Extension Classes in Adelic Language

L. Weng

In this paper, we give an adelic interpretation of extension classes of locally
free sheaves over curves. This may be viewed as an effective version of the
classical cohomology approach for the extension classes of Grothendieck. While

the discussion works over any base field, we limit our discussion over the finite
field IFy.

1 Locally Free Sheaves in Adelic Language

We start with a quick review of the standard correspondence between the moduli
stacks of locally free sheaves on curves and adelic quotients associated to general
linear groups. For details, please refer to (the Appendix A of) [2].

Let X be an integral, regular, projective curve of genus g over a finite field
F,. Denote by F' the field of rational functions of X, by A the adelic ring of F,
and by O the integer ring of A.

Let M x , be the moduli stack of locally free sheaves of rank r on X. There
is a natural identification among elements of M , and the adelic quotient
GL, (F)\GL,(A)/GL,(O) which we denote by

¢: Mx., ~ GL(F)\GL,(A)/GL,(0).

Indeed, if € is a rank r locally free sheaf on X, the fiber £, of £ over the
generic point 7 of X is an F-linear space of dimension r. Among its GL,.(F')-
equivalence class, fix an F-linear isomorphism

¢:E, — F". (1)

Then there exists a dense open subset U of X such that £ induces a trivialization
Ey E~OF . of Eon U

To work locally, let = be a closed point of X, and denote its formal neigh-
borhood by Spec(O;), where O, is the x-adic completion of the local ring Ox ,.

Denote by F the fraction field of ém Since X is separable, the natural inclusion
F < F, induces a natural morphism 7, : Spec(O,) — X such that the pull-
back &, 1= € of € on Spec(O,) is locally free of rank . Hence, the fiber Ewm
of gx over the generic point n of Spec(@z) becomes a natural ﬁm—linear space of
dimension r. Furthermore, since Spec(@x) is affine, for the rank r locally free

sheaf Em, there exists a free @m— module E; of rank r such that ET ~ E; and

EY ®p, E, = Axm, where E7 denotes the locally free sheaf associated to E7.

Therefore, induced from the free @m—module structure on E;, there is a natural
isomorphism R
§o: Eon=E; ®5 Fy~F,. (2)



On the other hand, induced from F — ﬁm, there is a natural identification
E, ®r F, = E;,. Hence, using § in (1) and the natural inclusion F' — F, we
obtain yet another isomorphism

& : Epy=E,®p B, ~ F7. (3)

The two isomorphisms &, and &, in (2) and (3), respectively, can be con-
nected by a unique element g, € GL,(F,)/GL,.(O,) characterized by the fol-
lowing commutative diagram

EyopF, =E,,= Ey®g F,

AR = |&
Fr < Fr.

In this way, we obtain an element (g,) € [],cx GL,(F,). Furthermore, this

element (g,) belongs to GL,(A). Indeed, by (1), for € U, By ~ OT. This
implies that, for such z, g, may be choosen to be the identical matrix I, :=
diag(1,1,...,1). We denote the adelic class of (g,) constructed above by g, for
later use.

Conversely, for a class in GL, (F')\GL,(A)/GL,(0O), there exists a dense open
subset U of X such that g, are identity matrix for all € U. This yields an
trivial locally free sheaf O,GJBT on U. On the other hand, for a closed point z

of X \ U, the image g;l(@fr) is a full rank O,-module contained in 13; since

gz € GLI(ﬁI)7 and hence induces a locally free sheaf g_{l(@?r) of rank r on
Spec(@x). All these can be used to construct the locally free sheaf £, ) of rank
r on X by the so-called fpqc-gluing using the components of (g,). It is not
difficult to see that the adelic class gg, | coincides with (that of) (g.).

