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1. Introduction

Let {Mt } be a degenerating family of compact Riemann surfaces of genusq ≥ 2
obtained by shrinking closed loops to form a noded Riemann surfaceM0. There are
essentially two cases, depending on whether the nodes separateM0. Throughout
this article, we assume that each fiber is stable, so thatq ≥ 2, and each connected
component ofM0

0 := M0\{nodes} admits a complete hyperbolic metric.
The behavior of Green’s functions associated to various canonical metrics on

degenerating Riemann surfaces have been widely studied (cf. [4–7, 10]). In partic-
ular, Ji [5] obtained the degenerative behaviors of Green’s functions for hyperbolic
metrics in both cases of separating and non-separating nodes. Ji’s approach in-
volved a detailed study of the resolvent kernel of the hyperbolic Laplacians and
used Hejhal’s results on regularb-group theory [4]. It does not seem to generalize
directly to the variable curvature case.

Using a different and more geometric approach, To and Weng [9] recently ob-
tained the degenerative behavior of Green’s functions for a ‘continuous family



240 W.-K. TO AND L. WENG

of quasi-hyperbolic metrics’ on{Mt} in the case of a non-separating node (cf.
[9, theorem 2]), which, generalized Ji’s result in this case [5]. The main idea in
[9] is to construct a family of functions (with singularities) using Green’s function
onM0

0 to approximate Green’s functions on{Mt}, and then show that the error term
goes to 0 ast → 0.

In this article, we are able to obtain the degenerative behavior of Green’s func-
tions for a continuous family of quasi-hyperbolic metrics on{Mt}with one separat-
ing node and finitely many non-separating nodes (cf. Theorem 2.4.1 in Section 2),
which generalizes Ji’s result in this remaining case [5]. As noted in [9], the main
difficulty in adapting the geometric approach in [9] is that in the separating node
case, the first non-zero eigenvalueλ1,t of the Laplacian onMt tends to zero as
t → 0. We overcome this difficulty by constructing good approximations of the
eigenfunctions of the Laplacians on{Mt} corresponding toλ1 using the corre-
sponding eigenfunction onM0. Then, together with Green’s function onM0, we
are able to construct approximations of Green’s functions on{Mt}. To show that
the error term goes to 0 ast → 0, we have to make essential use of the fact that
there is a positive lower bound for the second non-zero eigenvaluesλ2,t of the
Laplacians ast → 0.

This paper is organized as follows. In Section 2 we introduce some defini-
tions and state our main results. In Section 3 we give the construction of the
approximations of the eigenfunctions of the Laplacians on{Mt} corresponding
to λ1. The proof of Theorem 2.4.1 is given in Section 4, and finally we deduce
Corollaries 2.4.2 and 2.4.3 in Section 5.

2. Notation and Statement of Results

(2.1) Throughout this article, we consider the degeneration of compact Riemann
surfaces of fixed genusq ≥ 2 into a stable singular Riemann surfaceM with
one separating node andm non-separating nodes. Here, we always assume that
0≤ m <∞.

First, we recall the plumbing construction of a degenerating family of Rie-
mann surfaces starting fromM as follows (cf. [2, 12]). SinceM has exactly one
separating node, the normalizatioñM of M is a disjoint union of two smooth
compact Riemann surfacesM1 andM2 of genusq1 and q2 respectively. Letm1

andm2 be the numbers of non-separating nodes in the connected component of
M\{separating node} corresponding toM1 andM2, respectively (so thatm1+m2 =
m). Letp1, p2, . . . , pm+1 be all the nodes ofM. Rearranging if necessary, we will
always assume thatp1 is the separating node, andp2, p3, . . . , pm1+1 (respectively
pm1+2, pm1+3, . . . , pm+1) are the non-separating nodes in the connected component
of M\{p1} corresponding toM1 (respectivelyM2). For 1 ≤ i ≤ m + 1, the
nodepi corresponds to two pointspi,1, pi,2 in M̃. Moreover,pi,k,1 ≤ k ≤ 2,
lie in different components or the same component ofM̃ depending on whether
pi is a separating or non-separating node. Thus, without loss of generality, we will
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assume that{p1,1} ∪ {pi,k | 2 ≤ i ≤ m1 + 1, k = 1,2} ⊂ M1 and {p1,2} ∪
{pi,k | m1+ 2 ≤ i ≤ m + 1, k = 1,2} ⊂ M2. LetM0 := M\{p1, . . . , pm+1}.
ThenM0 is a disjoint union of two punctured Riemann surfacesM0

1 andM0
2 with

identificationsM0
1 ' M1\({p1,1} ∪ {pi,k | 2 ≤ i ≤ m1 + 1, k = 1,2}) and

M0
2 ' M2\({p1,2} ∪ {pi,k | m1+ 2 ≤ i ≤ m + 1, k = 1,2}). Denote the unit

disc inC by 1. For each 1≤ i ≤ m + 1 andk = 1,2, fix a coordinate function
zi,k : Ui,k → 1 such thatzi,k(pi,k) = 0, whereUi,k is an open neighborhood of
pi,k in Mk. Also for each 1≤ i ≤ m + 1 andti ∈ 1, let Sti := {(zi,1, zi,2) ∈
12 | zi,1zi,2 = ti}. Then for eacht = (t1, t2, . . . , tm+1) ∈ 1m+1, we remove the
2m+2 discs|zi,k| < |ti|, 1≤ i ≤ m+1, k = 1,2, fromM̃, and glue the remaining
parts ofM̃ with St1, St2, . . . , Stm+1 via the identificationszi,1 ∼ (zi,1, ti/zi,1) and
zi,2 ∼ (ti/zi,2, zi,2), 1 ≤ i ≤ m + 1. The resulting surfaces{Mt}t∈1m+1 form
an analytic familyπ : M → 1m+1, whereπ denotes the holomorphic projec-
tion map. Denote the punctured unit disc inC by 1∗ := 1\{0}. It is easy to
see that each fiberMt , t ∈ (1∗)m+1, is a smooth compact Riemann surface of
genusq = q1 + q2 + m1 + m2. Moreover,Mt is a noded Riemann surface fort
along the coordinate hyperplanes of1m+1, and at the origin, we haveM0 = M.
Here and thereafter, by simplification of notation, we simply denote the origin
(0,0, . . . ,0) ∈ Cm+1 by 0 when no confusion arises. Also, by simplification of
notation, we simply say that such{Mt} is a family of compact Riemann surfaces of
genusq degenerating toM (ast ∈ (1∗)m+1→ 0). Our main concern in this paper
is the study of behaviors of analytic objects on the smooth fibersMt, t ∈ (1∗)m+1,
ast → 0.

It is easy to see that for 1≤ i ≤ m + 1, there is a coordinate neighborhood
1m+2 of pi in M centered atpi and such that fort = (t1, t2, . . . , tm+1) ∈ 1m+1,
Mt ∩ 1m+2 = {(t1, . . . , ti−1, zi,1, zi,2, ti+1, . . . , tm+1) ∈ 1m+2 | zi,1zi,2 = ti}.
Moreover,π |1m+2 is given by(t1, . . . , ti−1, zi,1, zi,2, ti+1, . . . , tm+1) → (t1, . . . ,

ti−1, zi,1zi,2, ti+1, . . . , tm+1). Also, we remark that the restriction of ker(dπ) to
M\{nodes} forms a holomorphic line bundleL over M\{nodes}, which will be
called the vertical line bundle, such that for allt ∈ 1m+1, L|M0

t
= TM0

t , where
M0
t denotes the smooth part ofMt .

(2.2) To facilitate ensuing discussion and for convenience of the reader, we recall
the following definition in [9]:

DEFINITION 2.2.1. A Hermitian metricds2 on a punctured Riemann surfaceN
is said to beof hyperbolic growth near the puncturesif at each puncturep, there
exists a punctured coordinate disc1∗ := {z ∈ C : 0< |z| < 1} centered atp such
that for some constantC1 > 0,

(i) ds2 ≤ C1|dz|2
|z|2(log |z|)2 on1∗, (2.2.1)
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and there exists a local potential functionφ on 1∗ satisfying ds2 =
((∂2φ)/(∂z∂z̄))dz⊗ dz̄ on1∗, and for some constantsC2, C3 > 0,

(ii) |φ(z)| ≤ C2 max{1, log(− log |z|)}, and (2.2.2)

(iii)

∣∣∣∣∂φ∂z
∣∣∣∣ , ∣∣∣∣∂φ∂z̄

∣∣∣∣ ≤ C3

|z| |log |z|| on1∗. (2.2.3)

DEFINITION 2.2.2. LetN = t1≤k≤lNk be a disjoint union of punctured Riemann
surfacesNk, 1 ≤ k ≤ l. A Hermitian metricds2 onN is simply defined to be an
orderedl-tuple(ds2

1, . . . , ds
2
l ), whereds2

k is a Hermitian metric onNk. ds2 is said
to be ofhyperbolic growth near the puncturesif eachds2

k is of hyperbolic growth
near the punctures in the sense of Definition 2.2.1,k = 1,2, . . . , l.

