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Abstract

For a split reductive group defined over a number field, we first introduce the nota-
tions of arithmetic torsors and arithmetic Higgs torsors. Then we construct arithmetic
characteristic curves associated to arithmetic Higgs torsors, based on the Chevalley
characteristic morphism and the existence of Chevalley basis for the associated Lie al-
gebra. As to be expected, this work is motivated by the works of Beauville-Narasimhan
on spectral curves and Donagi-Gaistgory on cameral curves in algebraic geometry. In
the forthcoming papers, we will use arithmetic characteristic curves to construct arith-
metic Hitchin fibrations and study the intersection homologies and perverse sheaves
for the associated structures, following Ngo’s approach to the fundamental lemma.

1 Chevelley’s Characteristic Morphism

1.1 Over Number Fields

Let F be a number field with OF its ring of integers. Denote by X = SpecOF

the associated uncompleted arithmetic curve.
Let G be a split reductive group over F . Fix a split maximal subtorus T

and a maximal split quotient torus T ′ of G. Denote the Lie algebra of G by
g := LieG , and set t := LieT be the associated commutative subalgebra of g.

Recall that, with respect to the adjoint action

ad : g× g −→ g

(g, x) 7→ (ad(g))(x) := [g, x]

g admits a natural decomposition

g := t
⊕⊕

α

gα

where
gα :=

{
x ∈ g : (ad(h))(x) = α(h)x

}
for α running through a finite subset Φ of the space

X∗(T ) := Hom(T,Gm),

of rational characteristics of T .
For a fixed minimal split parabolic subgroup B of G containing T , set b :=

LieB. Then G/B is proper, and there exists a finite subset Φ+ of Φ, the so-
called set of positive roots of (G,B, T ), such that

(1) Φ = Φ+

⊔
(−Φ+),

1
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(2) t⊕⊕α∈Φ+
gα ⊂ b, and

(3) Φ+ admits a subset ∆ of simple roots associated to (G,B, T ), such that

(i) Φ+ ⊆
∑

α∈∆ Z≥0α, where Z≥0 :=
{
n ∈ Z : n ≥ 0

}
, and

(ii) ∆ forms a basis of the Q-linear space

X∗(T )Q := X∗(T )⊗Q.

Let W be the Weyl group of G, defined as the finite quotient group

W := NG(T )/ZG(T )

where NG(T ), resp. ZG(T ), denotes the normalizer subgroup, resp. the central-
izer subgroup, of T in G. It is well known that W is canonically isomorphic to
the subgroup of the automorphism group ofX∗(T )Q generated by the reflections

σα : X∗(T )Q −→ X∗(T )Q

v 7→ v − 2
(v,a) α

It is a canonical result due to Chevalley that, over the base field F , the space
of G-invariant polynomials on G coincides with the space of the W -invariant
polynomials of T . That is to say,

F [G]G ≃ F [T ]W (1)

where the actions of both sides are defined by

G× F [G] −→ F [G]

(g,
∑

i aigi) 7→
∑

i ai(ggig
−1)

and
W × F [T ] −→ F [T ]

(σ,
∑

i aiti) 7→
∑

i aiσ(ti)

Similarly, in terms of the Lie algebras, we have

F [g]G ≃ F [t]W

where G acts on g in terms of the adjoint action Ad, namely, Ad(g) is defied as
the differential of the conjugation morphism x 7→ gxg−1 of G.

In terms of geometry, the isomorphism (1) naturally induces the scheme
theoretic morphism

SpecF [T ]y
G

χ−→ T//W := SpecF [T ]W

or equivalently, for the associated Lie structures,

gF ≃ SpecF [g] tF ≃ SpecF [t]y χ↘
yπF

gF //G := SpecF [g]G ≃ tF //W := SpecF [t]W
(2)

where gF := g⊗ F and similarly tF := t⊗ F .
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Example 1. For G = GLn/F , we have W ≃ Sn, the symmetric group on n
symbols and gF = gln(F ) = End(Fn). Then χ coincides with the morphism

χ : End(Fn) −→
⊕n

k=1 Lk

A 7→ det(λIn −A)

where Lk denotes the one dimensional vector space generated by the k-th ele-
mentary symmetric polynomials, and In denotes the unity matrix of size n. That
is to say, χ assigns a matrix A to the associated eigen polynomial. In particular,
by restricting χ to tF which consists of diagonal matrices D = diag(a1, . . . , an),
we conclude that

χ(D) = tn −
n∑

i=1

ait
n−1 +

∑
i<j

aiajt
2 + . . .+ (−1)n

n∏
i=1

ai

For this reason, the morphism χ for general G is called the Chevelley character-
istic morphism. From above, after restricting χ to t, the Chevelley characteristic
morphism is simply equivalent to the assignments of the unordered eigenvalues.

1.2 Over Integral Bases

The diagram in (2) associated to a split reductive group G/F only works over
the pointed base SpecF . In this section, we construct a natural extension to the
integral base SpecOF , whose generic fiber (over the generic point ηF := SpecF )
coincides with that of (2).

To start with, we recall the so-called Chevelley basis for gF . For simplicity,
we assume that F = Q for the time being.

Definition 1 (See e.g. Ch. VII, §25 of [6]). A Chevelley basis for [g, g] is a
basis for the Q-linear space [g, g], consisting of

{
xα : α ∈ Φ

}⊔{
hα : α ∈ ∆

}
which satisfy the following properties:

(a) for all α ∈ Φ, xα ∈ gα.

(b) for all α ∈ Φ, [xα, x−α] = hα so that xα, x−α and hα span a three dimen-
sional simple subalgebra of g which is isomorphic to sl2(F ) via

xα 7→
(
0 1
0 0

)
, x−α 7→

(
0 0
1 0

)
, hα 7→

(
1 0
0 1

)
(c) for α, β ∈ Φ, if [xα, xβ ] = cα,βxα+β , then

(i) cα,β = c−α,−β .

