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In this paper, we give an adelic interpretation of extension classes of locally
free sheaves over curves. This may be viewed as an effective version of the
classical cohomology approach for the extension classes of Grothendieck. While
the discussion works over any base field, we limit our discussion over the finite
field Fq.

1 Locally Free Sheaves in Adelic Language

We start with a quick review of the standard correspondence between the moduli
stacks of locally free sheaves on curves and adelic quotients associated to general
linear groups. For details, please refer to (the Appendix A of) [2].

Let X be an integral, regular, projective curve of genus g over a finite field
Fq. Denote by F the field of rational functions of X, by A the adelic ring of F ,
and by O the integer ring of A.

Let MX,r be the moduli stack of locally free sheaves of rank r on X. There
is a natural identification among elements of MX,r and the adelic quotient
GLr(F )\GLr(A)/GLr(O) which we denote by

ϕ : MX,r ≃ GLr(F )\GLr(A)/GLr(O).

Indeed, if E is a rank r locally free sheaf on X, the fiber Eη of E over the
generic point η of X is an F -linear space of dimension r. Among its GLr(F )-
equivalence class, fix an F -linear isomorphism

ξ : Eη −→ F r. (1)

Then there exists a dense open subset U of X such that ξ induces a trivialization
ξU : E ≃ O⊕r

U . of E on U
To work locally, let x be a closed point of X, and denote its formal neigh-

borhood by Spec(Ôx), where Ôx is the x-adic completion of the local ring OX,x.

Denote by F̂x the fraction field of Ôx. Since X is separable, the natural inclusion
F ↪→ F̂x induces a natural morphism ι̂x : Spec(Ôx) −→ X such that the pull-

back Êx := ι̂∗xE of E on Spec(Ôx) is locally free of rank r. Hence, the fiber Êx,η

of Êx over the generic point η of Spec(Ôx) becomes a natural F̂x-linear space of

dimension r. Furthermore, since Spec(Ôx) is affine, for the rank r locally free

sheaf Êx, there exists a free Ôx- module Ê∼
x of rank r such that Êx ≃ ˜̂E∼

x and

Ê∼
x ⊗Ôx

F̂x = Êx,η, where
˜̂
E∼

x denotes the locally free sheaf associated to Ê∼
x .

Therefore, induced from the free Ôx-module structure on Ê∼
x , there is a natural

isomorphism
ξ̃x : Êx,η = Ê∼

x ⊗Ôx
F̂x ≃ F̂ r

x . (2)
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On the other hand, induced from F ↪→ F̂x, there is a natural identification
Eη ⊗F F̂x = Êx,η. Hence, using ξ in (1) and the natural inclusion F ↪→ F̂x, we
obtain yet another isomorphism

ξ̂x : Êx,η = Eη ⊗F F̂x ≃ F̂ r
x . (3)

The two isomorphisms ξ̃x and ξ̂x in (2) and (3), respectively, can be con-

nected by a unique element ĝx ∈ GLr(F̂x)/GLr(Ôx) characterized by the fol-
lowing commutative diagram

Eη ⊗F F̂x = Êx,η = Ê∼
x ⊗Ôx

F̂x

ξ̂x

y ≃ ≃
y ξ̃x

F̂ r
x

gx≃ F̂ r
x .

In this way, we obtain an element (gx) ∈
∏

x∈X GLx(F̂x). Furthermore, this

element (gx) belongs to GLr(A). Indeed, by (1), for x ∈ U ,
˜̂
E∼

x ≃ Ôr
x. This

implies that, for such x, gx may be choosen to be the identical matrix Ir :=
diag(1, 1, . . . , 1). We denote the adelic class of (gx) constructed above by gE for
later use.