Now letπ : {Mt} → 1m+1,M0 = M\{p1, p2, . . . , pm+1} = M0
1 tM0

2, q, q1, q2,
m1,m2, be as in (2.1). At the origint = 0 ∈ 1m+1, the stable condition onM
implies thatq1 + m1 > 0 andq2 + m2 > 0, or equivalently,M0 admits the
complete hyperbolic metricds2

hyp,0 of constant sectional curvature−1. Also, it is
easy to see that the two inequalitiesq1 +m1 > 0 andq2 +m2 > 0 actually imply
thatMt is stable for eacht ∈ 1m+1, and thus the smooth partM0

t of eachMt

admits the complete hyperbolic metric, which we denote byds2
hyp,t . Now for each

t ∈ 1m+1, let ds2
t be a Hermitian metric on the smooth partM0

t of Mt .

DEFINITION 2.2.3.{ds2
t } is said to be a continuous family of quasi-hyperbolic

metrics on{Mt} if

(i) {ds2
t } form a continuous section ofL⊗ L̄∗, whereL is as in (2.1);

(ii) there exist constantsC1, C2 > 0 such that

C1ds
2
hyp,t ≤ ds2

t ≤ C2ds
2
hyp,t for all t ∈ 1m+1; (2.2.4)

and
(iii) for each t ∈ 1m+1, ds2

t is of hyperbolic growth near the punctures onM0
t (cf.

Definition 2.2.2).

Remark 2.2.4.(i) By [12, theorem 5.8],{ds2
hyp,t} form a continuous family of

quasi-hyperbolic metrics on{Mt}. Also, one can easily construct non-trivial fam-
ilies of quasi-hyperbolic metrics on{Mt} by the grafting procedure in [12, §3,
§4].

(ii) One easily sees from Equation (2.2.1) that Vol(M0
t , ds

2
t ) < ∞ for each

t ∈ 1m+1.
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(2.3) Let{Mt} be as in (2.1), and{ds2
t } be a continuous family of quasi-hyperbolic

metrics on{Mt}. For t ∈ (1∗)m+1, denote the Kähler form on the smooth compact
fiberMt associated tods2

t byωt , and denote the associated normalized Kähler form
by ω̂t := (1/Vol(Mt , ωt))ωt . It is well known that there exists a unique Green’s
functiongt (·, ·) onMt ×Mt\{diagonal} satisfying the following conditions:

(a) For fixedx ∈ Mt , andy 6= x nearx,

gt(x, y) = − log |f (y)|2 + α(y), (2.3.1)

wheref is a local holomorphic defining function forx, andα is some smooth
function defined nearx;

(b) dyd
c
ygt (x, y) = ω̂t (y)− δx; (2.3.2)

(c)
∫
Mt

gt (x, y)ω̂t (y) = 0; (2.3.3)

(d) gt (x, y) = gt (y, x) for x 6= y; (2.3.4)
(e) gt (x, y) is smooth onMt ×Mt\{diagonal}. (2.3.5)

Heredcx := (i/4π)(∂̄ − ∂), andδx is the Dirac delta function atx.
At the origin t = 0, we write (M0, ds2

0) = (M0
1, ds

2
0,1) t (M0

2, ds
2
0,2), i.e.,

ds2
0,k = ds2

0 |M0
k
, k = 1,2. Also, for k = 1,2, we letω0,k, ω̂0,k be the Kähler

forms onM0
k associated tods2

0,k and defined similarly as above. Sinceds2
0,k is of

hyperbolic growth near the punctures onM0
k (cf. Definitions 2.2.1, 2.2.2 and 2.2.3),

it follows from [9, theorem 1] that there exists a unique Green’s functiong0,k(·, ·)
onM0

k ×M0
k \{diagonal} satisfying conditions (a) to (e) above (witht = 0 andMt

replaced byM0
k ) and also the following growth condition:

(f) Near each puncture ofM0
k , there exists a punctured coordinate neighborhood

1∗ centered at the puncture such that for fixedx 6∈ 1∗, there exists a constant
C > 0 such that

|g0,k(x, z)| ≤ Cmax{1, log(− log |z|)} on1∗. (2.3.6)

We remark that similar descriptions also hold for other noded fibersMt for t
along the coordinate hyperplanes of1m+1.

(2.4) Notation as in (2.1), (2.2) and (2.3). We are ready to state our main result in
this article as follows:

THEOREM 2.4.1.Let {Mt } be a family of compact Riemann surfaces of genus
q ≥ 2 degenerating to a stable Riemann surfaceM with one separating nodep1

andm non-separating nodesp2, p3, . . . , pm+1 as described in (2.1). Suppose{ds2
t }



244 W.-K. TO AND L. WENG

is a continuous family of quasi-hyperbolic metrics on{Mt} (cf. Definition 2.2.3).
Then for continuous sectionsxt , yt of {Mt} such thatxt 6= yt for all t ∈ 1m+1 and
x0, y0 /∈ {p1, p2, . . . , pm+1}, we have

lim
t→0

t∈(1∗)m+1

(
gt (xt , yt )− 1

λ1,t
φ1,t (xt )φ1,t (yt )

)

=

g0,1(x0, y0), if x0, y0 ∈M0

1,

0, if (x0, y0) ∈M0
1 ×M0

2 or M0
2 ×M0

1,

g0,2(x0, y0), if x0, y0 ∈M0
2,

(2.4.1)

whereg0,k(·, ·) is Green’s function onM0
k with respect tods2

0,k, k = 1,2 (cf.
(2.3)), andφ1,t is any eigenfunction onMt ofL2-norm 1 corresponding to the first
non-zero eigenvalueλ1,t of the Laplacian1t associated tods2

t .

Theorem 2.4.1 gives rise to the following

COROLLARY 2.4.2.Let {Mt}, {ds2
t }, xt , yt be as in Theorem 2.4.1.

(a) We have

lim
t→0

t∈(1∗)m+1

λ1,tgt (xt , yt )

=


V0,2

V0,1(V0,1+V0,2)
, if x0, y0 ∈M0

1,

− 1
V0,1+V0,2

, if (x0, y0) ∈M0
1 ×M0

2 or M0
2 ×M0

1,

V0,1
V0,2(V0,1+V0,2)

, if x0, y0 ∈M0
2,

(2.4.2)

whereV0,k := Vol(M0
k , ds

2
0,k) <∞, k = 1,2 (cf. Remark 2.2.4(ii)).

(b) In particular, there exist constantsC1,k, C2,k (k = 1,2), C3, C4 > 0 such that

(i) if x0, y0 ∈ M0
k , then fork = 1,2,

0< C1,k ≤ lim inf
t→0

t∈(1∗)m+1

lt · gt(xt , yt ) ≤ lim sup
t→0

t∈(1∗)m+1

lt · gt (xt , yt ) ≤ C2,k; (2.4.3)

and
(ii) if (x0, y0) ∈ M0

1 ×M0
2 or M0

2 ×M0
1 , then

−C3 ≤ lim inf
t→0

t∈(1∗)m+1

lt · gt (xt , yt ) ≤ lim sup
t→0

t∈(1∗)m+1

lt · gt(xt , yt ) ≤ −C4 < 0.(2.4.4)
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Here, for t ∈ (1∗)m+1, lt denotes the infinum of the lengths of all simple closed
geodesics onMt (with respect tods2

t ) which separateMt into two components.

We also have the following

COROLLARY 2.4.3. Let {Mt } be as in Theorem 2.4.1, and let{ds2
t } be a

continuous family of complete Hermitian metrics on{Mt }. Suppose there exist
constantsC1, C2 > 0 such that the sectional curvatures of{ds2

t } are pinched
between−C1 and−C2 for all t ∈ 1m+1, andds2

0 is of hyperbolic growth near
the punctures onM0. Then the conclusions of Theorem 2.4.1 and Corollary 2.4.2
remain valid.

We remark that in the special case of the family of hyperbolic metrics{ds2
hyp,t}

on {Mt}, one can easily check (using Burger’s result [1, theorem 1.1]) that The-
orem 2.4.1 and Corollary 2.4.2 agree with the corresponding results of Ji [5,
theorems 1.1 and 1.2].

3. Approximation of Eigenfunctions onMt

Let M = {Mt }, {ds2
t }, p1, p2, . . . , pm+1, λ1,t be as in Theorem 2.4.1. In this

section, we are going to construct good approximations of the eigenfunctions on
Mt corresponding to the first non-zero eigenvalueλ1,t of the Laplacian1t with
respect tods2

t (cf. (3.2) below).

