positive in dimension one. That is to say, in our notation introduced
in Sect.2.3,

0 ≤
〈
(g − 1+N)

(
Kπ(P1 + · · · + PN)

)
+ π∗λ

(
Kπ(P1 + · · · + PN)

)
,

(g − 1+N)
(
Kπ(P1 + · · · + PN)

)
+ π∗λ

(
Kπ(P1 + · · · + PN)

)〉
= (g − 1+N)2

〈
Kπ(P1 + · · · + PN),Kπ(P1 + · · · + PN)

〉
−2(g − 1+N)

〈
Kπ(P1 + · · · + PN), π

∗λ
(
Kπ(P1 + · · · + PN)

)〉
+

〈
π∗λ

(
Kπ(P1 + · · · + PN)

)
, π∗λ

(
Kπ(P1 + · · · + PN)

)〉
= (g − 1+N)2

〈
Kπ(P1 + · · · + PN),Kπ(P1 + · · · + PN)

〉
−2(g − 1+N)(2g − 2+N)λ

(
Kπ(P1 + · · · + PN)

)
.

Therefore,

(g − 1+N)∆WP ≥ 2(2g − 2+N)λ
(
Kπ(P1 + · · · + PN)

)
.

Next we compareλ
(
Kπ(P1 + · · · + PN)

)
with λ1.

Lemma.With thesamenotationasabove, up to torsion,λ
(
Kπ(P1+· · ·+PN)

)
=

λ1.

Proof. One actually can prove this relation without modulo torsions. But, as
our final goal in this section is to show a certain generic positivity, so we pay no
attention to torsion bundles. Indeed, by theDeligne-Riemann-Roch isomorphism
recalled in Sect.2.1, we see that

λ
(
Kπ(P1 + · · · + PN)

)⊗2

= λ⊗2
1 ⊗ 〈Kπ(P1 + · · · + PN),Kπ(P1 + · · · + PN)−Kπ 〉

= λ⊗2
1 ⊗ 〈Kπ(P1 + · · · + PN),P1 + · · · + PN 〉

= λ⊗2
1 (by the lemma′ in Sect.2.3).
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This completes the proof of the lemma.

As a direct consequence, we have the following

Corollary. With the samenotation as above,(g−1+N)∆WP ≥ 2(2g−2+N)λ1.

To go further, we first recall the Xiao and Cornalba-Harris inequality. As
usual, setλ := λ1.

Fundamental relation III(i). ([Xi] and [CH]) Over the moduli spaceMg,

(
8+ 4

g

)
λ ≥ ∆bdy.

Thus to get a generalization of the Xiao and Cornalba-Harris inequality from
N = 0 to generalN , in the corollary above, we should remove∆WP. This can
be done, since by the Fundamental Relation I, we have

12λ1 = ∆WP −∆TZ +∆bdy.

Therefore, from Corollary, we have

12λ1 ≥ −∆TZ +∆bdy + 2(2g − 2+N)

g − 1+N
λ1.

This then implies the following

Fundamental relation III(ii). (Xiao andCornalba-Harris Type Inequality)Over
Mg,N , N ≥ 1, we have

(
8+ 2N

g − 1+N

)
λ+∆TZ ≥ ∆bdy.

Recently, Moriwaki brings to our attention a result of R. Hain [H], in which a
result similar to the Fundamental Relation III(ii) in the caseN = 1 is established,
by using intermediate Jacobian, Morita fundamental cycles, and Moriwaki’s
sharp result in [Mo] for line bundles overMg.

We end our study on algebiarc aspect of Deligne pairings with the following
comment. In this paper, we only study Deligne pairings associated to universal
curves over moduli spaces. Similarly, we may use Deligne pairings to study the
tower of moduli spaces. For details, see e.g., [WZ].
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2.5. Logarithmetic Mumford type isometries

From now on, we study the corresponding metric aspect of Deligne pairings.
Hence, we only work overMg,N , view it as the moduli space of punctured
Riemann surfaces of genusg with N -punctures. ThusV -manifold language is
assumed here.