Conversely, for a class in GLr(F )\GLr(A)/GLr(O), there exists a dense open
subset U of X such that gx are identity matrix for all x ∈ U . This yields an
trivial locally free sheaf O⊕r

U on U . On the other hand, for a closed point x

of X ∖ U , the image g−1
x (Ô⊕r

x ) is a full rank Ôx-module contained in F̂ r
x since

gx ∈ GLx(F̂x), and hence induces a locally free sheaf
˜

g−1
x (Ô⊕r

x ) of rank r on

Spec(Ôx). All these can be used to construct the locally free sheaf E(gx) of rank
r on X by the so-called fpqc-gluing using the components of (gx). It is not
difficult to see that the adelic class gE(gx)

coincides with (that of) (gx).

2 Extension Classes: Classical Approach

Now, we recall the classical approach to extension classes ([1]).
Let

E : 0 → E1 −→ E2 −→ E3 → 0 (4)

be a short exact sequence of locally free sheaves on the curve X. Applying the
operator HomOX (E3, ·) to E leads to a long exact sequence

0→HomOX
(E3, E1)→HomOX

(E3, E2)→HomOX
(E3, E3)

δ→Ext1OX
(E3, E1). (5)

Following Grothendieck, the extension E, up to isomorphism, is uniquely deter-
mined by the δ-image in Ext1OX

(E3, E1) of the identity map IdE3 of HomOX
(E3, E3).

In addition,

Ext1OX
(E3, E1) ≃ Ext1OX

(OX , E∨
3 ⊗ E1) ≃ H1(X, E∨

3 ⊗ E1), (6)

where, for a locally free sheaf E , E∨ denotes its its dual sheaf. Note that

HomOX
(E3, E3) ≃ HomOX

(OX , E∨
3 ⊗ E3) ≃ H0(X, E∨

3 ⊗ E3),
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(5) is equivalent to the following long exact sequence of cohomology groups

0→H0(X, E∨
3 ⊗E1)→H0(X, E∨

3 ⊗E2)→H0(X, E∨
3 ⊗E3)

δ→H1(X, E∨
3 ⊗E1). (7)

Furthermore, we obtain naturally the following isomorphism and the decompo-
sition

E∨
3 ⊗ E3 = EndOX

(E3) ≃ OX ⊕ End0
OX

(E3).

Here EndOX
(E3) denotes the sheaf of endmorphisms of E3 and End0

OX
(E3) de-

notes the sub-sheaf of EndOX
(E3) resulting from the so-called trace zero end-

morphisms. Since H0(X, End0
OX

(E3)) = 0, the morphism δ in (5) is equivalent
to the induced morphism

δ : H0(X,OX) −→ H1(X, E∨
3 ⊗ E1), (8)

and the extension E, up to equivalence, is uniquely determined by δ(1), the
δ-image of the unit element 1 of H0(X,OX). Here, as usual, if

E′ : 0 → E1 −→ E ′
2 −→ E3 → 0

is another extension of E3 by E1, and there exists a commutative diagram

0 → E1 −→ E2 −→ E3 → 0∥∥∥ ψ
y ≃

∥∥∥
0 → E1 −→ E ′

2 −→ E3 → 0

then ϕ is called an equivalence between two extensions E and E′ of of E3 by E1.
Normally, we denote an equivalence by ψ : E ≃ E′.

3 Extension Classes: Adelic Descriptions

We first give a more concrete local description of the boundary map

δ : H0(X, E∨
3 ⊗ E3) → H1(X, E∨

3 ⊗ E1). (9)

For this purpose, we review the adelic interpretation of H1(X, E∨
3 ⊗E1). Denote

by gE ∈ GLr(A) an adelic representor associated to a rank r locally free sheaf
E introduced in §1. Let ri the rank of Ei (i = 1, 2, 3). Then

H1(X, E∨
3 ⊗ E1) = Ar1r3

/
(Ar1r3(gE∨

3 ⊗E1
) + F r1r3), (10)

where
Ar1r3(gE∨

3 ⊗E1
);=

{
a ∈ Ar1r3 : gE∨

3 ⊗E1
(a) ∈ Or1r3

}
. (11)

By (5) and (7), it is not difficult to see that this space is isomorphic to∏′

x∈X
HomF̂x

(Ê3;x,η, Ê1,;x,η)
/( ∏

x∈X

HomÔx
(Ê∼

3,x, Ê
∼
1,x) + HomF (E3,η, E1,η)

)
.