2 Extension Classes: Classical Approach

Now, we recall the classical approach to extension classes ([1]).
Let
E: 0=& — & —E =0 (4)

be a short exact sequence of locally free sheaves on the curve X. Applying the
operator Home, (€3,) to E leads to a long exact sequence

0— Homo (€3, &) — Homoy (3, £2) — Homoy (€3, E3) S Exth_(€3,61). (5)

Following Grothendieck, the extension E, up to isomorphism, is uniquely deter-
mined by the §-image in Ext, (3, 1) of the identity map Idg, of Homo, (3, 3).
In addition,

Exty (£3,61) ~ Extp, (Ox, 8 ® &) ~ HY (X, &) @ &), (6)
where, for a locally free sheaf £, £V denotes its its dual sheaf. Note that

HOID@X (53753) ~ HOIH(QX (OX783\)/ ®83) ~ HO(X, 5;/ ®83),



(5) is equivalent to the following long exact sequence of cohomology groups
0—HO(X,EY ®&1) = HO(X,EY ®E) — HO(X,EY @) S HY(X, EY ®&1). (7)

Furthermore, we obtain naturally the following isomorphism and the decompo-
sition

&Y ® &3 = Endoy (E3) = Ox @ EndY (E3).
Here Endo, (£3) denotes the sheaf of endmorphisms of & and End?gx (&) de-
notes the sub-sheaf of Endp, (€3) resulting from the so-called trace zero end-
morphisms. Since H°(X, Snd%x (€3)) = 0, the morphism ¢ in (5) is equivalent
to the induced morphism

§: HY(X,0x) — HY(X, &) ® &), (8)

and the extension E, up to equivalence, is uniquely determined by (1), the
S-image of the unit element 1 of H°(X, Ox). Here, as usual, if

E : 05& —& —E—0
is another extension of £ by &1, and there exists a commutative diagram

0 - & — & — & — 0

| vl ]

0 - & — & — & —= 0

then ¢ is called an equivalence between two extensions E and E’ of of £ by &;.
Normally, we denote an equivalence by 1) : E ~ E’.

3 Extension Classes: Adelic Descriptions
We first give a more concrete local description of the boundary map
§:HY (X, &Y ® &) — HY X, &) ®&). (9)

For this purpose, we review the adelic interpretation of H!(X, &y ® £1). Denote
by ge € GL,(A) an adelic representor associated to a rank r locally free sheaf
€ introduced in §1. Let r; the rank of & (i = 1,2,3). Then

Hl(X’ 5:;/ ®€1) = AT17‘3/(AT1T3(952\’/®£1) + FT17‘3)’ (10)

where
AT1T8 (g£§/®£1); _ {a e AT 9ey o, (a) S 07"17“3}. (11)

By (5) and (7), it is not difficult to see that this space is isomorphic to

! ~ ~ ~ ~
[T, Homz, (Bucen age) / ( T1 Home, (Bes BE) + Home (B B
reX
(12)
Here []' denotes the restrict product of Homp (E3.4,, E1 i) With respect to

Homg (EQI, Efm) Hence, we should find a natural morphism from Ende, (€3, ;)
to (12) which gives the boundary map (5) for the extension classes.



By applying Homo (€3, -), or the same £y ®, to the extension E, we obtain
a short exact sequence of locally free sheaves

0— Homox (53761) — ’Homox (53,52) — Sndox (53,53) — 0, (13)

since the the functor Home, (€3,-) and £Y® are left and right exactness, re-
spectively. Furthermore, by applying the derived functor of I'(X,-) to (13), we
arrive at the long exact sequence (5), namely,

0—)H0mox (53, 51) —)HOIHOX (537 52) —>HOH1@X (53, 53) i)EXt}QX (837 81) (14)
This boundary map can be simply constructed using the following well-known
Lemma 1 (Snake Lemma). Let R be a commutative ring. Assume that

0 — Ay — Ay — As — 0
¢1l l¢2 lqﬁg (15)
By

0 — By — — B3 — 0

is a commutative diagram of R-modules with exact rows. Then, for the kernel
and cockerel of ¢;, there is a long exact sequence

0—Ker(¢1)— Ker(¢g) — Ker(¢s) LN Coker(¢1) — Coker(¢o) — Coker(¢s) — 0.
In particular, the boundary mapping § is defined by
d: Ker(ps) — Coker(¢y)
as = ¢2(az) € By mod ¢1(41),
where ay € Ay is a left of the element az € As.!