Let π : Cg,N → Mg,N denote the universal curve over the (open) moduli
spaceMg,N corresponding punctured Riemann surfacesM0 of genusg with N
punctures. Denote byP1, . . . ,PN the sections corresponding toN punctures.
Naturally, we then obtain onCg,N the following line bundles: the relative canon-
ical line bundleKπ ,OCg,N (P1 + · · · + PN), andKπ(P1 + · · · + PN).

To metrize these line bundles, we useωhyp-admissible metrics introduced
in Sect.1.5. So assume that 2g − 2+ N > 0. Then by uniformization theory,
the fibersM0 of π naturally admit standard hyperbolic metrics (induced from
the Poincar´e metric on the upper half plane). Moreover, by the decomposition
introduced in Sect.1.5, we get the fiberwise canonicalωhyp-admissible metrics
ρhyp;KM

, ρhyp;Pi andρhyp;KM(P1+···+PN) onKM ,OM(Pi) andKM(P1 + · · · + PN)

respectively. HereM denotes the smooth compactification ofM0 andPi denotes
Pi ∩ M, i.e., the punctures ofM0, i = 1, . . . , N . Hence, gluing them along
with Mg,N , we finally obtain naturalωhyp-admissible metricsρhyp;Kπ

, ρhyp;Pi
andρhyp;Kπ(P1+···+PN) on line bundlesKπ ,OCg,N (Pi), andKπ(P1 + · · · + PN) on
Cg,N , i = 1, . . . , N . For simplicity, denote these resulting metrized line bundles
byKπhyp

, P1 + · · · + PNhyp
, andKπ(P1 + · · · + PN)hyp respectively.

Now for m ≥ 1, setL̄ = K⊗m
π

(
(m− 1)P1 + · · · + (m− 1)PN

)
hyp
, i.e., the

tensorof theadmissiblymetrized linebundleKπ
⊗m
hyp

with
(
P1 + · · · + PNhyp

)⊗m−1
.

Moreover, assume that the base metric is given by the metrized line bundle
Kπhyp

. Clearly all thesemetrized line bundles areωhyp-admissible in the sense of
Sect.1.6, hence wemay apply our Deligne-Riemann-Roch isometry for singular
metrics proved in Sect.1.6, which says that the determinantmetrichdet(ρ

⊗m
hyp;Kπ

⊗( ⊗N
i=1 ρhyp;Pi

)⊗m−1; ρhyp;Kπ
) onλm satisfies the Deligne-Riemann-Roch isome-

try. That is to say, we have the canonical isometry

(
λm, hdet(ρ

⊗m
hyp;Kπ

⊗ ( ⊗N
i=1 ρhyp;Pi

)⊗m−1; ρhyp;Kπ
)
)⊗12

�
〈
K⊗m
π

(
(m− 1)P1 + · · · + (m− 1)PN

)
hyp
,

K⊗m
π

(
(m− 1)P1 + · · · + (m− 1)PN

)
hyp

⊗Kπ
⊗−1
hyp

〉⊗6

⊗
〈
Kπhyp

,Kπhyp

〉
· ea(g).
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Thus,

(
λm, hdet(ρ

⊗m
hyp;Kπ

⊗ ( ⊗N
i=1 ρhyp;Pi

)⊗m−1; ρhyp;Kπ
)
)⊗12

�
〈
Kπ(P1 + · · · + PN)hyp,Kπ(P1 + · · · + PN)hyp

〉⊗6m(m−1)

⊗
〈
P1 + · · · + PNhyp

,Kπ(P1 + · · · + PN)hyp

〉⊗−6(m−1)

⊗
〈
Kπhyp

,Kπhyp

〉
· ea(g)

=
〈
Kπ(P1 + · · · + PN)hyp,Kπ(P1 + · · · + PN)hyp

〉⊗6m(m−1)