(3.1) To facilitate subsequent discussion, we first set up some notations. LetM̃ =
M1 t M2 be as in (2.1). For 1≤ i ≤ m + 1, recall from (2.1) the coordinate
functionszi,k : Ui,k → 1, k = 1,2, on M̃, and the coordinate neighborhoods
1m+1 of pi in M such that fort = (t1, t2, . . . , tm+1) ∈ 1m+1, Mt ∩ 1m+2 =
{(t1, . . . , ti−1, zi,1, zi,2, ti+1, . . . , tm+1) ∈ 1m+2 | zi,1zi,2 = ti}. Fix a small number
δ > 0, and define, for 1≤ i ≤ m+ 1 andt = (t1, t2, . . . , tm+1) ∈ (1∗)m+1,

Ii,t :=
{
(t1, . . . , ti−1, zi,1, ti/zi,1, ti+1, . . . , tm+1)

∈ 1m+2 | |ti |(1/2)+2δ < |zi,1| < |ti |(1/2)−2δ}
⊂ Mt. (3.1.1)

For 1≤ i ≤ m+ 1, we denote by

pri,k,t : Ii,t → Ui,k, k = 1,2, t ∈ (1∗)m+1, (3.1.2)

the holomorphic maps induced by thei-th and(i + 1)-st coordinate projection
maps on1m+2 respectively. Sincep1 is a separating node,Mt\I1,t consists of two
separated components, which we denote by II′

1,t and II′2,t (so thatMt = I1,t t II ′1,t t
II ′2,t ). Also, we denote II1,t := II ′1,t\t2≤i≤m1+1Ii,t and II2,t := II ′2,t\tm1+2≤i≤m+1Ii,t
(so that we also haveMt = (t1≤i≤m+1Ii,t ) t II 1,t t II 2,t). For k = 1,2 andt =
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(t1, t2, . . . , tm+1) ∈ (1∗)m+1, we letWk,t := M0
k \ t(i,k′)∈Ik {zi,k′ ∈ 1 | |zi,k′ | <|ti|(1/2)−2δ}, whereI1 = {(1,1)} ∪ {(i, k′) | i = 2, . . . ,m1 + 1, k′ = 1,2} and

I2 = {(1,2)} ∪ {(i, k′) | i = m1+ 2, . . . ,m+ 1, k′ = 1,2}, and we denote by

ik,t : II k,t → Wk,t (3.1.3)

the biholomorphisms induced by the plumbing construction in (2.1). The inverse
of ik,t will be denoted byjk,t : Wk,t → II k,t , k = 1,2, t ∈ (1∗)m+1.

(3.2) Next we consider the following function onM0 = M0
1 tM0

2 given by

φ1,0(z) :=


√

V0,2
V0,1(V0,1+V0,2)

if z ∈ M0
1,

−
√

V0,1
V0,2(V0,1+V0,2)

if z ∈ M0
2,

(3.2.1)

whereV0,1, V0,2 are as in Equation (2.4.2). Throughout the rest of this paper,L2-
norm and inner products onMt will be with respect tods2

t , and they are simply
denoted by‖‖2 and〈, 〉 respectively. From Equation (3.2.1), it is easy to see that
‖φ1,0‖2 = 1 andφ1,0 is orthogonal to the constant functions onM0.

Notation is as in (3.1). We fix a smooth functionη = η(a) on R such that
0 < η < 1 for all a ∈ R, η = 1 for a < (1/2) − δ, andη = 0 for a > (1/2) + δ.
Then we define the following family of cut-off functions{ηt } on {Mt} as follows:
for t = (t1, t2, . . . , tm+1) ∈ (1∗)m+1,

ηt (z) :=


1, for z ∈ II ′1,t ,

η
(

log |z1,1|
log |t1|

)
, for z = (z1,1, t1/z1,1, t2, . . . , tm+1) ∈ I1,t ,

0, for z ∈ II ′2,t .

(3.2.2)

It is easy to see that eachηt is smooth onMt . Next, fort ∈ (1∗)m+1, we define the
following smooth function onMt given by

φ̃1,t (z) := ηt(z)
√

V0,2

V0,1(V0,1+ V0,2)
− (1− ηt (z))

√
V0,1

V0,2(V0,1+ V0,2)
(3.2.3)

for z ∈Mt . Finally, for t ∈ (1∗)m+1, we define the smooth function

κt := 1tφ̃1,t onMt. (3.2.4)

Remark 3.2.1. For any continuous sectionzt of {Mt } such that
z0 /∈ {p1, p2, . . . , pm+1}, it is easy to see from Equations (3.2.1) and (3.2.2)
that φ̃1,t (zt )→ φ1,0(z0) ast → 0.

(3.3) We are going to derive some estimates on Ii,t , i = 1, . . . ,m+1, which will be
needed later. Recall from (2.1) that for 1≤ i ≤ m+ 1, there is a coordinate neigh-
borhood1m+2 of pi in M centered atpi and such that fort = (t1, t2, . . . , tm+1) ∈
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1m+1,Mt ∩1m+2 = {(t1, . . . , ti−1, zi,1, zi,2, ti+1, . . . , tm+1) ∈ 1m+2 | zi,1zi,2 = ti}
with zi,1, zi,2 providing two different coordinate functions. As in [9, proposi-
tion 4.2.1], we have

PROPOSITION 3.3.1.There exist constantsC1, C2 > 0 such that for all1 ≤ i ≤
m+ 1, t = (t1, t2, . . . , tm+1) ∈ (1∗)m+1 andk = 1,2, we have, onMt ∩1m+2,

C1

(
π

log |tk| csc
π log |zi,k|

log |tk|
|dzi,k|
|zi,k|

)2

≤ ds2
t ≤ C2

(
π

log |tk| csc
π log |zi,k|

log |tk|
|dzi,k|
|zi,k|

)2

. (3.3.1)

Proof. It follows from a result of Wolpert [12, expansion 4.2] that Equa-
tion (3.3.1) holds for the hyperbolic metrics{ds2

hyp,t} on {Mt}. This, together with
Equation (2.2.4), implies Proposition 3.3.1 immediately. 2

Next we have the following

PROPOSITION 3.3.2.Let Ii,t , i = 1, . . . ,m+ 1, be as in Equation (3.1.1), and let
κt be as in Equation (3.2.4). We have

(i) for 1≤ i ≤ m+ 1,
∫

Ii,t
ωt → 0,

∫
Ii,t
ω̂t → 0, and (3.3.2)

(ii) ‖κt‖2→ 0 as t → 0. (3.3.3)

Proof. First we recall from Equation (3.1.1) that, for 1≤ i ≤ m + 1, t =
(t1, t2, . . . , tm+1) ∈ (1∗)m+1 andk = 1,2, one has

1

2
− 2δ <

log |zi,k|
log |ti| <

1

2
+ 2δ (3.3.4)

for z = (t1, . . . , ti−1, zi,1, zi,2, ti+1, . . . , tm+1) ∈ Ii,t (so thatzi,1zi,2 = ti). For fixed
i with 1≤ i ≤ m+ 1, we writeζ := logzi,1/ log |ti| on Ii,t , so that

ζ = a + ib, 1

2
− 2δ < a <

1

2
+ 2δ, 0≤ b < 2π

| log |ti || , (3.3.5)

gives a parametrization for each Ii,t , t ∈ (1∗)m+1. From Equation (2.2.4) and the
well-known fact that Vol(Mt, ds

2
hyp,t ) = 2π(2q − 2) for t ∈ (1∗)m+1, it follows

that there exist constantsC3, C4 > 0 such thatC3 ≤ Vol(Mt , ds
2
t ) ≤ C4 for all

t ∈ (1∗)m+1. Then, together with Proposition 3.3.1 and Equation (3.3.4), it follows
that there exist constantsC5, C6 > 0 such that for allt ∈ (1∗)m+1,

C5
i

2
dζ ∧ dζ̄ ≤ ωt, ω̂t ≤ C6

i

2
dζ ∧ dζ̄ on Ii,t . (3.3.6)
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Therefore,∫
Ii,t

ω̂t ≤ C6

∣∣∣∣∣
∫

Ii,t

√−1

2
dζ ∧ dζ̄

∣∣∣∣∣
= C6

∫ (2π)/(| log|ti ||)

0

∫ (1/2)+2δ

(1/2)−2δ
dadb

= 8πδC6

| log |ti|| → 0 ast → 0. (3.3.7)

Similarly, one has
∫

Ii,t
ωt → 0 ast → 0, and this finishes the proof of (i). To verify

(ii), we first see from construction ofηt that there exists a constantC7 > 0 such that
for all t ∈ (1∗)m+1, |∂ζ ∂ζ̄ ηt | ≤ C7 on I1,t , whereζ is as in Equation (3.3.5). Write
C8 :=

√
V0,2/

√
V0,1(V0,1+ V0,2)−

√
V0,1/

√
V0,2(V0,1+ V0,2). Then it follows from

Equations (3.2.2) and (3.2.4) that for allt ∈ (1∗)m+1 andz ∈ I1,t ,

|κt(z)| =
∣∣∣∣C8 · 1

ωt(∂/∂ζ, ∂/∂ζ )
· ∂ζ ∂ζ̄ ηt (z)

∣∣∣∣ ≤ C8C7

C5
,

where C5 is as in Equation (3.3.6). From Equation (3.2.2), one sees that
supp(dκt ) ⊂ I1,t , and thus

‖κt‖22 =
∫

I1,t

|κt |2ωt

≤
(
C8C7

C5

)2 ∫
I1,t

ωt

→ 0 ast → 0 (by (3.3.2)).