More precisely, to apply this lemma, we introduce the following commutative
diagram with exact rows

(17)
Here, for i = 1,2, 3,

Hom(E; 5, Ej.0) := Homp (B, Ejiay) /Homg (Ef,, ET,).

x Z7x7

LCertainly, ¢ is well-defined. Indeed, since a3 € Ker(¢3) implies that az has the zero image
in Coker(¢3). This implies that the element ¢2(a2) of Coker(¢2) belongs to the sub-module
Coker(¢1).



Obviously, by (12), we have

! J— J—
I1,. Hom(Es., By)/Homp(Es y, Bry) =~

! !
[T, Homp (B, ,,,Elﬂm,,,)/(er Homg (E5,, BY,) +Homp(Es,,, By, )).
(18)
Accordingly, we set as (in the footnote of the previous page) to be the iden-
tity morphism IdASNV of End 3 (E3 ) in the Snake Lemma. Map this Id

to the identify map Id@a;m of Endg (Eg;wm), which has the zero image in
End(E3 ;). Now using the exact sequence in the middle row, we can lift Id Bara
to an element 3 2.5, Of Homp (Eg;wm, El;wm). This is nothing but ¢2(az). De-
note its image in Hom(E3, I,EQ z) by 33,2:2,n, which certainly admits zero as
its image in End(£3,;), since so is the element Id g, - of Endp (Eg .zn) above.
Thus by the exactness of the last row, we obtain an element x, = §(Id EET)

Hom(Es ., F1 ;). Therefore, applying the natural quotient morphism
! R —_— ! — R
HIGXHom(EM,ELx) — HzGXHom(Eg,x,Ew)/HomF(Egm,Elm) (19)

we obtain an element ([x,]) € EXt:(ng (&3, &1), which is nothing but the extension
class for the extension E of & by &, by (18), (12), (10) and (6). This then
completes our proof of the following main result of this paper.

Theorem 2. The natural bijections

Exty, (E3,&1) ~ HY(X, &Y ® &)

fbl ~ ~ l
HzeXHomF (ES s El,,z n)/(erxHomo (Es @ El m) + Homp (B3, E1, n))

such that
D(0(Idgy)) = ([#a]) e - (20)

Proof. Indeed, the commutative diagram of bijections are direct consequence of
(12), (10) and (6). And the relation (20) comes direct from the construction of
K- O

We end this subsection by a useful construction of the inverse map of ®. Let
sy = (82,y) be be an element of Homz (Eg o Elﬂw,)

To clarifying the structures 1nvolved first we assume that s, is regular for
all but one closed point xop € X. That is to say, there exists one and only one
closed point zg € X such that s, , are regular when x # x. Choose an open
neighborhood Uy of ¢ in X such that s, , is regular over Uy \ {z¢}. Shrinking
Up if necessary, we may and hence will assume that Uy is affine. Denote its
affine ring by Ay,. Within the F,-linear space Ei.4,n © F3,4,,, of dimension
(71 + 73), construct an Ay,-module generated by the sub-modules E77; @ {0}
and {(sg,,(b),b) : b € E?:UO}, where, for i = 1, 3, Ey; = I'(Uo, &ilu,) so that



Eilu, = E/’ZN\U/0 In other words, this new Ay,-module contained in E.; , ® Es,s p
is given by

ET Uy Xwo,s09,m L3U, = {(a + sn(b),b) ta€ BTy, bE EgUO}. (21)