(12)

Here
∏′

denotes the restrict product of HomF̂x
(Ê3;x,η, Ê1,;x,η) with respect to

HomÔx
(Ê∼

3,x, Ê
∼
1,x). Hence, we should find a natural morphism from EndOX

(E3, E3)
to (12) which gives the boundary map (5) for the extension classes.
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By applying HomOX
(E3, ·), or the same E∨

3 ⊗, to the extension E, we obtain
a short exact sequence of locally free sheaves

0 → HomOX
(E3, E1) → HomOX

(E3, E2) → EndOX
(E3, E3) → 0, (13)

since the the functor HomOX
(E3, ·) and E∨

3 ⊗ are left and right exactness, re-
spectively. Furthermore, by applying the derived functor of Γ(X, ·) to (13), we
arrive at the long exact sequence (5), namely,

0→HomOX
(E3, E1)→HomOX

(E3, E2)→HomOX
(E3, E3)

δ→Ext1OX
(E3, E1). (14)

This boundary map can be simply constructed using the following well-known

Lemma 1 (Snake Lemma). Let R be a commutative ring. Assume that

0 → A1 −→ A2 −→ A3 → 0

ϕ1

y yϕ2 yϕ3
0 → B1 −→ B2 −→ B3 → 0

(15)

is a commutative diagram of R-modules with exact rows. Then, for the kernel
and cockerel of ϕi, there is a long exact sequence

0→Ker(ϕ1)→Ker(ϕ2)→Ker(ϕ3)
δ−→ Coker(ϕ1)→Coker(ϕ2)→Coker(ϕ3) → 0.

In particular, the boundary mapping δ is defined by

δ : Ker(ϕ3) −→ Coker(ϕ1)

a3 7→ ϕ2(a2) ∈ B1 mod ϕ1(A1),
(16)

where a2 ∈ A2 is a left of the element a3 ∈ A3.
1

More precisely, to apply this lemma, we introduce the following commutative
diagram with exact rows

0 0 0y y y
0 → HomÔx

(Ê∼
3,x, Ê

∼
1,x) → HomÔx

(Ê∼
3,x, Ê

∼
2,x) → EndÔx

(Ê∼
3,x)

δ→y y y
0 → HomF̂x

(Ê3;x,η, Ê1;x,η) → HomF̂x
(Ê3;x,η, Ê2;x,η) → EndF̂x

(Ê3;x,η) → 0y y y
δ→ Hom(E3,x, E1,x) → Hom(E3,x, E2,x) → End(E3,x) → 0y y y

0 0 0.
(17)

Here, for i = 1, 2, 3,

Hom(Ei,x, Ej,x) := HomF̂x
(Êi;x,η, Êj;x,η)

/
HomÔx

(Ê∼
i,x, Ê

∼
j,x).

1Certainly, δ is well-defined. Indeed, since a3 ∈ Ker(ϕ3) implies that a3 has the zero image
in Coker(ϕ3). This implies that the element ϕ2(a2) of Coker(ϕ2) belongs to the sub-module
Coker(ϕ1).
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Obviously, by (12), we have∏′

x∈X
Hom(E3,x, E1,x)

/
HomF (E3,η, E1,η) ≃∏′

x∈X
HomF̂x

(Ê3;x,η, Ê1,;x,η)
/(∏′

x∈X
HomÔx

(Ê∼
3,x, Ê

∼
1,x) + HomF (E3,η, E1,η)

)
.