(ii) c2α,β = κ (ℓ+ 1)
(α+ β, α+ β)

(β, β)
where the constants ℓ, κ are defined

by the α-string β − ℓα, · · · , β + κα through β.

We have the following well-known

Theorem 2 (Chevelley). Over [g, g], we have
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(1) There always exists a Chevelley basis
{
xα : α ∈ Φ

}⊔{
hα : α ∈ ∆

}
on

[g, g],

(2) All the structural constants lie in Z. That is to say,

(i) for all α, β ∈ ∆, [hα, hβ ] = 0.

(ii) for all α ∈ Φ, β ∈ ∆, [hβ , xα] = ⟨α, β⟩xα, where ⟨α, β⟩ := 2
(α, β)

(β, β)
.

(iii) for α ∈ Φ, [xα, x−α] is a Z-linear combination of hα’s (α ∈ ∆).

(iv) If α, β are independent roots and β − ℓα, · · · , β + κα is the α-string

through β, then [xα, xβ ] =

{
0 κ = 0,

±(ℓ+ 1)xα+β α+ β ∈ Φ.

Obviously, once ∆ is fixed, hα are uniquely determined if α ∈ ∆. In addition,
for a general α ∈ Φ, if xα is replaced by cαxa, deduced from the conditions in
(c) of Definition 1, {cα}α∈Φ are bounded by the constrains:

(i) for all α ∈ Φ, cαc−α = 1,

(ii) for all α, β ∈ Φ, if α+ β ∈ Φ, then cαcβ = ±cα+β .

Conversely, it is clear that if {cα}α∈Φ satisfies (these two conditions)i) and
(ii) just mentioned, then

{
xα : α ∈ Φ

}⊔{
hα : α ∈ ∆

}
forms a Chevelley basis

of [g, g] as well.

To treat the Lie algebra g associated to the split reductive group G/Q, it
suffices to use the decomposition

g = [g, g]⊕ z

where z denotes the center of g. Obviously, the integral bases for z are parametrized
by GLdimQ z(Z). Hence, it is natural to define a Chevelley basis of g to be the
union of a Chevelley basis of [g, g] as above and an integral basis of z. Denote by
gZ, resp. tZ, resp. zZ, the associated lattice of g, resp. of t, resp. of z. Obviously,
gZ admits a natural Lie structure and does not depend on the chosen integral
Chevalley basis.

Moreover, working with gZ, we obtain the following structural diagram over
Z:

gZ ≃ SpecZ[gZ] tZ ≃ SpecZ[tZ]y χZ ↘
yπZ

gZ//G(Z) := SpecZ[gZ]G(Z) ≃ tZ//W := SpecZ[tZ]W .

Obviously, associated to the base change SpecF ↪→ SpecZ, we recover the
diagram in (2).

The same construction works for a general number field F instead of Q.
That is to say, we may use the base change SpecOF −→ SpecZ to obtain the
following diagram over the integral base SpecOF :

gOF
≃ SpecOF [gOF

] tOF
≃ SpecZ[tZ]y χOF

↘
yπOF

gOF
//G(OF ) := SpecOF [gOF

]G(OF ) ≃ tOF
//W := SpecOF [tOF

]W .
(3)
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whose general fiber is the similar diagram over SpecF , which can be obtained
from (7) by replacing the integer ring OF with its associated number field F .

To end this discussion, via the Minkowski embedding OF ↪→ F ↪→ F∞ :=
Rr1 × Cr2 , we obtain the Lie algebra g∞ := g ⊗ F∞ and similarly t∞ and z∞.
Furthermore, induced from the base change SpecF∞ → SpecOF , we obtain the
following diagram on F∞:

g∞ ≃ SpecF∞[g∞] t∞ ≃ SpecF∞[t∞]y χ∞ ↘
yπ∞

g∞//G(F∞) := SpecF∞[g∞]G(F∞) ≃ t∞//W := SpecF∞[t∞]W .

(4)

In particular, similar to the morphisms πF and πOF
, π∞ is a finite (|W | : 1)-

morphism, even supposed to be highly ramified in general. For later use, we
denote tOF

//W, tF //W, and t∞//W by cOF
, cF and c∞, respectively.

2 G-Torsors on SpecOF

Let F be a number field with OF its ring of integers and AF its adelic ring.
Denote by S the set of inequivalent normalized valuations of F , and by Sfin,
resp. S∞, the subsets of S consisting of non-archimedean, resp. archimedean,
valuations. For each v ∈ S, denote by Fv the v-completion of F . When v ∈ S∞,
Fv is isomorphic to either R or C; and if v ∈ Sfin, Fv is a discrete valuation
fields. Accordingly, the valuation is called real, or complex, or v-adic. For v-adic
valuations, denote by Ov the associated valuation ring of Fv, by Pv its maximal
ideal, and by kv := Ov/Pv its residue field. It is well-known that Ov, being a
discrete valuation ring, admits only two prime ideals, namely, Pv and {0}, and
kv is a finite extension of Fp, for a certain prime number p ∈ Z. We call [kv : Fp]
the residue extension degree of v. Based on all these, we have AF =

∏′
v∈S Fv

where
∏′

v∈S denotes the restricted product of the Fv’s with respect to the Oc’s.
That is to say, an element a = (av) ∈

∏
v∈S Fv belongs to AF if and only if

av ∈ Ov for all but finitely many v ∈ S. It is well known that, induced from the
locally compact topologies on the Fv’s, AF is locally compact.