⊗
〈
P1 + · · · + PNhyp

,Kπ(P1 + · · · + PN)hyp

〉⊗−6(m−1)

⊗
〈
Kπ(P1 + · · · + PN)hyp,Kπ(P1 + · · · + PN)hyp

〉
⊗

〈
Kπhyp

,P1 + · · · + PNhyp

〉⊗−1

⊗
〈
Kπ(P1 + · · · + PN)hyp,P1 + · · · + PNhyp

〉⊗−1 · ea(g)

=
〈
Kπ(P1 + · · · + PN)hyp,Kπ(P1 + · · · + PN)hyp

〉⊗6m2−6m+1

⊗
〈
Kπhyp

,P1 + · · · + PNhyp

〉⊗−1

⊗
〈
P1 + · · · + PNhyp

,Kπ(P1 + · · · + PN)hyp

〉⊗−6m+5 · ea(g).

In other words, we have the canonical isometry

(
λm, hdet(ρ

⊗m
hyp;Kπ

⊗ ( ⊗N
i=1 ρhyp;Pi

)⊗m−1; ρhyp;Kπ
)
)⊗12

⊗
〈
P1 + · · · + PNhyp

,Kπ(P1 + · · · + PN)hyp

〉⊗−6(m−1)

�
〈
Kπ(P1 + · · · + PN)hyp,Kπ(P1 + · · · + PN)hyp

〉⊗6m2−6m+1)

⊗
〈
Kπhyp

,P1 + · · · + PNhyp

〉⊗−1

⊗
〈
P1 + · · · + PNhyp

,Kπ(P1 + · · · + PN)hyp

〉
· ea(g).

On the other hand, by the Lemma′ in Sect.2.1,〈
P1 + · · · + PNhyp

,Kπ(P1 + · · · + PN)hyp

〉
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is indeed the trivial line bundle equipped with the metric by using the Deligne
pairing formalism developed in Part 1. Hence, we may indeed take the square
root for such a metrized line bundle: for the line bundle, it is still the trivial one,
while for the metric, we simply take the positive square root pointwise. Denote
the resulting metrized line bundle simply by

〈
P1 + · · · + PNhyp

,Kπ(P1 + · · · + PN)hyp

〉⊗ 1
2

by abuse of notation.

Basic definition IV. With the same notation as above, onMg,N , define

(i) the metrized logarithmic Mumford type line bundleλmhyp
with respect to

hyperbolic metrics by setting

λmhyp

:=
(
λm, hdet(ρ

⊗m
hyp;Kπ

⊗ ( ⊗N
i=1 ρhyp;Pi

)⊗m−1; ρhyp;Kπ
)
)

⊗
〈
P1 + · · · + PNhyp

,Kπ(P1 + · · · + PN)hyp

〉⊗−m−1
2 ;

(ii) the metrized Weil-Petersson line bundle∆WPhyp
with respect to hyperbolic

metrics by setting

∆WPhyp
:=

〈
Kπ(P1 + · · · + PN)hyp,Kπ(P1 + · · · + PN)hyp

〉
;

(iii) themetrized Takhtajan-Zograf line bundle∆TZhyp
with respect to hyperbolic

metrics by setting

∆TZhyp

:=
〈
Kπhyp

,P1 + · · · + PNhyp

〉
⊗

〈
P1 + · · · + PNhyp

,Kπ(P1 + · · · + PN)hyp

〉⊗−1
.