This finishes the proof of Proposition 3.3.2. 2

(3.4) We recall from (3.1) the biholomorphismsjk,t : Wk,t → II k,t , k = 1,2,
t ∈ (1∗)m+1. For t = (t1, t2, . . . , tm+1) ∈ Cm+1, we denote|t| := max1≤i≤m+1 |ti |.
As in [9, lemma 4.3.1], we have

LEMMA 3.4.1. For 0 < t0 < 1 and k = 1,2, there exist constantsCk,C′k > 0
such that for allt ∈ (1∗)m+1 with |t| ≤ t0,

Ckds
2
0,k ≤ j∗k,tds2

t ≤ C′kds2
0,k onWk,t . (3.4.1)

Proof. For k = 1,2, we let zi,k : Ui,k → 1 be as in (2.1). Fort =
(t1, . . . , tm+1) ∈ (1∗)m+1 with |t| ≤ t0, we writeWk,t = Nk t(i,k′)∈Ik Ui,k′,t , where
the index setIk is as in (3.1) andUi,k′,t := {zi,k′ ∈ Ui,k′ : |ti | 12−2δ ≤ |zi,k′ | < 1}
andNk := Wk,t\ t(i,k′)∈Ik Ui,k′,t . Note thatNk does not vary witht . First, from the
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compactness ofNk × {t ∈ 1m+1 : |t| ≤ t0} and the continuity of{ds2
t }, it follows

that Equation (3.4.1) holds onNk. Fork = 1,2, it follows from Remark 2.2.4 that
there exist constantsCk,1, Ck,2 > 0 such that for all 1≤ i ≤ m+ 1,

Ck,1
|dzi,k|2

|zi,k|2(log |zi,k|)2 ≤ ds
2
0,k ≤ Ck,2

|dzi,k|2
|zi,k|2(log |zi,k|)2 onUi,k. (3.4.2)

Observe that 0 < π log |zi,k′ |/ log |ti | < π((1/2) − 2δ) on eachUi,k′,t
(cf. Equation (3.1.1)), and that there exist constantsC3, C4 > 0 such that
C3 < θ cscθ < C4 for all 0< θ < π((1/2)− 2δ). Together with Equation (3.4.2)
and Proposition 3.3.1, it is easy to verify that Equation (3.4.1) also holds on each
Ui,k′,t for (i, k′) ∈ Ik, t ∈ (1∗)m+1 with |t| ≤ t0, and this finishes the proof of
Lemma 3.4.1. 2

Remark 3.4.2.Sinceπ((1/2) − 2δ) < π log |zi,k|/ log |ti | < π((1/2) + 2δ)
on Ii,t , k = 1,2, i = 1, . . . ,m + 1, and there exist constantsC1, C2 > 0 such
thatC1 < θ cscθ < C2 for π((1/2) − 2δ) < θ < π((1/2) + 2δ), one can easily
verify as in Lemma 3.4.1 that fork = 1,2, shrinking1m+1 if necessary, there
exist constantsCk,1, Ck,2 > 0 such that for alli = 1, . . . ,m+ 1 andt ∈ (1∗)m+1,
one hasCk,1ds2

t ≤ pr∗i,k,t ds
2
0,k ≤ Ck,2ds2

t on Ii,t .

PROPOSITION 3.4.3.We have

(i)
∫
Mt
φ̃1,tωt → 0, and (3.4.3)

(ii) ‖φ̃1,t‖2→ 1 ast → 0. (3.4.4)

Proof. First we recall from (3.1) thatMt = (t1≤i≤m+1Ii,t ) t II 1,t t II 2,t for
t ∈ (1∗)m+1, so that∫

Mt

φ̃1,tωt =
∑

1≤i≤m+1

∫
Ii,t

φ̃1,tωt +
∫

II 1,t

φ̃1,tωt +
∫

II 2,t

φ̃1,tωt . (3.4.5)

From Equation (3.2.3), one sees that there exists a constantC > 0 such that for all
t ∈ (1∗)m+1, |φ̃1,t (z)| ≤ C for all z ∈ Ii,t . Together with Proposition 3.3.2(i), one
easily deduces that for all 1≤ i ≤ m+ 1,∫

Ii,t

φ̃1,tωt → 0 and
∫

Ii,t

(φ̃1,t )
2ωt → 0 ast → 0. (3.4.6)

From Equation (3.2.2), one also has∫
II 1,t

φ̃1,tωt =
√

V0,2

V0,1(V0,1+ V0,2)

∫
W1,t

j∗1,tωt
ω0,1

ω0,1. (3.4.7)

Observe that{W1,t} form an increasing sequence of compact subsets exhaustingM0
1

ast → 0 and the right-hand side of Equation (3.4.7) can be regarded as an integral
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overM0
1 by extending the integrand to be zero onM0

1\W1,t . By Lemma 3.4.1 and
the continuity of{ds2

t }, j∗1,tωt/ω0,1 is uniformly bounded from above by a constant
and converges pointwise to the constant function 1 ast → 0. SinceV0,1 < ∞, it
follows from the dominated convergence theorem that∫

II 1,t

φ̃1,tωt →
√

V0,2

V0,1(V0,1+ V0,2)
· V0,1

=
√

V0,1V0,2

V0,1+ V0,2
ast → 0. (3.4.8)

Similarly, using Equation (3.2.3), one can easily see that∫
II 2,t

φ̃1,tωt →−
√

V0,1V0,2

V0,1+ V0,2
, (3.4.9)

∫
II 1,t

(φ̃1,t )
2ωt → V0,2

V0,1+ V0,2
, (3.4.10)

and ∫
II 2,t

(φ̃1,t )
2ωt → V0,1

V0,1+ V0,2
ast → 0. (3.4.11)

By combining Equations (3.4.5), (3.4.6), (3.4.8) and (3.4.9), one obtains
Proposition 3.4.3(i) immediately. Similarly, Proposition 3.4.3(ii) can be obtained
by combining Equations (3.4.6), (3.4.10) and (3.4.11). Thus we have finished the
proof of Proposition 3.4.3. 2

Remark 3.4.4.We remark that one can easily modify the proof of Proposi-
tion 3.4.3 to show that Vol(Mt, ωt )→ V0,1+ V0,2 ast → 0.

(3.5) Let {Mt }, {ds2
t } be as in Theorem 2.4.1. Fort ∈ (1∗)m+1, we let

0 = λ0,t < λ1,t ≤ λ2,t ≤ . . . be the set of eigenvalues of the Laplacian1t on
Mt , counting multiplicity. Also, for eacht ∈ (1∗)m+1, we fix an orthonormal set
{φl,t}0≤l<∞ of eigenvectors of1t onMt with φl,t corresponding toλl,t . Moreover,
we will let φ0,t := 1/

√
Vol(Mt , ωt). It follows from standard elliptic theory

that {φl,t}0≤l<∞ forms a complete orthonormal basis of the Hilbert space ofL2

functions onMt endowed with the inner product〈, 〉 induced byds2
t . First we have

LEMMA 3.5.1. There exists a constantα > 0 such thatλ2,t ≥ α for all t ∈
(1∗)m+1.

Proof. It is well known and follows from results in [4, 8] that in our case of
degenerating Riemann surfaces with one separating node (andm non-separating
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nodes), there exists a constantβ > 0 such thatλhyp
2,t ≥ β for all t ∈ (1∗)m+1, where

λ
hyp
2,t denotes the second non-zero eigenvalue of the hyperbolic Laplacian onMt

(see, e.g., [5, corollary 2]). This, together with Equation (2.2.4) and the minimax
principle, implies Lemma 3.5.1 immediately. 2

For t ∈ (1∗)m+1, we define the following smooth function onMt given by

µt := φ̃1,t − 〈φ̃1,t , φ0,t 〉φ0,t − 〈φ̃1,t , φ1,t 〉φ1,t

= φ̃1,t − 1

Vol(Mt , ωt)

∫
Mt

φ̃1,tωt − 〈φ̃1,t , φ1,t 〉φ1,t , (3.5.1)

whereφ̃1,t is as in Equation (3.2.3).

PROPOSITION 3.5.2.Let µt, κt , α be as in Equations (3.5.1), (3.2.4) and
Lemma 3.5.1 respectively. Then we have

(i) ‖1tµt‖2 ≤ ‖κt‖2, and (3.5.2)
(ii) ‖µt‖2 ≤ 1

α
‖κt‖2 for all t ∈ (1∗)m+1. (3.5.3)

(iii) In particular, ‖µt‖2→ 0 ast → 0.