(18)
Accordingly, we set a2 (in the footnote of the previous page) to be the iden-

tity morphism IdÊ∼
3,x

of EndÔx
(Ê∼

3,x) in the Snake Lemma. Map this IdÊ∼
3,x

to the identify map IdÊ3;x,η
of EndF̂x

(Ê3;x,η), which has the zero image in

End(E3,x). Now using the exact sequence in the middle row, we can lift IdÊ3;x,η

to an element ŝ3,2;x,η of HomF̂x
(Ê3;x,η, Ê1;x,η). This is nothing but ϕ2(a2). De-

note its image in Hom(E3,x, E2,x) by s3,2;x,η, which certainly admits zero as

its image in End(E3,x), since so is the element IdÊ3;x,η
of EndF̂x

(Ê3;x,η) above.

Thus by the exactness of the last row, we obtain an element κx = δ(IdÊ∼
3,x

) in

Hom(E3,x, E1,x). Therefore, applying the natural quotient morphism∏′

x∈X
Hom(E3,x, E1,x) −→

∏′

x∈X
Hom(E3,x, E1,x)

/
HomF (E3,η, E1,η) (19)

we obtain an element ([κx]) ∈ Ext1OX
(E3, E1), which is nothing but the extension

class for the extension E of E3 by E1, by (18), (12), (10) and (6). This then
completes our proof of the following main result of this paper.

Theorem 2. The natural bijections

Ext1OX
(E3, E1) ≃ H1(X, E∨

3 ⊗ E1)

Φ

y ≃ ≃
y∏′

x∈XHomF̂x
(Ê3;x,η, Ê1,;x,η)

/(∏′
x∈XHomÔx

(Ê∼
3,x, Ê

∼
1,x) + HomF (E3,η, E1,η)

)
such that

Φ(δ(IdE3
)) =

(
[κx]

)
x∈X

. (20)

Proof. Indeed, the commutative diagram of bijections are direct consequence of
(12), (10) and (6). And the relation (20) comes direct from the construction of
κx.

We end this subsection by a useful construction of the inverse map of Φ. Let
sη = (sx,η) be be an element of HomF̂x

(Ê3;x,η, Ê1,;x,η).
To clarifying the structures involved, first we assume that sη is regular for

all but one closed point x0 ∈ X. That is to say, there exists one and only one
closed point x0 ∈ X such that sx,η are regular when x ̸= x0. Choose an open
neighborhood U0 of x0 in X such that sx0,η is regular over U0∖{x0}. Shrinking
U0 if necessary, we may and hence will assume that U0 is affine. Denote its
affine ring by AU0 . Within the F̂x-linear space Ê1;x0,η ⊕ Ê3;x0,η of dimension
(r1 + r3), construct an AU0 -module generated by the sub-modules E∼

1,U0
⊕ {0}

and
{
(sx0,η(b), b) : b ∈ E∼

3,U0

}
, where, for i = 1, 3, E∼

i,U0
= Γ(U0, Ei|U0) so that
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Ei|U0 ≃ Ẽ∼
i,U0

. In other words, this new AU0 -module contained in E1;x,η⊕E3;x,η

is given by

E∼
1,U0

⋊x0,sx0,η E
∼
3,U0

:=
{(
a+ sη(b), b

)
: a ∈ E∼

1,U0
, b ∈ E∼

3,U0

}
. (21)

Obviously, such an AU0 -module is free and hence induces a locally free sheaf
which we denote by E1|U0 ⋊x0,sx0,η E3|U0 . That is,

E1|U0
⋊x0,sx0,η

E3|U0
:= ˜E∼

1,U0
⋊x0,sx0,η

E∼
3,U0

. (22)

By our construction, obviously,

(i) E1|U0 is a locally free OU0 sub-sheaf of E1|U0 ⋊x0,sx0,η E3|U0 such that(
E1|U0 ⋊x0,sx0,η E3|U0

) /
(E1|U0) ≃ E3|U0 . (23)