We here in particular reminder the reader that the base line bundle of∆TZhyp
(resp.∆WPhyp

, λmhyp
) is indeed the restrictions of Takhtajan-Zograf line bundle

∆TZ (resp. the Weil-Petersson line bundle∆WP, the logarithmic Mumford type
line bundleλm) introduced in Sect.2.1 toMg,N . Moreover, ifm = 1, we have

λ1hyp =
(
λm, hdet(ρ

⊗m
hyp;Kπ

⊗ ( ⊗N
i=1 ρhyp;Pi

)⊗m−1; ρhyp;Kπ
)
)

=
(
λm, hdet(ρhyp;Kπ

; ρhyp;Kπ
)
)
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is simply the line bundleλ1 together with the determinant metric introduced in
Part 1; while form ≥ 2,λmhyp

is not simply the line bundleλm together with the
determinant metric introduced in Part 1 – weshould multiple the determinant
metric introduced in Part 1 by the metric induced from

〈P1 + · · · + PNhyp
,Kπ(P1 + · · · + PN)hyp〉⊗−m−1

2

which is indeed a smooth positive function onMg,N .
With this basic definition, all in all, what we have just provedmay be restated

as the following

Fundamental relation IV. OverMg,N , there exist the canonical isometries

λm
⊗12
hyp

� ∆WP
⊗6m2−6m+1
hyp

⊗∆TZ
⊗−1
hyp

· ea(g), m ≥ 0.

2.6. Weil-Petersson and Takhtajan-Zograf metrics in terms of intersections

With the Basic Definition IV and the Fundamental Relation IV established in the
previous section, next we show that indeed, the metrized line bundles∆WPhyp
and∆TZhyp

are naturally associated to the so-called Weil-Petersson metric and
the Takhtajan-Zograf metric overMg,N , definition of which we recall next.

For anN -punctured Riemann surfaceM0 of genusg (with 2g +N ≥ 3), let
Γ be a torsion free Fuchsian group uniformizingM0, i.e.,M0 � Γ \H, where
H denotes the complex upper-half plane. Denote byΓ1, . . . , ΓN the set of non-
conjugate parabolic subgroups inΓ , and for everyi = 1, . . . , N , fix an element
σi ∈ PSL(2,R) such thatσ−1

i Γiσi = Γ∞, where the groupΓ∞ is generated by
the parabolic transformationz �→ z + 1. As usual, define the Eisenstein series
Ei(s, z) corresponding to thei-th cusp of the groupΓ for Re(s) > 1 by

Ei(s, z) := Σγ∈Γi\Γ Im(σ
−1
i γ z)s, i = 1, . . . , N.

Denote the Teichm¨uller space ofN -punctured Riemann surfaces of genus
g by Tg,N . Then at the point[M0] corresponding to a punctured Riemann sur-
faceM0, the tangent spaceT[M0]Tg,N can be naturally identified with the space
Ω−1,1(M0) of harmonicL2-tensors onM0 of type (-1,1), harmonic with respect
the hyperbolic metricτhyp onΓ \H. By definition, theWeil-Petersson metricon
Tg,N is given by

〈φ,ψ〉WP :=
∫
Γ \H

φψ̄ · dµhyp,

whereφ,ψ ∈ Ω−1,1(M0) are considered as tangent vectors ofTg,N at [M0] via
the deformation theory, anddµhyp = 2π(2g − 2+ N)ωhyp is the Kähler form
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corresponding to the metricτhyp. It is well-known that theWeil-Petersson metric
is Kähler. For later use, denote its corresponding K¨ahler form onMg,N byωWP.

Proposition ([Wo1]). OverMg,N ,∫
π

(
c1(Kπ(P1 + · · · + PN)hyp

)2 = ωWP

π2
.

Here as usual,c1 denotes the first Chern form of a metrized line bundle.
In a certain sense, theWeil-Peterssonmetric reflects the deformation of com-

plex structures forπ : Cg,N → Mg,N . But for π , there exists another defor-
mation, i.e., the deformation for punctures. For this, we have then the so-called
Takhtajan-Zograf metric onMg,N .

By definition, fori = 1, . . . , N , define thei-thTakhtajan-Zograf metric〈 , 〉i
onTg,N by setting

〈φ,ψ〉i :=
∫
Γ \H

φψ̄ · Ei(·,2) · dµhyp, φ, ψ ∈ Ω−1,1(M0).