LetG be a split reductive group over F with a pinning (T,B, {xα}α∈∆). Here
T is a maximal split subtorus of G, B is a minimal split parabolic subgroup of
G containing T , and ∆ denotes the set of simple roots of the root system Φ
associated to (G,T,B) and xα denotes a non-zero vector of the proper subspace
Lie(U)α of the Lie algebra Lie(U) corresponding to the eigenvalue α, where U
denotes the unipotent radical of B. We assume that {xα}α∈∆ can be extended
to a Chevelley basis of gF . Set then

x+ :=
∑
α∈∆

xα. (5)

2.1 Torsors over Local and Global Fields

Let F be the algebraic closure on F contained in C, and set GF = Gal(F/F )
be the absolute Galois group of F . For each v ∈ S, fix an algebraic closure F v

of Fv, and denote by GFv = Gal(F v/Fv) the local absolute Galois group of F
at v.
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Definition 3. For K = F or Fv, a K-scheme G is called a G-torsor if G
is equipped with a faithful, transitive and GK-compatible action of G(K) on
G(K).

Example 2. For K = F or Fv, set G = G. Then

G(K)× G(K)×Gal(K/K) −→ G(K)

(g, d, σ) 7→ (g d)σ = gσ dσ

gives a G-torsor structure on G over K.

Since G is defined over F , there is a continuous action of GF on G(F ). As

usual, set H0(F,G) := G(F )Gal(F/F ) be the collection of GF -invariant points of
G(F ) and H1(F,G) := Z1(F,G)/B1(F,G) be the set of equivalence classes of
1-cocycles, where Z1(F,G), resp. B1(F,G), denotes the set of 1-cocycles, resp.
1-coboundaries, of GF on G(F ), i.e. a continuous map

ϕ : GF −→ G(F )

σ 7→ aσ

satisfying
aατ = aσ · aστ ,

and two 1-cocycles aσ and a′s are said to be equivalence if there exists an element
g of G(F ) such that

a′σ = g−1 · aσ · gσ

In other words, aσ is an 1-coboundary if ασ = g−1gσ.

Theorem 4 (See e.g. §2 of [7]). For K = F or Fv, there exists a natural
bijection between the set of isomorphism classes of G-torsors on K and the
set H1(K,G), which sends the trivial G-torsor on K to the trivial class in
H1(K,G).

Here, naturality means that the bijection is compatible with the changes of
the field K and the group G. For reader’s convenience, we sketch a proof.

Proof. Let G be a G-torsor onK. Fix a point d0 ∈ G(K). Then, for any σ ∈ GK ,
there exists a unique aσ ∈ G(K) such that dσ0 = d0 aσ since GK acts on G(K)
which itself is a group. It is not difficult to check that σ 7→ aσ is an 1-cocycle
and hence induces an element in H1(K,G).

Conversely, if σ 7→ aσ is an 1-cocycle, then on G ×K K, we obtain a new
action of GK through (σ, g) 7→ ασ g

σ. Since G is quasi-projective, by Weil’s
theorem on descent, there exists a K-scheme G, or better, a G-torsor on K,
such that G ×K K = G ×K K is GK-equivalent (with respect to the twisted
action of GK on G×K K).

There is a canonical morphism H1(F,G)→ H1(Fv, G) induced by the inclu-
sion F ↪→ Fv for each v ∈ S, which themselves then induce a natural morphism

H1(F,G)→
∏
v∈S

H1(Fv, G) (6)

Denote by Ker1(F,G) the kernel of this morphism. It is a result of Borel-Serre
that Ker1(F,G) is finite.

Corollary 5. There are only finite many G-torsors on F , up to isomorphisms,
such that, for all v ∈ S, the induced G-torsors on Fv are trivial.
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2.2 G-Torsors on SpecOF

We begin with the following

Definition 6. A G-torsor on SpecOF is a scheme G, equipped with a flat
surjective morphism π : G → SpecOF and a family of flat surjective morphism
πv : GOv

→ SpecOv, together with actions of G(Fv) on Gv for all v ∈ Sfin, such
that the induced morphism

Gx ×Gx −→ Gx ×SpecOx
Gx

(d, g) 7→ (d, dg)

are isomorphisms for all points x ∈ SpecOF , closed or generic.

In particular, if G is a G-torsor on SpecOF , the fiberwise {G(Fx)}x∈X acts
on {G(Fx)}x∈X with respect to π, and the action on each generic fiber is faithful
and transitive. Moreover, for each v ∈ Sfin, over the local integral base, induced
by the natural inclusion OF ↪→ Ov, we obtain a composition of morphisms
SpecOv → SpecOF → SpecOF . Thus, for the G-torsors GOv

on SpecOv, it
is not too difficulty to deduce the following result, whose proof we left to the
reader.

Lemma 7. (1) For each finite place v ∈ Sfin, induced from the natural mor-
phisms Ov ↪→ Fv and Ov → kv, we have

(GOv
)ηv
≃ Gηv

and (GOv
)kv
≃ Gkv

.

(2) For each infinite place σ ∈ S∞, induced by the natural embedding F ↪→ Fσ,
we have

(Gη)σ ≃ Gσ.

In particular, (Gη)∞ ≃ G∞.

2.3 Inner Form

When working over integral base SpecOF , our choice of a Chevalley basis{
xα : α ∈ Φ

}⊔{
hα : α ∈ ∆

}
determines a pinning (T,B, {xα}α∈∆) of G.

To deal with the associated compatibility problem, in the automorphism group
Aut(G) of G, we consider the so-called outer automorphism group Out(G) de-
fined as the collection of the automorphisms of G which preserves the pinning
(T,B, {xα}α∈∆). There is a natural split short exact sequence

1→ Gad → Aut(G)
π→ Out(G)→ 1. (7)

Indeed, Gad is identified with the image of G under the adjoint representation
of G,1 and hence also fits into the short exact sequence

1→ Gad → Aut(G)
π→ Aut(Φ,∆)→ 1. (8)

1 The adjoint group Gad of G is the Zariski connected component of Aut(G), and may also
be identified with the connected component of the automorphism group of g := Lie(G). In
particular, Gad(F ) coincides with the group of inner automorphisms of G(F) defined over F,
and acts simply transitively on the triples (T,B, {xα}) of all pinnings of G(F ).
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where Aut(Φ,∆) denotes the automorphic of the root system (Φ,∆). In addi-
tion, the pinning {xα}α∈∆ identifies Aut(Φ,∆) with Aut(G,T,B, {xα}) and
hence introduces a section s : Aut(Φ,∆) → Aut(G) of the morphism π :
Aut(G)→ Aut(Φ,∆) in (8).