Proof.From Equation (3.2.4), we have

〈κt , φ1,t 〉 = 〈1tφ̃1,t , φ1,t〉 = 〈φ̃1,t , 1tφ1,t 〉 = λ1,t〈φ̃1,t , φ1,t〉. (3.5.4)

Together with Equations (3.2.4) and (3.5.1), one easily checks that

1tµt = κt − 〈κt , φ1,t 〉φ1,t onMt. (3.5.5)

This implies, in particular, that

‖1tµt‖22 = 〈κt − 〈κt , φ1,t 〉φ1,t , κt − 〈κt , φ1,t 〉φ1,t〉
= 〈κt , κt 〉 − 2|〈κt , φ1,t 〉|2+ |〈κt , φ1,t〉|2〈φ1,t , φ1,t〉
= ‖κt‖22− |〈κt , φ1,t 〉|2 (since‖φ1,t‖2 = 1),

which implies Proposition 3.5.2(i). Next, by construction in Equation (3.5.1), one
sees thatµt is orthogonal to bothφ0,t andφ1,t . Together with Parseval’s identity,
we have

‖µt‖22 =
∑
l≥2

|〈µt, φl,t 〉|2

=
∑
l≥2

1

(λl,t )2
|〈1tµt , φl,t 〉|2 (as in (3.5.4))

≤ 1

α2
‖1tµt‖22 (by Lemma 3.5.1 and Parseval’s identity)

≤ 1

α2
‖κt‖22 (by Proposition 3.5.2(i)), (3.5.6)



252 W.-K. TO AND L. WENG

which leads to Proposition 3.5.2(ii). Finally, Proposition 3.5.2(iii) follows readily
from Proposition 3.3.2(ii) and Proposition 3.5.2(ii) by lettingt → 0. 2

PROPOSITION 3.5.3.Let xt be a continuous section of{Mt} such thatx0 /∈
{p1, . . . , pm+1}. Thenµt(xt)→ 0 ast → 0.

Proof. Sincex0 /∈ {p1, . . . , pm+1}, it follows easily from the construction of
{Mt} in (2.1) that one can find a continuous family of coordinate discs1(xt , r) ⊂
Mt centered atxt and of fixed radiusr > 0 for 0 ≤ |t| < t0 and such that
{p1, . . . , pm+1}∩1(x0, r) = ∅, shrinkingt0 andr if necessary. Then by the relative
compactness of

⋃
0≤|t |<t01(xt , r) and the continuity of{ds2

t }, there exist constants
C1, C2 > 0 such that for allt ∈ (1∗)m+1 with |t| < t0,

C1dz⊗ dz̄ ≤ ds2
t ≤ C2dz⊗ dz̄ on1(xt , r). (3.5.7)

Using standard Nash–Moser iteration technique (cf. [3, theorem 8.2.4]), one can
deduce from Equation (3.5.7) that there exists a constantC = C(C1, C2) > 0 such
that for all t ∈ (1∗)m+1 with |t| < t0,

|µt(xt)| ≤ C

(√∫
1(xt ,r)

µ2
t ωt +

√∫
1(xt ,r)

(1tµt)2ωt

)
≤ C(‖µt‖2+ ‖1tµt‖2)
≤ C(‖µt‖2+ ‖κt‖2) (by Proposition 3.5.2(i))

→ 0 ast → 0 (by Propositions 3.3.2(ii) and 3.5.2(iii)). (3.5.8)

Thus we have finished the proof of Proposition 3.5.3. 2

(3.6) Notations are as before. To facilitate ensuing discussion, we summarize our
discussion in Section 3 as follows. Let{φl,t}0≤l<∞ be as in (3.5), and let̃φ1,t , φ1,t

be as in (3.2).

PROPOSITION 3.6.1.We have

(i) 〈φ̃1,t , φ0,t〉 → 0, and
(ii) |〈φ̃1,t , φ1,t 〉| → 1 ast → 0.

Proof. Proposition 3.6.1(i) follows easily from Proposition 3.4.2(i) and Re-
mark 3.4.3 (cf. also Equation (3.5.1)). From Equation (3.5.1), it is easy to check
that

‖µt‖22 = ‖φ̃1,t‖22− |〈φ̃1,t , φ0,t〉|2 − |〈φ̃1,t , φ1,t 〉|2. (3.6.1)

Then Proposition 3.6.1(ii) can be obtained from Equation (3.6.1) by lettingt → 0
and using Propositions 3.4.2(ii), 3.5.2(iii) and 3.6.1(i). 2
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We remark that in Proposition 3.6.2(ii),〈φ̃1,t , φ1,t〉 itself does not tend to a limit
sinceφ1,t is determined only up to sign. Also, from Proposition 3.6.1(ii), we may
assume that〈φ̃1,t , φ1,t〉 6= 0 for t ∈ (1∗)m+1, shrinking1m+1 if necessary. Then
for t ∈ (1∗)m+1, we define the following smooth function

ψt := φ1,t − 1

〈φ̃1,t , φ1,t〉
φ̃1,t onMt. (3.6.2)

We have

PROPOSITION 3.6.2.

(i) ‖ψt‖2→ 0 ast → 0.
(ii) Let xt be a continuous section of{Mt} such thatx0 /∈ {p1, p2, . . . , pm+1}.

Then

ψt(xt )→ 0 ast → 0.

Proof.Rewriting Equation (3.5.1) using Equation (3.6.2), one has

ψt = −〈φ̃1,t , φ0,t 〉φ0,t − µt
〈φ̃1,t , φ1,t 〉

, (3.6.3)

which implies that

0≤ ‖ψt‖22 ≤
2(|〈φ̃1,t , φ0,t 〉|2+ ‖µt‖22)

|〈φ̃1,t , φ1,t〉|2
. (3.6.4)

Then Proposition 3.6.2(i) can be obtained from Equation (3.6.4) by lettingt → 0
and using Propositions 3.5.2(iii), 3.6.1(i) and (ii). Similarly, Proposition 3.6.2(ii)
can be obtained easily from Equation (3.6.3) by lettingt → 0 and using
Remark 3.2.1, Propositions 3.5.3, 3.6.1(i) and (ii). 2

4. Proof of Theorem 2.4.1

(4.1) Notation is as in Sections 2 and 3. Let{Mt}, {xt}, {yt }, λ1,t , φ1,t be as in
Theorem 2.4.1. As it is clear that the proofs of Theorem 2.4.1 in the two cases
wheny0 ∈ M0

1 and wheny0 ∈ M0
2 are the same, we will consider only the first

case and assumey0 ∈ M0
1 in ensuing discussion. First we recall from (3.1) that

Mt = (t1≤i≤m1+1Ii,t ) t II 1,t t II ′2,t for t ∈ (1∗)m+1. Sincey0 ∈ M0
1, it follows

thatyt ∈ II 1,t for |t| sufficiently small. Shrinking1m+1 if necessary, we may thus
assume thatyt ∈ II 1,t for all t ∈ (1∗)m+1, and we let

y′t := i1,t (yt ) (4.1.1)



254 W.-K. TO AND L. WENG

denote the associated continuous curve onM0
1. Let η : R → R be the smooth

function in (3.2). For each 1≤ i ≤ m + 1 andt = (t1, t2, . . . , tm+1) ∈ (1∗)m+1,
we define, similar to Equation (3.2.3), the smooth functionηi,t on Ii,t given by

ηi,t (z) := η

(
log |zi,1|
log |ti |

)
for z = (t1, . . . , ti−1, zi,1, ti/zi,1, ti+1, . . . , tm+1) ∈ Ii,t . (4.1.2)

For i = 1, . . . ,m + 1, k = 1,2 andt ∈ (1∗)m+1, let pri,k,t andik,t be as in Equa-
tions (3.1.2) and (3.1.3), respectively. Fort ∈ (1∗)m+1, we define the following
function onMt\{yt} given by

g̃t,yt (z) :=



η1,t (z)g0,1(pr1,1,t (z), y
′
t ), if z ∈ I1,t;

ηi,t (z)g0,1(pri,1,t (z), y
′
t ) if z ∈ Ii,t ,2≤ i ≤ m1+ 1;

+ (1− ηi,t (z))g0,1(pri,2,t (z), y
′
t ),

g0,1(i1,t (z), y
′
t ), if z ∈ II 1,t;

0, if z ∈ II ′2,t .

(4.1.3)

It is easy to see that̃gt,yt is smooth onMt\{yt}. Then fort ∈ (1∗)m+1, we define
the following function onMt\{yt } given by

ut (z) := gt (z, yt)− 1

λ1,t
φ1,t (z)φ1,t (yt )− g̃t,yt (z) for z ∈Mt. (4.1.4)

From the growth condition (a) in (2.3) forgt (·, yt ) nearyt and that forg0,1(·, y′t )
neary′t , it follows easily thatut extends smoothly acrossyt , and we denote its
smooth extension onMt by the same symbolut .