More globally, we define the (total)Takhtajan-Zograf metriconTg,N by setting

〈φ,ψ〉TZ :=
N∑
i=1

∫
Γ \H

φψ̄ · Ei(z,2) · dµhyp, φ, ψ ∈ Ω−1,1(M0).

In [TZ2], it is proved that〈 , 〉i , i = 1, . . . , N , are Kähler metrics onTg,N .
Moreover,ΣN

i=1〈 , 〉i is invariant under the action of the Teichm¨uller modular
group. And hence, we get an induced new K¨ahler metric onMg,N . Often, we
also call it the Takhtajan-Zograf metric onMg,N , and denote the corresponding
Kähler form byωTZ. It is an open question whether such a metric is algebraic.
(See e.g., [TZ2].) We next want to solve this problem. For this purpose, let us
recall the fundamental work of Takhtajan-Zograf on a local family index theorem
for punctured Riemann surfaces ([TZ1,2]).

Note that forcompact Riemann surfacesM, a work of D’Hoker-Phong
[D’HP] shows that the so-called regularized determinant det∗∆m associated to
K⊗m
M with respect to hyperbolic metrics defined via the zeta function formalism

of Ray-Singer, is equal, up to a constant multiplier depending only ong andm,
toZ′

M(1) form = 1, andZM(m) form ≥ 2 respectively. HereZM(s) denotes the
Selberg zeta function associated toM. Motivated by this and the Quillen metric
on determinant of cohomology, forpunctured Riemann surfaces, Takhtajan and
Zograf ([TZ1,2]) define det∗TZ∆m with respect to hyperbolic metrics by simply
setting

det∗TZ∆m :=
{
Z′
M0(1), if m=1;

ZM0(m), if m ≥ 2.
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HereZM0(s) denotes the Selberg zeta function ofM0. (See e.g., Sect. 1.5.)With
this, for anym ≥ 1, onλm := λ(K⊗m

M ⊗ OM(P1 + · · · + PN)
⊗(m−1)), following

Takhtajan-Zograf, the corresponding QuillennormhQ,m is defined by setting

hQ;m := hL2,m · det∗TZ∆−1
m ,

wherehL2,m is defined as follows:
(1) Ifm ≥ 2, thenλm is simply the determinant ofΓm := Γ (M,K⊗m

M ⊗OM(P1+
· · · + PN)

⊗(m−1)), i.e., the determinant of the spaceΓm of cusp forms of weight
2m. By definition,hL2,m := dethP,m, wherehP,m denotes the standard Petersson
norm onΓm. (See e.g., [Sh].)
(2) If m = 1, thenλ1 = detΓ (M,KM) ⊗ Γ (M,OM)

∨ = detΓ (M,KM) ⊗ C.
WedefinehL2,1 to be the determinant of the natural pairing onΓ (M,KM). (Note
that our base manifold is of dimension one. Hence the canonical pairing may
also be understood as the one introduce by using the singular volume formωhyp.)

Fundamental theorem. (Local Family Index Theorem [TZ1,2])With the same
notation as above, form ≥ 1, as (1,1) forms onTg,N and hence onMg,N ,

12c1(λm, hQ;m) = (6m2 − 6m+ 1) · ωWP

π2
− 4

3
ωTZ. (2.1)

Now let us go back to the discussion onTakhtajan-Zograf metrics. Recall that
from our Fundamental Relation IV proved in Sect.2.5,

12c1(λmhyp
) = (6m2 − 6m+ 1) · c1(∆WPhyp

)− c1(∆TZhyp
). (2.2)

Thus by comparing with the local family index theorem of Takhtajan-Zograf
above, we may expect the follows:
(i) c1(λmhyp

) = c1(λm, hQ;m);
(ii) c1(∆WPhyp

) = ωWP

π2
; and

(iii) c1(∆TZhyp
) = 4

3
ωTZ.