By taking Galois cohomology, we obtain the morphisms

H1(F,Aut(G))
H1

π−→ H1(F,Out(G)) and H1(F,Out(G))
H1

s−→ H1(F,Aut(G)).

Hence, naturally associated to an element ξ ∈ H1(F,Aut(G)) are the elements
H1

π(ξ) ∈ H1(F,Out(G)) and (H1
s ◦ H1

π)(ξ) ∈ H1(F,Aut(G)). It is not too
difficult to see that this element belongs toH1(F,Gad). Denote the inducedGad-
torsor on F by Gξ, which, for later use, we call the inner form of G associated
to ξ.

For example, an element H1(F,Aut(G)) induces naturally a G- torsor on F .
Hence, if we take ξ as the trivial G-torsor, namely, G itself to start with, then
the element corresponding to (H1

s ◦H1
π)(ξ) defines a split group Gad on F .

3 Compatible Metrics

In this subsection, we assume that our base field is the field of real numbers,
unless otherwise stated explicitly.

3.1 Maximal Compact Subgroup

We first recall some basic facts on maximal compact subgroups of a real reduc-
tive group, mainly following [2].

Let G be a real Lie group with finitely many connected components. Then
any compact subgroup of G is contained in a maximal compact subgroup. More-
over, if K is a maximal subgroup of G, then G is diffeomorphic to the direct
product of K with a euclidean space, any maximal compact subgroup is conju-
gate to K in G and G/G0 ≃ K/K0, where •0 denotes the connected component
of • containing the unit element.

In addition, if G1 is a closed normal subgroup of G admitting only finitely
many connected components, then the maximal compact subgroups of G1 are
the intersections of G1 with maximal compact subgroups of G. Similarly, if G1

is a closed subgroup of G with finitely many connected components such that all
maximal compact subgroups of G are conjugate by elements of G1, the maximal
compact subgroups of G1 are the intersections of G1 with the maximal compact
subgroups of G. Consequently, in both cases, by taking a maximal compact
subgroup K of G containing a maximal compact subgroup of G1, we conclude
that G1 ∩K is a maximal compact subgroup in G1 for at one and hence for all
maximal compact subgroups of G by conjugacy.

More generally, if G → G′ is a surjective morphism (of Lie groups) whose
kernel admits only finitely many connected components, then the maximal com-
pact subgroups of G′ are the images of the maximal compact subgroups of G.

3.2 The Cartan Involution

We here recall some basic facts on the Cartan involution associated to an alge-
braic group, mainly following [5].
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Let G be an algebraic group defined over a base field F ⊆ R. Denote by
RG the radical of G and RuG the unipotent radical of G and RdG the so-called
split radical of G, namely, the greatest connected k-split subgroup of RG. By
definition, a Levi subgroup of G is a maximal reductive k-subgroup of G. Let

G1 =
∩

χ∈X(G)k

Ker(χ2), (9)

with X(G)F := HomF (G,Gm), the group of F -morphism of G into Gm. Then
G1 is a normal subgroup of G, and is defined over F . Note that for a character
χ in X(G)F , its restriction to G1 is of order ≤ 2, hence is trivial on (G1)0.
Consequently,

(G1)0 =
( ∩
χ∈X(G)F

Ker(χ)
)0
. (10)

Since any character in X(G)F is trivial on RuG, we have G1 = L1 ⋉ RuG for
any Levi subgroup L of G. Hence, if A is a maximal F -split torus of RG, then

(i) G(R) = A(R)0 ⋉G(R)1 and

(ii) G(R)1 contains all compact subgroups of G(R). More generally,

(iii) if A1 and A2 are two F -tori in RG such that A1 is F -split, A1A2 is a
torus and A1 ∩ A2 is finite, then here exists a normal F -subgroup G1 of
G containing A2 and G1 such that G(R) = A1(R)0 ⋉G1(R).

Therefore, if P is a parabolic F -subgroup of G and A is a maximal F -split
torus of the split radical RdG of G, then, for a maximal compact subgroup K
of G(R), we have

(a) K ∩ P is a maximal compact subgroup of P (R), and

(b) G(R) = KP (R) = KA(R)0P (R). Furthermore,

(c) if KaP (R)0 = Ka′P (R)0 for some a, a′ ∈ A(R)0, then a = a′ and the
map G(R)→ A(R)0 sending g to a = a(g) characterized by g ∈ KaP (R)0
is real analytic.

As a direct consequence, when G is a reductive group, there exists one and
only one involutive automorphism θK of G(R) associated to K satisfying the
following properties.

(1) θK is ”algebraic,” i.e. the restriction to G(R) of an involutive automor-
phism of algebraic groups of the Zariski-closure of G(R) in G.

(2) The fixed point set of θK is K.

(3) If G1 is a normal R-subgroup of G, then θK(G1(R)) = G1(R).

(4) θK leaves [g, g] and z stable. Here, we use the same θK to denote the
induced involution on g := Lie(G), and set z denotes the center of g.

(5) If o is the (-1)-eigenspace of θK in z, then V = exp o is a split component
of G.
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(6) If p is the (-1)-eigenspace of θK in Lie(G(R)), then, for k := Lie(K), there
is a decomposition Lie(G(R)) = k⊕ p and

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k, pk ⊂ p (∀k ∈ K)

(7) The map (k,X) 7→ k · exp(X) is an isomorphism of analytic manifolds of
K × p onto G(R).