(ii) Since sη is regular over U ∖ {x0},(
E1|U0 ⋊x0,sx0,η E3|U0

) ∣∣
U0∖{x0}

= E1|U0 ⊕ E3|U0 . (24)

In particular, it is possible to glue the locally free sheaves E1|U0 ⋊x0,sx0,η E3|U0

on U0 and (E1 ⊕ E3)|X∖{x0} on X ∖ {x0} over U0 ∖ {x0}. Denote the resulting
locally sheaf by E1 ⋊sη E3. Then we obtain a natural short exact sequence

Esη : 0 → E1 −→ E1 ⋊sη E3 −→ E3 → 0. (25)

Furthermore, it is not too difficult to see that sη is equivalent to ([κx])x∈X

associated to Esη constructed before Theorem2.
Now we are ready to treat the general case. Assume that, as we may, there

exist closed points x1, . . . , xn such that

(a) for x ̸∈ {x1, . . . , xn}, sx,η is regular on X,

(b) for each i = 1, . . . , n, sxi,η is regular for all but one closed point xi ∈ X

Similar to the single closed point case above, for each i, choose an affine open
neighborhood Ui of xi in X such that Ui ∩Uj = ∅ if i ̸= j, and on each Ui, a lo-
cally free sheaf E1|Ui⋊xi,sxi,η

E3|Ui can be constrcted using sxi,η. Thus, by gluing
these locally free sheaves on the Ui’s with the free sheaf (E1 ⊕ E3)|X∖{x1,...,xn}
on X ∖ {x1, . . . , xn} on the overlaps Ui ∖ {xi}, we obtain a locally free sheaf
E1 ⋊sη E3 of rank (r1 + r3) on X, which is an extension of E3 by E1. In other
words, there is the following short exact sequence of locally free sheaves on X
constructed from sη:

Esη : 0 → E1 −→ E1 ⋊sη E3 −→ E3 → 0. (26)

In addition, by our construction, it is not difficult to see that (si,η) is equivalent
to the element ([κx]) of Esηconstructed before Theorem2. In this we have
constructed the inverse of Φ. For example, if all the sx,η’s are regular, then sx,η
is equivalent to zero and the associated extension is trivial.
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4 Locally Free Sheaves Induced from Extensions:
Adelic Descriptions

As in (4), let
E : 0 → E1 −→ E2 −→ E3 → 0, (27)

be a short exact sequence of locally free sheaves on X. For each i = 1, 2, 3, let
gi = (gi,x) ∈ GLri(F )\GLri(A)/GLri(O) be the adelic elements associated to
Ei introduced in § 1.

Theorem 3. Let ([κx]) be the extension class in the space∏′

x∈X
HomF̂x

(Ê3;x,η, Ê1,;x,η)
/(∏′

x∈X
HomÔx

(Ê∼
3,x, Ê

∼
1,x)+HomF (E3,η, E1,η)

)
(28)

associated to the extension E. Then, in GLri(F )\GLri(A)/GLri(O), the adelic
element g2 = (g2,x) of the locally free sheaf E2 is represented by

g2,x =

(
g1,x κx

0 g3,x

)
∀x ∈ X. (29)

Here κx are viewed as elements of the spaces Mr1×r3(F̂x) of r1 × r3-matrices

with entries in F̂x.

Proof. This is a direct consequence of the proof of Theorem2, particularly, the
construction of Φ−1 at the end of the previous subsection. Indeed, by (21), we
have g2,x is a upper triangular matrices with diagonal blocks g1,x and g3,x and
with κx as the right-upper block as stated in the theorem. Finally, the reason
that ([κx]) ∈ Mr1×r3(A) comes from the fact that the restrict product

∏′
is

used in the quotient space
∏′

x∈XHomF̂x
(Ê3;x,η,Ê1,;x,η)∏′

x∈XHomÔx
(Ê∼

3,x,Ê
∼
1,x)+HomF (E3,η,E1,η)

.
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