We claim that all these are correct. Roughly, the proof is given as follows.
First, we use the result of Wolpert recalled above to show that (ii) holds. Then
we compare the above two relations of (1,1) forms, i.e., Takhtajan-Zograf’s
fundamental result (2.1) and our fundamental relation (2.2) above, but only with
m = 1, based on the fact that onλ1, by our Basic Definition II(i), the metric on
λ1hypusedbyusand themetric on(λ1, hQ,1)usedbyTakhtajan-Zograf areexactly
the same. Hence, clearly, (iii) holds as well. Finally, by applying Takhtajan-
Zograf’s fundamental result (2.1) and our fundamental relation (2.2) above again
but this time for allm ≥ 2, we conclude that (i) holds form ≥ 2 as well.

That is to say, we have the following
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Theorem. With the same notation as above,
(i) (Fundamental relation V) c1(∆WPhyp

) = ωWP

π2
;

(ii) (Fundamental relation VI ) (Together with Fujiki) c1(∆TZhyp
) = 4

3
ωTZ;

(iii) (Determinant metrics in terms of Selberg zeta functions) For a fixed
m ≥ 1, up to a constant factor depending only on(g,N), there exists an isometry

(λm, hQ,m) � λmhyp
.

Proof. By the definition of metrized Deligne pairing, we have

c1

(〈
Kπ(P1 + · · · + PN)hyp,Kπ(P1 + · · · + PN)hyp

〉)
=

∫
π

c1

(
Kπ(P1 + · · · + PN)hyp

)2
.

On the other hand, by the result of Wolpert recalled above as the Proposition at
the beginning of this section, this latest (1,1) form is simplyωWP

π2 . Hence we get
the Fundamental Relation V.

Herewe should reminder the reader that essentially theFundamental Relation
V is due toWolpert. Our contribution, if any, is that our Fundamental RelationV
for the first time points out clearly that indeed theWeil-Petersson metric is in the
nature of intersection, rather than in the nature of cohomology. (See e.g., [Wo2]
and the fundamental work done by Fujiki and Schumacher [FS].)

Now note that by Basic Definition II(i), we have the isometry

λ1hyp � (λ1, hQ;1).

Thus from Takhtajan-Zograf’s fundamental result (2.1) and our fundamental
relation (2.2), we see that

c1(∆WPhyp
)− c1(∆TZhyp

) = ωWP

π2
− 4

3
ωTZ.

Therefore,

c1(∆WPhyp
) = 4

3
ωTZ

by the Fundamental Relation V. This then gives the Fundamental Relation VI.

Now, clearly, with the help of our Fundamental Relations V and VI and
Takhtajan-Zograf’s fundamental result (2.1), we see that up to some universal
constant depending only on(g,N), there exists an isometry

(λm, hQ,m) � λmhyp
,
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which in particular gives an interpretation of our newdeterminantmetric in terms
of the Selberg zeta function. This completes the proof of the Theorem.

As a direct consequence, we have the following

Corollary. TheTakhtajan-Zograf metric onmoduli space of punctured Riemann
surfaces is algebraic.

Fundamental relation IV ′. With the same notation as above, onMg,N , for a
fixedm ≥ 1, up to some universal constant depending only ong,N , such that
there exists canonical isometry

(λm, hQ,m)
⊗12 � ∆WP

⊗6m2−6m+1
hyp

⊗∆TZ
⊗−1
hyp

.

We end this paper by noticing that the Weil-Petersson and Takhtajan-Zograf
line bundles are well-defined even overMg,N . Thus we naturally expect to
get factorizations for Weil-Petersson and Takhtajan-Zograf metrics and hence
degenerations of Selberg zeta functions by using our Fundamental Relations.
For details, please see [We3].

Appendix: Holomorphic sectional curvature
of Weil-Petersson metric onMg,N

Many of Wolpert’s results onWeil-Petersson metrics for compact Riemann sur-
faces may be generalized to these for punctured Riemann surfaces. As an exam-
ple, we in this appendix, prove the following

Proposition. The holomorphic sectional curvature of Petersson-Weil metric on
the Teichm¨uller spaceTg,N is bounded from above by− 1

π(2g−2+N) .