Note that in the case when G is semi-simple, θK is the usual Cartan involu-
tion. Motivated by this, we call θK the Cartan involution of G(R) with respect
to K. Moreover, the existence of the Cartan involution θK implies an existence
of a non-degenerate GR-symmetric bilinear form ⟨·, ·⟩ on gC × gC satisfying the
follows.

(a) ⟨·, ·⟩ is invariant under G and θK , and is real on g× g.

(b) The quadratic form of ⟨·, ·⟩ is positive definite on p and negative definite
on k. In particular, if we set

(X,Y ) := −⟨X, θKY ⟩ and ∥X∥2 := −⟨X, θKX⟩ ∀X,Y ∈ g
(11)

then (·, ·) is a positive definiteK-invariant and θK-invariant scalar product
for g× g with ∥ · ∥ its associated norm.

(c) For g1 := Lie(G1) and ⟨·, ·⟩1 and θ1K the restriction of ⟨·, ·⟩ and θK to
g1 × g1 and G1, respectively, we have that (G1,K, θ1K , ⟨·, ·⟩1) inherit all
the properties of (G,K, θK , ⟨·, ·⟩) above.

In addition, since ⟨·, ·⟩ isG-invariant, the following infinitesimal invariance holds.

(d) ⟨·, ·⟩ is characteristic, namely,

⟨ϕ(X), ϕ(Y )⟩ =⟨X,Y ⟩ ∀ϕ ∈ AutLie(g), ∀X, Y ∈ g

⟨[X,Y ], Z⟩ =⟨X, [Y, Z]⟩ ∀X, Y, Z ∈ g.
(12)

Therefore, [g, g] and z are mutually orthogonal with respect to ⟨·, ·⟩. In
addition, since ⟨·, ·⟩ is θK-invariant, k and p is mutually orthogonal. Conversely,
we may reconstruct the bilinear form ⟨·, ·⟩ using all the above conditions. To be
more precise, starting with the Cartan-Killing form on [g, g], we may extend it
to obtain ⟨·, ·⟩ as the direct sum of the Cartan-Killing form with a symmetric
non-degenerate bilinear form on z, which is negative definite on z∩k and positive
definite on z∩p. Finally, we may extend this latest ⟨·, ·⟩ to the total space gC×gC.
For later use, we call ⟨·, ·⟩ =: ⟨·, ·⟩K the canonical form on g associated to K.
For later use, when ⟨·, ·⟩K is viewed as a linear form from g to g∗, we write it
as HK .

Finally, let us point out that the Cartan involution can be applied in many
ways. For example, if G1 is a R-subgroup of G containing RuG such that all
maximal compact subgroups K of G(R) are conjugate under G1(R), then, for a
Levi subgroup M of G(R), it makes sense to take about the Cartan involution
θK of M with respect to K. Moreover, in this case, the subgroup (G1 ∩M) ∩
θK(G1 ∩ K) is the unique θK-stable Levi subgroup of G1(R) contained in M .
Consequently, if P is a parabolic R-subgroup of G, and K is a maximal compact
subgroup of G(R) and M is a Levi subgroup of G(R) containing K, then M ∩P
contains one and only one tLevi subgroup of P (R) stable under θK . For this
reasons, we will fix a maximal compact subgroup K of G in the sequel.
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3.3 Fine Involutions for Maximal Compact Subgroups

We are now ready to introduce new structures called fine involutions and their
associated compatible metrics for general reductive groups, which may be viewed
as natural generalizations of the known structures for semi-simple groups (see
e.g. [4]).

Let G be a reductive group defined over a subfield F ⊂ R. Fix a maximal
compact subgroup K of G. Motivated by the Cartan involution associated to
the maximal compact group K of G, we give the following:

Lemma 8. Let H be a positive definite real symmetric bilinear form on g.
Assume H is K-compatible with respect to the Lie structure of g. Then, for
θH := −H−1

K H,

(1) θ2H = 1.

(2) HKH−1HK = H. That is to say, HKθH = −H.

(3) Let kH , resp. pH , be the (+1)- eigenspace, resp. the (−1)-eigenspace, of
θH on g. Then

(a) g = kH ⊕ pH .

(b) On kH , resp. pH , HK = −H, resp. HK = H, is negative definite,
resp. positive definite.

(c) g = kH ⊕ pH is an orthogonal decomposition with respect to HK .

(4) H is compatible with HK , i.e. HK : g→ g∗ is an isometry with respect to
the metric H on g and the metric H−1 on g∗.

Proof. (1) By the infinitesimal invariance of HK , namely, two relations in (12),
we have tθHHKθH = HK since θH is compatible with the Lie structure on g.
On the other hand, tθHHK = −HKH−1HK = HKθH . Therefore θ2H = 1.

(2) This is a direct consequence of (1). Indeed, since θ2H = 1, we have
(H−1HK)(H−1HK) = Idg. Therefore, HKH−1HK = H and hence Ht

KhetaH =
−H.

(3) (a) This is a standand result in linear algebra.
(b) This is a direct consequence of (2). Indeed, sinceHKθH = −HKH−1HK =

−H, we have that HK = −H on k, resp. HK = H on p, by the fact that, on
k, resp. on p, θH = 1. Consequently, HK is negative definite on k and positive
definite on p.

(c) This is a direct consequence of (b) and (c).
(4) This is a reinterpretation of (2) and (3). Indeed, by (3), HK : g→ g∗ is

an isomorphism. Moreover, by (2), HKH−1HK = H, we obtain the following
commutative diagram of isomorphisms

g
HK−→ g∗

H ←
−

←
−

H−1

g∗
HK←− g.