Remark 4.1.1.It follows easily from Equation (4.1.3) and the continuity ofg0,1

that for a continuous sectionxt of {Mt} such thatx0 /∈ {p1, p2, . . . , pm+1},

lim
t→0

t∈(1∗)m+1

g̃t,yt (xt ) =
{
g0,1(x0, y0), if x0 ∈ M0

1,

0, if x0 ∈ M0
2 .

(4.2) For t ∈ (1∗)m+1, let ut be as in Equation (4.1.4). Then it follows from
condition (b) in (2.3) forgt(·, yt ) andg0,1(·, y′t ) that forz ∈Mt\{yt },

1tut (z) = − 1

Vol(Mt , ωt)
− φ1,t (z)φ1,t (yt )+

√−1∂∂̄g̃t,yt (z)

ωt(z)
. (4.2.1)

Here ratios of(1,1)-forms make sense sinceMt is one-dimensional.

LEMMA 4.2.1. Letut be as in Equation (4.1.4). Then

(i)
∫

II 1,t
|1tut |2ωt → 0, and
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(ii)
∫

II 2,t
|1tut |2ωt → 0, ast → 0.

Proof.By Equation (4.1.3) and condition (b) in (2.3) forg0,1(·, y′t ), we have

√−1∂∂̄g̃t,yt =
{

i∗1,t ω0,1

V0,1
on II1,t\{yt },

0 on II2,t .
(4.2.2)

To prove (i), we substitute Equations (3.6.2) and (4.2.2) into Equation (4.2.1),
which gives

1tut(z) = − 1

Vol(Mt , ωt)
−
(

φ̃1,t (z)

〈φ̃1,t , φ1,t〉
+ ψt(z)

)(
φ̃1,t (yt )

〈φ̃1,t , φ1,t 〉
+ ψt(yt )

)

+ i∗1,tω0,1

V0,1 · ωt(z) on II1,t\{yt }, (4.2.3)

whereψt is as in Equation (3.6.2). As in Equation (4.1.4), since both sides of
Equation (4.2.3) are smooth on II1,t , Equation (4.2.3) actually holds on II1,t . From
Equations (3.2.1), (3.2.3), Remark 3.2.1, Lemma 3.4.1, Remark 3.4.4, Proposi-
tions 3.6.1(ii) and 3.6.2(ii), it follows that shrinking1m+1 if necessary, there exists
a constantC1 > 0 such that

|1tut (z)| ≤ C1 for all z ∈ II 1,t , t ∈ (1∗)m+1. (4.2.4)

Let jk,t : Wk,t → II k,t , k = 1,2, be as in (3.1). Then from Equation (4.2.3), we
have, forz ∈ W1,t ⊂ M0

1,

(j∗1,t1tut )(z) → − 1

V0,1+ V0,2
− V0,2

V0,1(V0,1+ V0,2)
+ 1

V0,1

= 0 ast → 0. (4.2.5)

Here the first term on the right-hand side of Equation (4.2.5) follows from
Remark 3.4.4, the second term follows from Propositions 3.6.1(ii), 3.6.2(ii), Equa-
tion (3.2.1), Remark 3.2.1, and the last term follows from the continuity of{ds2

t }.
Obviously, one has∫

II 1,t

|1tut |2ωt =
∫
W1,t

(
|j∗1,t1tut |2

j∗1,tωt
ω0,1

)
ω0,1. (4.2.6)

The right-hand side of Equation (4.2.6) can be regarded as an integral overM0
1 by

letting the integrand to be zero onM0
1\W1,t . From Lemma 3.4.1, Equations (4.2.4)

and (4.2.5), it follows that the integrand on the right-hand side of Equation (4.2.6)
is uniformly bounded from above and converges pointwise to zero onM0

1 ast → 0.
SinceV0,1 <∞, it follows from the dominated convergence theorem that∫

II 1,t

|1tut |2ωt → 0 ast → 0, (4.2.7)
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and this finishes the proof of (i). Next we proceed to prove (ii). As in Equa-
tion (4.2.4), one easily sees from Equations (4.2.4) and (4.2.3) that there exists
a constantC2 > 0 such that

|1tut (z)| ≤ C2 for all z ∈ II 2,t , t ∈ (1∗)m+1. (4.2.8)

Also, as in Equation (4.2.5), one can verify from Equations (4.2.2) and (4.2.3) that
for z ∈ W2,t ⊂ M0

2,

(j∗2,t1tut )(z) → − 1

V0,1+ V0,2
+ 1

V0,1+ V0,2
+ 0

= 0 ast → 0. (4.2.9)

Then one can use the dominated convergence theorem as in (i) to deduce from
Equations (4.2.8) and (4.2.9) that∫

II 2,t

|1tut |2ωt =
∫
W2,t

(
|j∗2,t1tut |2

j∗2,tωt
ω0,2

)
ω0,2

→ 0 ast → 0,

which gives (ii). Thus we have finished the proof of Lemma 4.2.1. 2

Recall from (2.1) the coordinate mappingszi,k : Ui,k → 1 nearpi, i = 1, . . . ,
m + 1, k = 1,2, and let{z′t} ⊂⊂ M0

k be a continuous curve. We shall need the
following lemma:

LEMMA 4.2.2. There exist constantsC1, C2 > 0 such that for allt ∈ (1∗)m+1,
i = 1, . . . ,m+ 1 andk = 1,2,

(i) |g0,k(zi,k, z
′
t )| ≤ C1 max{1, log(− log |zi,k|)}, and (4.2.10)

(ii)

∣∣∣∣∂g0,k(zi,k, z
′
t )

∂zi,k

∣∣∣∣ , ∣∣∣∣∂g0,k(zi,k, z
′
t )

∂z̄i,k

∣∣∣∣
≤ C2

|zi,k|| log |zi,k|| onUi,k\{pi}. (4.2.11)

Proof.Same as [9, lemma 4.2.2], and it follows from conditions (2.2.2), (2.2.3)
for ω̂0,k and conditions (b), (e) in (2.3) forg0,k(·, ·). 2

Now we have

LEMMA 4.2.3. Letut be as in Equation (4.1.4). Then fori = 1,2, . . . ,m+ 1,∫
Ii,t

|1tut |2ωt → 0 as t → 0.
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Proof.By Equation (4.1.3), we have, forz ∈ Ii,t ,
√−1∂∂̄g̃t,yt (z)

=


√−1∂∂̄

(
η1,t (z)g0,1(pr1,1,t (z), y

′
t )
)
, i = 1,√−1∂∂̄

(
ηi,t (z)g0,1(pri,1,t (z), y

′
t )

+ (1− ηi,t (z))g0,1(pri,2,t (z), y
′
t )
)
, 2≤ i ≤ m1+ 1,

0, m1+ 2≤ i ≤ m+ 1.

(4.2.12)

As in Equation (4.2.3), by substituting Equation (3.6.2) into Equation (4.2.1), we
have

1tut(z) = − 1

Vol(Mt , ωt)
−
(

φ̃1,t (z)

〈φ̃1,t , φ1,t〉
+ ψt(z)

)(
φ̃1,t (yt )

〈φ̃1,t , φ1,t 〉
+ ψt(yt )

)

+
√−1∂∂̄g̃t,yt (z)

V0,1 · ωt(z)
=: τ1,t (z)+ τ2,t (z) on Ii,t , (4.2.13)

where

τ1,t (z) := − 1

Vol(Mt , ωt)
−
(

φ̃1,t (z)

〈φ̃1,t , φ1,t〉
+ ψt(z)

)(
φ̃1,t (yt )

〈φ̃1,t , φ1,t 〉
+ ψt(yt)

)
,

and

τ2,t (z) :=
√−1∂∂̄g̃t,yt (z)

V0,1 · ωt(z) on Ii,t . (4.2.14)

Here,ψt is as in Equation (3.6.2). For simplicity, we will only prove Lemma 4.2.3
for the case wheni = 2, . . . ,m1 + 1, since the calculations in the other cases are
similar. First, using Remark 3.4.4, Equation (3.2.3), Propositions 3.6.1(ii), 3.6.2(ii),
Equation (4.2.14) and the fact thatyt ∈ II 1,t , it is easy to see that there exist
constantsC1, C2 > 0 such that

|τ1,t (z)| ≤ C1+ C2|ψt(z)| for z ∈ Ii,t . (4.2.15)

Then it follows that∫
Ii,t

|τ1,t (z)|2ωt ≤
∫

Ii,t

| C1+ C2|ψt(z)| |2 ωt (by (4.2.15))