Obviously, such an Ay,-module is free and hence induces a locally free sheaf
which we denote by &1|u, Xzq,s,, ., €3lv,- That is,

&lw, M 20,5001 Elu, = ET v, M20,500.m Eav,- (22)
By our construction, obviously,

(i) &1lu, is a locally free Oy, sub-sheaf of & |y, X 0,500.m &s|u, such that
(E1lvy Hag.50y.0 Eslvn) [ (Exluy) = Esluy- (23)
(ii) Since s, is regular over U \ {zo},

(€1|U0 X 20,520.m 53|U0) ’Uo\{wo} = 81|Uo 69‘S’3|Uo' (24)

In particular, it is possible to glue the locally free sheaves & |y, X 2,520 Eslu,
on Uy and (€1 @ E3)|x {203 o0 X N {w0} over Uy \ {xo}. Denote the resulting
locally sheaf by £; x5, £. Then we obtain a natural short exact sequence

ESWZO*)gl—)(S‘lNSn(E:;—)gg*)O. (25)

Furthermore, it is not too difficult to see that s, is equivalent to ([kz])zex
associated to E,, constructed before Theorem 2.
Now we are ready to treat the general case. Assume that, as we may, there

exist closed points x1,...,x, such that
(a) forx & {z1,...,Tn}, Sz is reqular on X,
(b) for eachi=1,...,n, sz, is reqular for all but one closed point x; € X

Similar to the single closed point case above, for each i, choose an affine open
neighborhood U; of z; in X such that U; NU; = 0 if ¢ # j, and on each Uj, a lo-
cally free sheaf & |y, X80, &s|u, can be constrcted using s, ,. Thus, by gluing
these locally free sheaves on the U;’s with the free sheaf (1 @ &3)|x{a,,....201
on X \ {z1,...,2z,} on the overlaps U; \ {z;}, we obtain a locally free sheaf
&1 %, & of rank (r; +73) on X, which is an extension of & by &;. In other
words, there is the following short exact sequence of locally free sheaves on X
constructed from s,,:

E 0—=& — & Xy E3 — E3 = 0. (26)

ST, .
In addition, by our construction, it is not difficult to see that (s; ) is equivalent
to the element ([x.]) of Eg constructed before Theorem2. In this we have
constructed the inverse of ®. For example, if all the s, ,’s are regular, then s, ,,
is equivalent to zero and the associated extension is trivial.



4 Locally Free Sheaves Induced from Extensions:
Adelic Descriptions

As in (4), let
E: 0=& — & — & — 0, (27)

be a short exact sequence of locally free sheaves on X. For each i = 1,2, 3, let

9i = (9;,) € GLy,(F)\GL,,(A)/GL;,(O) be the adelic elements associated to
&; introduced in § 1.

Theorem 3. Let ([k,]) be the extension class in the space

! ~ ~ ! ~ ~

[T, Homz (B, Brwn) / (T]_ Homg, (B5'y, Bry)+ Homp(Es.y, Buy) )
(28)

associated to the extension E. Then, in GL,,(F)\GL,, (A)/GL.,(O), the adelic

element gy = (g5 ,,) of the locally free sheaf & is represented by

91, K
G20 = < b ) Vo e X. (29)

) 0 g3,m

Here k, are viewed as elements of the spaces My, w4 (Fy) of r1 X rz-matrices
with entries in F,.

Proof. This is a direct consequence of the proof of Theorem 2, particularly, the
construction of @1 at the end of the previous subsection. Indeed, by (21), we
have g, , is a upper triangular matrices with diagonal blocks g, , and g5 , and
with k; as the right-upper block as stated in the theorem. Finally, the reason
that ([kz]) € My, xr,(A) comes from the fact that the restrict product ]  is

H;efomﬁ%\(E?:mnaEl,;zm) ]
Homg (B3, By, )+Homp (Es3,,E1,,) :

used in the quotient space —;
r€X
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