This implies that HK : g → g∗ is an isometry with respect to the metric H on
g and the metric H−1 on g∗.
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Definition 9. An element θ in the automorphisms group AutLie(g) of the Lie
algebra g is called a fine involutions of K (with respect to the Lie structure
on g) if there exists a positive definite real symmetric bilinear form H on g
such that θ = −H−1HK and satisfies all the properties (1), (2), (3) and (4) in
Lemma8. Here, HK : g→ g∗ denotes the linear isomorphism associated to the
bilinear form ⟨·, ·⟩K on g induced from the Cartan involution θK associated with
K. Moreover, if this is the case, H is called a K-compatible metric on g (with
respect to its Lie structure), 2 and we denote θ by θH .

From the discussion above, it is not difficult to see that fine involutions and
admissible metrics on g associated to K works exactly in the same way for
G1 as well, since G1 is reductive and all maximal compact subgroups of G are
contained in G1. Indeed, the corresponding constructions on G1 may be viewed
as the restrictions of the structures from g to g1 := Lie(G1). For later use, set

g = g1 ⊕ v. (13)

3.4 Compatible Metrics for Maximal Compact Subgroups

Denote by Mtot
g;K , resp. Mtot

g1;K the moduli space of K-compatible euclidean

metrics on g, resp. on g1. Since they contains (the isometric class of) (·, ·)K in
(11), both Mtot

g;K and Mtot
g1;K are not empty. Moreover, Mtot

g;K , resp. Mtot
g1;K ,

admits a natural interpretation as a subspace of the space of (isomety classes
of) euclidean metrics on g, resp. on g1. Our main result of this section is the
following:

Proposition 10. Let G be a reductive group defined over a subfield F ⊂ R and
let K be a maximal compact subgroup of G. Set g = Lie(G). We have

(1) There are natural actions of G onMtot
g;K andMtot

g1;K .

(2) The action of G onMtot
g;K in (1) induces a natural diffeomorphism

G1(R)/K ≃Mtot
g1;K (14)

Proof. (1) Recall that, for ϕ ∈ AutLie(g), we have tϕHKϕ = HK since HK is
characteristic by (12). Hence, for any H ∈Mtot

g;K , we have

(− tϕHϕ)HK = ϕ−1θϕ.

This implies that tϕHϕ belongs toMtot
g;K as well. Consequently, the assignment

(H, g) 7−→ t(Ad g)H(Ad g) ∀H ∈Mtot
g;K , ∀g ∈ G (15)

defines a natural action of G onMtot
g;K . Here, as usual, for g ∈ G, Ad g denotes

its adjoint. This proves (1).
(2) In terms of the fine involutions θ = θH , the action above is equivalent to

(θ, g) 7−→ t(Ad g)θ(Ad g) ∀g ∈ G (16)

2 Here as usual, we view the bilinear H as a linear map from g to g∗. Hence H−1HK is
indeed a linear endomorphism of g.
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Recall that, for a general G, if we set

vθ := {X ∈ z : θX = −X } .

Then Vθ := exp(vθ) is a split component of G. 3 Moreover, by Proposition 2.1.10
of [5], the assignment θ 7→ vθ gives a bijection from the set of fine involutions
associated toK to the set of split components of G. In particular, when G = G1,
this map gives a bijection from the set of fine involutions to the set of maximal
compact subgroups of G. Hence, in our case, since G is connected and reductive,
all maximal compact subgroups of G are conjugate to each other. This implies
that G and hence G1 acts transitively onMtot

g1;K . Thus, to complete our proof,

it suffices to show that the stabilizer group of θK in G1 is exactly K itself.
For this we choose ΘK : G1(R) → G1(R) to be a Cartan involution satisfying
dΘK = θK . By definition,

K =
{
g ∈ G1(R) : Θ(g) = g

}
.

On the other hand, for g ∈ G1, θK = (Adg)−1θK(Adg) if and only if g−1ΘKg
is in the center of G(R)0, the connected component of G(R) containing the unit
element. But this center is trivial by our assumption, hence g belongs to the
stabilizer group of θK if and only if g ∈ K.

From the proof, we conclude that v in (13) is identified with vH for a certain
compatible H of K. As a direct consequence, we obtain the following:

Corollary 11. Denote by Mv be the moduli space of euclidean metric on v.
Then

(1) Mv ≃ GLdimR v(R)/OdimR v(R), where On(R) denotes the orthogonal group
of degree n.

(2) The natural map defined by

Mtot
g;K −→ Mtot

g1;K ×Mv

H 7→ (H|g1 ,H|v)

is bijecive.

4 Arithmetic G-Torsors on SpecOF

4.1 Integral Structures on Lie Algebras

Let F be an algebraic number field with OF the ring of integers, and let G be
a connected split reductive group over F with g its Lie algebra. Our aim here
is to introduce a G(OF )-invariant projective OF -module gOF

in g ⊗F R which
is closed under the Lie operation.

For simplicity, assume F = Q. Since G is defined over Q, its Lie alge-
bra g admits a natural rational structure gQ and the adjoint representation

3 Denote by Ad : G → AutLie(g) the adjoint action of G on g. Then Ker(Ad) acts trivially
on g. A split component of G is defined to be a maximal closed linear subspace of Ker(Ad).
By Proposition 2.1.5 of [5], if V is a split component of G, then G = G1 · V .
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G→ EndLie(gQ) is a morphism defined over Q. Consequently, there always ex-
ist G(Z)-invariant integral structures in gQ , since, for any integral structure in
gQ , the image under the action of G(Z) is again an integral structure in gQ . Ob-
viously, the summation of two G(Z)-invariant integral structures in gQ is again
a G(Z)-invariant integral structure. Moreover, if gZ is a G(Z)-invariant integral
structure in gQ, we have [gZ, gZ ] ⊂ gQ . Hence, by clearing up denominators,
we can instead assume that [gZ, gZ ] ⊆ gZ from the beginning. In this way, we
obtain a unique maximal G(Z)-invariant integral structure gZ in gQ satisfying
the condition that [gZ, gZ ] ⊆ gZ.