Proof.Wewillmainly followWolpert, and hencewithout any further explanation
use parallel notation as in [Wo1]. In particular, by a verbatim change ofWolpert’s
computations of Riemann curvature tensor ofWeil-Peterssonmetrics, we see that
Riemann tensor forWeil-Peterssonmetricson theTeichm¨uller spaceofpunctured
Riemann surfaces has the same form as in compact case. That is to say, we have
the following

Lemma. ([Wo1])With the same notation as in [Wo1], the Riemannian tensor of
Weil-Petersson norm is given by

Rαβ̄γ δ̄(0) = ∂2

∂tγ ∂t̄δ
gαβ̄(0) = 〈∆(µαµ̄β), µ̄γ µδ〉 + 〈∆(µαµ̄δ), µ̄γ µβ〉.
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To estimate the holomorphic sectional curvature, we chooseµα ∈ B(Γ ) such
that〈µα,µα〉 = 1. Then, by the lemma, the holomorphic sectional curvature is
given by

−Rαᾱαᾱ = −2〈∆|µα|2, |µα|2〉.
Now asµα ∈ B(Γ ), |µα|2 ∈ L2(Γ \H, dµhup), i.e., it isL2 with respect to the
natural (singular) hyperbolic metric on the punctured Riemann surfaceΓ \H.
Therefore, by spectral decomposition,

|µα|2 = Σj≥0cα,jψj +ΣN
a=1

∫ ∞

0

(
1

2π

∫
|µα|2Ea

(
1

2
− √−1t

)
dA

)

×Ea

(
1

2
+ √−1t

)
dt.

HereEa ’ are Eisenstein series,ψj are orthonormal discrete spectrum eigen-
functions ofD0 with the eigen-valuesλj andcα,j =< |µα|2, ψj >. (See e.g.
[Hej, Ch. 6, Sect.9].)

In particular,λ0 = 0 andψ0 = 1√
2π(2g−2+N) , so that< µα,µα >= 1 implies

cα,0 =< |µα|2, ψ0 >= 1√
2π(2g − 2+N)

.

Moreover,

(D0 − 2)−1Ea

(
1

2
+ √−1t

)
= − 4

9+ 4t2
Ea

(
1

2
+ √−1t

)
,

so

∆|µα|2 = Σj≥0
−2

λj − 2
· cα,j · ψj +ΣN

a=1

∫ ∞

0

(
1

2π

∫
|µα|2

×Ea

(
1

2
− √−1t

)
dA

)
8

9+ 4t2
Ea

(
1

2
+ √−1t

)
dt.

Using Parseval formula, we have

−Rαᾱαᾱ = Σj≥0
4

λj − 2
· c2α,j ·

〈
ψj,ψj

〉
− 2ΣN

a=1〈 ∫ ∞

0

( 1

2π

∫
|µα|2Ea

(1
2

− √−1t
)
dA

)
Ea

(
1

2
+ √−1t

)
dt,

×
∫ ∞

0

( 1

2π

∫
|µα|2Ea

(
1

2
− √−1t

)
dA

) 4

9+ 4t2

×Ea

(
1

2
+ √−1t

)
dt

〉
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= Σj≥0
4

λj − 2
· c2α,j ·

〈
ψj,ψj

〉
− 2ΣN

a=1

〈 ∫ ∞

0

∣∣∣ 1

2π

∫
|µα|2

×Ea

(1
2

− √−1t
)
dA

∣∣∣2 4

9+ 4t2
dt

〉
(by [Hej., Ch.6, (9.33)])

≤ Σj≥0
4

λj − 2
· c2α,j ·

〈
ψj,ψj

〉
(by λj ≤ 0 andψj are not constants)

< −2c2α,0 = − 1

π(2g − 2+N)
,

which proves the proposition.
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