≤ 2C2
1

∫
Ii,t

ωt + 2C2
2‖ψt‖22

→ 0 ast → 0

(by Propositions 3.3.2(i) and 3.6.2(i)). (4.2.16)
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For fixedi with 2≤ i ≤ m1+1 andt = (t1, . . . , tm+1) ∈ (1∗)m+1, we consider the
parametrization of Ii,t in (3.3.5) given byζ(= a + ib) = logzi,1/ log |ti|, (1/2) −
2δ < a < (1/2) + 2δ, 0 ≤ b < 2π/| log |ti ||. Recall also from Equation (3.1.1)
that one haszi,2 = ti/zi,1 for z = (t1, . . . , ti−1, zi,1, zi,2, ti+1, . . . , tm+1) ∈
Ii,t . By Equation (4.2.12) and condition (b) in (2.3) forg0,1(·, y′t ), one easily
sees that for 2≤ i ≤ m1 + 1, t = (t1, . . . , tm+1) ∈ (1∗)m+1 and z =
(t1, . . . , ti−1, zi,1, zi,2, ti+1, . . . , tm+1) ∈ Ii,t ,
√−1∂∂̄g̃t,yt (z) =

√−1∂∂̄ηi,t (z)
(
g0,1(zi,1, y

′
t )− g0,1(zi,2, y

′
t )
)

+√−1∂ηi,t (z) ∧
(
∂̄g0,1(zi,1, y

′
t )− ∂̄g0,1(zi,2, y

′
t )
)

−√−1∂̄ηi,t (z) ∧
(
∂g0,1(zi,1, y

′
t )− ∂g0,1(zi,2, y

′
t )
)

+ ηi,t (z)ω0,1(zi,1)

V0,1
+ (1− ηi,t (z))ω0,1(zi,2)

V0,1
. (4.2.17)

It is easy to see from Equation (3.2.2) that there exists a constantC3 > 0 such that
for all t ∈ (1∗)m+1,

|∂ζηi,t |, |∂ζ̄ ηi,t |, |∂ζ ∂ζ̄ ηi,t | ≤ C3 on Ii,t . (4.2.18)

By Lemma 4.2.2(ii), we have, fort ∈ (1∗)m+1,

∂ζg0,1(zi,1, y
′
t )| = |∂zi,1g0,1(zi,1, y

′
t ) · (∂zi,1/∂ζ )|

≤ C4

|zi,1|| log |zi,1|| · |zi,1|| log |ti ||

≤ C5 on Ii,t (cf. (3.3.4)). (4.2.19)

Here the constantsC4, C5 > 0 are independent oft . One can easily see that similar
inequality also holds for∂ζ̄ g0,1(zi,1, y

′
t ), ∂ζg0,1(zi,2, y

′
t ), ∂ζ̄ g0,1(zi,2, y

′
t ) on Ii,t . Then

by Equations (3.3.6), (4.2.3), (4.2.14), (4.2.18), (4.2.19), one easily sees that there
exists a constantC6 > 0 such that for allt ∈ (1∗)m+1,

|τ2,t (z)| ≤ C6 for all z ∈ Ii,t . (4.2.20)

Then, using Equation (4.2.20), one can proceed as Equation (3.3.7) to show that
there exists a constantC7 > 0 such that for allt ∈ (1∗)m+1,∫

Ii,t

|τ2,t |2ωt ≤ C7
| log(− log |ti |)|2
| log |ti ||

→ 0 ast → 0. (4.2.21)

Thus fori = 2, . . . ,m1+ 1, we have∫
Ii,t

|1tut |2ωt =
∫

Ii,t

|τ1,t + τ2,t |2ωt (by (4.2.13))
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≤ 2
∫

Ii,t

|τ1,t |2ωt + 2
∫

Ii,t

|τ2,t |2ωt

→ 0 ast → 0 (by (4.2.16) and (4.2.21)). (4.2.22)

Similarly, one can show that fori = 1 andi = m1+2, . . . ,m+1,
∫

Ii,t
|1tut |2ωt →

0 ast → 0, and this finishes the proof of Lemma 4.2.3. 2

Now we summarize our discussion in (4.2) in the following

PROPOSITION 4.2.4.Let ut be as in Equation (4.1.4). Then‖1tut‖2 → 0 as
t → 0.

Proof.We have

‖1tut‖22 =
∑

1≤i≤m+1

∫
Ii,t

|1tut |2ωt +
∫

II 1,t

|1tut |2ωt +
∫

II 2,t

|1tut |2ωt

→ 0 ast → 0 (by Lemmas 4.2.1 and 4.2.3).

(4.3) Notation is as before. Letut be as in Equation (4.1.4),φ0,t (=
1/
√

Vol(Mt , ωt)) be as in (3.5), and letφ1,t be as in Theorem 2.4.1. We
have

PROPOSITION 4.3.1.

〈ut , φ0,t〉 → 0 ast → 0. (4.3.1)

Proof.Using condition (c) in (3.2) forgt (·, yt ) and the fact thatφ0,t is orthogonal
to φ1,t , we have, for allt ∈ (1∗)m+1,∫

Mt

(
gt (z, yt)− 1

λ1,t
φ1,t (z)φ1,t (yt )

)
φ0,t (z)ωt = 0. (4.3.2)

Let g̃t,yt be as in Equation (4.1.3). Using Lemma 4.2.2(i) and Equation (3.3.4), one
can then proceed as in [9, proposition 4.2.3(ii)] to show that for 1≤ i ≤ m+ 1,∫

Ii,t

g̃t,yt (z)ωt → 0 ast → 0. (4.3.3)

Also, using the dominated convergence theorem, the continuity of{ds2
t }, condition

(c) in (3.2) forg0,1(z, y
′
t ), Proposition 3.3.1, Lemmas 3.4.1 and 4.2.2(i), one can

proceed as in [9, proposition 4.3.2(iii)] to show that∫
II 1,t

g̃t,yt (z)ωt → 0 ast → 0. (4.3.4)

Since supp(g̃t,yt ) ⊂ (t1≤i≤m1+1Ii,t ) t II 1,t (cf. Equation (4.1.3)), one can combine
Equations (4.3.3), (4.3.4) and Remark 3.4.4 to get
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Mt

g̃t,yt (z)φ0,1(z)ωt

= 1√
Vol(Mt , ωt)

 ∑
1≤i≤m1+1

∫
Ii,t

+
∫

II 1,t

 g̃t,yt (z)ωt
→ 1√

V0,1+ V0,2
· 0= 0 ast → 0. (4.3.5)

Then Equation (4.3.1) follows from Equations (4.1.4), (4.3.2) and (4.3.5) by
letting t → 0, and we have finished the proof of Proposition 4.3.1. 2

Also we have:

PROPOSITION 4.3.2.

〈ut , φ1,t〉 → 0 as t → 0. (4.3.6)

Proof.From the self-adjointedness of1t and the identity1tφ1,t = λ1,tφ1,t , we
have, for allt ∈ (1∗)m+1,∫

Mt

(
gt (z, yt)− 1

λ1,t
φ1,t (z)φ1,t (yt )

)
φ1,t (z)ωt

= 1

λ1,t

∫
Mt

gt (z, yt )1tφ1,t (z)ωt − φ1,t (yt )

λ1,t

∫
Mt

(φ1,t (z))
2ωt

= 1

λ1,t

(
φ1,t (yt )−

∫
Mt

φ1,t (z)ω̂t

)
− φ1,t (yt )

λ1,t

(by condition (b) in (3.2) forgt (·, yt ) and‖φ1,t‖2 = 1)

= 0 (since〈φ1,t , φ0,t〉 = 0). (4.3.7)

Let φ̃1,t be as in (3.2.3). It is easy to check that there exists a constantC > 0
such that|φ̃1,t (z)| ≤ C for all z ∈ Mt and t ∈ (1∗)m+1. Then as in Equa-
tion (4.3.3), one can use Lemma 4.2.2(i), Equation (3.3.4) and proceed as in [9,
proposition 4.2.3(ii)] to show that fori = 1, . . . ,m1+ 1,∫

Ii,t

g̃t,yt (z)φ̃1,t (z)ωt → 0 ast → 0. (4.3.8)

From Equations (3.2.2) and (3.2.3), one easily checks thatφ̃1,t (z) =√
V0,2/V0,1(V0,1+ V0,2) on II1,t for |t| sufficiently small. Thus by Equation (4.3.4),

we also have∫
II 1,t

g̃t,yt (z)φ̃1,t (z)ωt → 0 ast → 0. (4.3.9)
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Since supp(g̃t,yt ) ⊂ (t1≤i≤m1+1Ii,t )t II 1,t (cf. Equation (4.1.3)) and|〈φ̃1,t , φ1,t〉| ≥
C > 0 for some constantC independent oft (cf. Proposition 3.6.1(ii)), it follows
from Equations (4.3.8) and (4.3.9) that∫

Mt

g̃t,yt (z)
φ̃1,t (z)

〈φ̃1,t , φ1,t〉
ωt → 0 ast → 0. (4.3.10)