Put this in a more concrete form, since our reductive group G is defined over
Q, we may use the structural decomposition

gQ = gssQ ⊕ zQ

where gssQ denotes the rational structure on gss induced by the semi-simple Lie
sub-algebra of g. Since v ⊂ z, this decomposition is compatible with gQ =
g1Q ⊕ vQ induced by (13). Moreover, since z is abelian, we obtain a natural
decomposition

zQ = vQ ⊕ g1Q/gQ
ss. (17)

Now by applying the Chevalley (integral) basis for semi-simple Lie algebras, we
obtain a canonical integral structure gssZ on gQ

ss. Hence, what is left is to in-
troduce an integral structure on zQ which is compatible with the decomposition
(17). But this is trivial since z is an abelian sub Lie algebra defined over Q.
We thus obtain an induced integral structure on zQ , which we denoted by zZ.
Similar arguments then lead to the integral structures g1Z and vZ on g1Q and vQ ,
respectively. Consequently, we have

gZ := gssZ ⊕ zZ = g1Z ⊕ vZ. (18)

The above discussion works well if we replace G/Q by a split reductive
group G/F with F a general number field. To indicate the dependence on F ,
we rewrite the associated Lie algebra by gF . Since it admits a natural F -linear
space structure, through the Minkowski embedding F ↪→ F∞ :=

∏
σ∈S∞

Fσ, we
obtain a Lie algebra

g∞ := gF ⊗Q R :=
∏

σ∈S∞

g⊗ Fσ. (19)

We introduce an OF -lattice structure on gF by setting

gOF
:= gZ ⊗OF ↪→ gF ↪→ g∞. (20)

Then
gOF

= gssOF
⊕ zOF

= g1OF
⊕ vOF

(21)

where gssOF
:= gssZ ⊗OF , zOF

= zZ ⊗OF , g1OF
= g1Z ⊗OF and vOF

= vZ ⊗OF .
Using a similar argument as above, we conclude that gOF

is a projective OF -
submodule in gF such that [gOF

, gOF
] ⊆ gOF

. In the sequel, gOF
will be called

the canonical infinitesimal OF -structure of G/F .
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4.2 Arithmetic G-Torsors

Let G be a split reductive group over a number field F . For each σ ∈ S∞, we fix
a maximal compact subgroup Kσ of G1(Fσ), set r

Gss

G,σ := rank(G) − rank(Gss).
We denote a real, resp. complex, σ ∈ S∞ by σ : R, resp. σ : C. By §3.4, we
obtain the moduli spaces Mtot

gFσ
;Kσ

, resp. Mtot
g1
Fσ

;Kσ
, of the compatible metrics

with respect to Kσ on gFσ
, resp. g1Fσ

, and natural isomorphisms∏
σ∈S∞

Mtot
g1
Fσ

;Kσ

≃−→
∏

σ∈S∞

G1(Fσ)/Kσ,∏
σ∈S∞

Mtot
gFσ

;Kσ

≃−→
∏

σ∈S∞

Mtot
g1
Fσ

;Kσ

×
((
GLrG

ss
G,σ

(R)/OrG
ss

G,σ
(R))r1×

(
GLrG

ss
G,σ

(C)/UrG
ss

G,σ
(C)

)r2)
.

(22)

Here On(R), resp. Un(C), denotes the orthogonal group, resp. the unitary
group, of degree n, and r1, resp. r2, denotes the number of real, resp. complex,
places of F . For later use, set

G1(F∞)/K(F∞) :=
∏

σ∈S∞

G1(Fσ)/Kσ and Mtot
g•
∞;K∞

:=
∏

σ∈S∞

Mtot
g•
Fσ

;Kσ
(23)

where, to simplify our notations, we use g• as a running symbol for g and g1.

Definition 12. Let G/F be a connected (split) reductive group and let K∞ :=
(Kσ)σ∈S∞ be a family of maximal compact subgroups of (G(Fσ))σ∈S∞ . By a
K∞-compatible arithmetic G-torsor over SpecOF , or simply over OF , we mean
a tuple (G, (Hσ)σ∈S∞) consisting of a G-torsor G on SpecOF and an element
(Hσ)σ∈S∞ ofMtot

g∞;K∞
.

Even apparently not quite related, H∞ := (Hσ)σ∈S∞ may be viewed as a
family of (Kσ)σ∈S∞ -compatible metrics on the tangent bundles of the G-torsor
G∞ :=

∏
σ∈S∞

Gσ. To explain this, we first recall that Gη admits a natural G(F )-
torsor structure. This, via the Minkowski embedding, induces a natural G(F∞)-
torsor structure on G∞. Hence, for a fixed base point of G∞, the the tangent
space of G∞ at this point is canonically identified with g∞. Consequently, we
obtain a natural metric on this tangent space. Moreover, since G∞ is a G(F∞)-
torsor, its tangent bundle is a flat bundle. Thus, with the help of the so-called
parallel transforms, we obtain a natural metric on the tangent bundle of G∞.
This metric is uniquely determined by H∞.

Furthermore, working over G1, at infinite places, H∞ is a K∞-compatible
metric on g1∞. Thus (g1OF

,H∞) for an OF -lattices in g1∞ whose projective OF -
module component g1OF

also admits a natural Lie structure over OF because,
by our construction, [g1OF

, g1OF
] ⊆ g1OF

.

Definition 13. Let (Λ, (Hσ)) be a pair consisting of a projective OF -module
Λ ⊂ gF and a family of K∞-compatible metrics on g∞. If Λ is G(OF )-
invariant under the adjoint action, and [Λ,Λ] ⊂ Λ, then (Λ, (Hσ)) is called
a K∞-compatible principle G1-lattices over OF .