Using Lemma 4.2.2(i), one can easily adapt the argument in [9, proposi-
tion 4.2.3(i)] to show that for 1≤ i ≤ m1 + 1 and t = (t1, . . . , tm+1) ∈
(1∗)m+1,∫

Ii,t

(g̃t,yt (z))
2ωt ≤ C1

| log(− log |ti|)|2
| log |ti ||

→ 0 ast → 0. (4.3.11)

Also, using the continuity of{y′t }, the growth condition (a) in (2.3) forg0,1(·, y′t )
neary′t and Lemma 4.2.2(i), one can easily adapt the argument in [9, proposi-
tion 4.3.2(iii)] to show that for allt ∈ (1∗)m+1,∫

II 1,t

(g̃t,yt (z))
2ωt

≤ C2+ C3

∫ 2π

0

∫ 1/2

0
(logr2)2rdrdθ

+ C4

∫ 2π

0

∫ 1/2

0
(log(− logr))2 · rdrdθ

r2(logr)2

≤ C5. (4.3.12)

Since supp(g̃t,yt ) ⊂ (t1≤i≤m1+1Ii,t ) t II 1,t , it follows from Equation (4.3.11) and
(4.3.12) that

‖g̃t,yt (z)‖2 ≤ C6 for all t ∈ (1∗)m+1. (4.3.13)

Here the constantsC1, C2, C3, C4, C5, C6 > 0 are all independent oft . Letψt be
as in Equation (3.6.2). Then∣∣∣∣ ∫

Mt

g̃t,yt (z)ψt(z)ωt

∣∣∣∣ ≤ ‖g̃t,yt (z)‖2 · ‖ψt‖2
≤ C6‖ψt‖2 (by (4.3.13))

→ 0 ast → 0 (by Proposition 3.6.2(i)). (4.3.14)

Then one has
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Mt

g̃t,yt (z)φ1,t (z)ωt

=
∫
Mt

g̃t,yt (z)

(
φ̃1,t (z)

〈φ̃1,t , φ1,t〉
+ ψt(z)

)
ωt (by (3.6.2))

→ 0 ast → 0 (by (4.3.10) and (4.3.14)). (4.3.15)

Then Equation (4.3.6) follows easily from Equations (4.1.4), (4.3.7) and (4.3.15),
and thus we have finished the proof of Proposition 4.3.2. 2

(4.4) Finally we are ready to give the proof of Theorem 2.4.1 as follows:

Proof of Theorem 2.4.1. Let {Mt}, p1, . . . , pm+1, xt , yt , λ1,t , φ1,t be as in Theo-
rem 2.4.1. First we consider the case wheny0 ∈ M0

1. Let φ0,t = 1/
√

Vol(Mt, ωt )

onMt be as before, and letut be as in Equation (4.1.4). Fort ∈ (1∗)m+1, we define
the smooth function given by

wt := ut − 〈ut , φ0,t 〉φ0,t − 〈ut , φ1,t〉φ1,t onMt. (4.4.1)

From Equation (4.4.1) and the self-adjointedness of1t , one easily checks that

1twt = 1tut − 0− 〈ut , φ1,t 〉λ1,tφ1,t

= 1tut − 〈1tut , φ1,t〉φ1,t onMt. (4.4.2)

From Equation (4.4.2), it is easy to check that

‖1twt‖22 = ‖1tut‖22− |〈1tut, φ1,t 〉|2
≤ ‖1tut‖22. (4.4.3)

From Equation (4.4.1), it is easy to see thatwt is orthogonal to the eigen-
functionsφ0,t and φ1,t . Then one can use Parseval’s identity and proceed as in
Equation (3.5.6) to show that

‖wt‖22 ≤
1

α2
‖1twt‖22 for all t ∈ (1∗)m+1, (4.4.4)

whereα > 0 is the constant in Lemma 3.5.1. Sincex0 /∈ {p1, p2, . . . , pm+1}, one
can proceed as in Equation (3.5.8) in Proposition 3.5.3 using the standard Nash–
Moser iteration technique (cf., e.g., [3, theorem 8.24]) to show that there exists a
constantC > 0 such that for allt ∈ (1∗)m+1,

|wt(xt )| ≤ C(‖wt‖2+ ‖1twt‖2)

≤ C

(
1

α
‖1twt‖2 + ‖1twt‖2

)
(by (4.4.4))

≤ C

(
1

α
+ 1

)
‖1tut‖2 (by (4.4.3))

→ 0 ast → 0 (by Proposition 4.2.4). (4.4.5)
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Also, sincex0 /∈ {p1, p2, . . . , pm+1}, one has

|〈ut , φ1,t 〉φ1,t (xt )|

≤ |〈ut , φ1,t〉|
(∣∣∣∣∣ φ̃1,t (xt )

〈φ̃1,t , φ1,t〉

∣∣∣∣∣+ |ψt(xt )|
)

(by (3.6.2))

≤ C|〈ut , φ1,t〉| (by (3.2.3), Propositions 3.6.1(ii) and 3.6.2(ii))

→ 0 ast → 0 (by Proposition 4.3.2). (4.4.6)

Here the constantC > 0 does not depend ont . Similarly, it follows from
Remark 3.4.4 and Proposition 4.3.1 that

〈ut , φ0,t〉φ0,t (xt ) = 〈ut , φ0,t 〉 1√
Vol(Mt, ωt)

→ 0
1√

V0,1+ V0,2

= 0 ast → 0. (4.4.7)

Then one has, from Equation (4.4.1),

ut (xt) = wt(xt )+ 〈ut , φ0,t〉φ0,t (xt )+ 〈ut , φ1,t〉φ1,t (xt )

→ 0+ 0+ 0 (by (4.4.5), (4.4.6) and (4.4.7))

= 0 ast → 0. (4.4.8)

Finally, Theorem 2.4.1 in the case wheny0 ∈ M0
1 follows readily from Re-

mark 4.1.1, Equations (4.1.4) and (4.4.8). It is clear that Theorem 2.4.1 in the case
wheny0 ∈ M0

2 can be proved similarly, and thus we have finished the proof of
Theorem 2.4.1. 2

5. Deduction of Corollaries 2.4.2 and 2.4.3

(5.1) First we deduce Corollary 2.4.2 as follows:

Proof of Corollary 2.4.2.Let λ1,t and lt be as in Theorem 2.4.1 and Corol-
lary 2.4.2 respectively, and denote byλhyp

1,t and lhyp
t the corresponding objects on

Mt with respect tods2
hyp,t . It follows from results in [8] that there exist constants

C1, C2 > 0 such that

C1l
hyp
t ≤ λhyp

1,t ≤ C2l
hyp
t for all t ∈ (1∗)m+1. (5.1.1)

Also, from Equation (2.2.4) and the minimax principle, there exist constants
C3, C4, C5, C6 > 0 such that for allt ∈ (1∗)m+1,

C3l
hyp
t ≤ lt ≤ C4l

hyp
t , and C5λ

hyp
1,t ≤ λ1,t ≤ C6λ

hyp
1,t . (5.1.2)
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In our separating node case, it is well known thatl
hyp
t → 0 ast → 0, and thus by

Equations (5.1.1) and (5.1.2),

λ1,t → 0 ast → 0. (5.1.3)

Multiplying both sides of Equation (2.4.1) byλ1,t , one easily sees from Equa-
tion (5.1.3) and Theorem 2.4.1 that

lim
t→0

t∈(1∗)m+1

(
λ1,tgt (xt , yt )− φ1,t (xt )φ1,t (yt )

) = 0. (5.1.4)

Sincex0, y0 /∈ {p1, p2, . . . , pm+1}, one has

lim
t→0

t∈(1∗)m+1

φ1,t (xt )φ1,t (yt )

= lim
t→0

t∈(1∗)m+1

(
φ̃1,t (xt )

〈φ̃1,t , φ1,t 〉
+ ψt(xt)

)(
φ̃1,t (yt )

〈φ̃1,t , φ1,t 〉
+ ψt(yt)

)

(by (3.6.2))

= φ1,0(x0)φ1,0(y0)

(by Remark 3.2.1, Propositions 3.6.1(ii) and 3.6.2(ii)). (5.1.5)

Then Corollary 2.4.2(a) follows readily from Equations (3.2.1), (5.1.4) and
(5.1.5). Also Corollary 2.4.2(b) follows easily from Corollary 2.4.2(a) and
Equation (5.1.2). 2

Finally, we have

Proof of Corollary 2.4.3.Let {ds2
t } be as in Corollary 2.4.3. By Schwarz Lemma

of Yau [13], the curvature condition on{ds2
t } implies that{ds2

t } satisfies Equa-
tion (2.2.4). Together with the hypothesis onds2

0 on M0, it follows that {ds2
t }

forms a continuous family of quasi-hyperbolic metrics on{Mt}, and Corollary 2.4.3
follows immediately from Theorem 2.4.1 and Corollary 2.4.2. 2
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