Denote byMtot
G,F , resp. Mtot

G1,F , the moduli stack of K∞-compatible arith-

metic G-torsors, resp. G1-torsors, on SpecOF . Then we have the following
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Theorem 14. Let G be a split reductive group on F . Then there exist the
following natural identifications:

(1) Mtot
G1,F ≃

∏
ξ∈Ker1(F,G1) G

1,ξ(F )\G1(A)/
∏

v∈Sfin
G1(Ov)×K∞.

(2) Mtot
G,F ≃

∏
ξ∈Ker1(F,G)

Gξ(F )\G(A)/
(∏
v∈Sfin

G(Ov)×K∞×OrG
ss

G,σ
(R)r1×UrG

ss
G,σ

(C)r2
)
.

Proof. (1) For each v ∈ Sfin, let Xv = Spec(Ov) and set X•
v be the complemen-

tary open subset of {v} in Xv. Then for each element gv of the affine Grassman-
nian G(Fn)/G(Ov), we obtain a G(Fv)-torsor Ev on Xv equipped with a trivial-
ization onX•

v with the trivialG torsor, so that if an automorphicm of Ev is trivial
on X•

v , then it is necessarily trivial. Recall that there exists a natural morphism
G(Fv)/G(Ov) −→ G(F )\

∏′
G(Fv)/G(Ov) which maps gv ∈ G(Fv)/G(Ov) on

the tuple consisting of gv at v and the unit elements of G(Fv′)/G(Ov′) for all
places v′ ∈ Sfin∖{v}. Then, by the compatibility condition in Lemma7, and the
fact that SpecOF is affine and OF is Dedekind domain, we conclude that the
local maps induces an identifications of G(F )\

∏′
G(Fv)/G(Ov) with the mod-

uli spaces of G1-torsors on SpecOF , by adopting a result of Beauville-Laszlo [?]
in the case when G = GLn and that of Heinloth in [?] for general cases. There-
fore, to conclude our proof, it suffices to apply Proposition 10 to take care of the
factor of K∞-compatible metrics (Hσ), since G(AF ) is nothing but

∏′
v∈S G(Fv).

(2) is a direct consequence of (1) and its proof, if we apply Corollary 11.

In the sequel, to simplify our presentations, we will use arithmetic G-torsors
instead of the full version of K∞-compatible arithmetic G-torsors over SpecOF ,
if no confusion arises.

4.3 Slopes of Arithmetic G-Torsors

Let TG be the maximal split torus in the center ZG of G and let T ′
G be the

maximal split quotient torus of G. Then

TG = Hom(Gm, ZG)⊗Gm and T ′
G = Hom(Hom(Gab,Gm),Gm).

Here Gab := G/[G,G] denotes the maximal abelian quotient of G. It is well
known that the composition

TG ↪→ ZG ↪→ G ↠ Gab ↠ T ′
G

is an isogeny, i,.e. a morphism with finite kernel and cokernel. Consequently, if
we set

X∗(TG) := Hom(Gm, TG), X∗(T
′
G) := Hom(Gm, T ′

G)

X∗(TG) := Hom(TG,Gm), X∗(T
′
G) := Hom(T ′

G,Gm)
(24)

then X∗(TG) ↪→ X∗(T
′
G) is a free abelian group of the same rank. Moreover,

since Hom(Gm,Gm) ≃ Z, there is a non-degenerate pairing

⟨·, ·⟩ : X∗(T
•
G)×X∗(T •

G) −→ Z

(χ, µ) 7→ ⟨χ, µ⟩
(25)
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Here T •
G = TG or T ′

G. Set now

X∗(T
•
G)∞ :=

∏
σ∈S∞

X∗(T
•
G)Fσ

and X∗(T •
G)∞ :=

∏
σ∈S∞

X∗(T •
G)Fσ

, (26)

then (25) induces a non-degenerating pairing

⟨·, ·⟩ : X∗(T
•
G)∞ ×X∗(T •

G)∞ −→ C

(χ, µ) 7→ ⟨χ, µ⟩.
(27)

Obviously, there is a natural action of
∏

σ∈S∞
Gal(Fσ/R) on X∗(T •

G)∞, and⟨
X∗(T

•
G), X

∗(T •
G)

∏
σ∈S∞ Gal(Fσ/R)

∞

⟩
⊆ R. (28)

For our own convenience, we denote the invariant space X∗(T •
G)

∏
σ∈S∞ Gal(Fσ/R)

∞
by X∗(T •

G)
ar
∞.

Definition 15. Let G = (G, (Hσ)) be a K∞-compatible arithmetic G- torsor
over SpecOF . An element µ ∈ X∗(T

′
G)∞ is called the slope of G, denoted by

µ(E)∞, if, for all χ ∈ X∗(A′
G), we have

⟨χ, µ⟩ = degar(Gχ) (29)

where Eχ denotes an arithmetic Gm-torsor on SpecOF induced by the reduction

of structure group G ↠ T ′
G

χ→ Gm, and degar denotes the arithmetic degree.

This definition makes sense, since an arithmetic Gm-torsor on SpecOF

is simply a metrized line bundle on SpecOF . Hence its arithmetic degree
degar(Gχ) is well-defined.

Remark 1. (1) Arithmetic G-torsors are first introduced in my book [10].
There is a serious overlap between this section and §16.2 of [10], even the
context here is much clearer.

(2) As to be expected, the slope can be use to definite stability of arithmetic
G-torsors ([10]). We omit the details, since it will not be used in our
current work.

5 Arithmetic Characteristic Curves

Let G/F be a split reductive group with pinning (T,G, {xα}α∈∆) such that
{xα}α∈∆ can be extended to a Chevalley basis of g = Lie(G).

Let (G,H) be an arithmetic G-torsor on X. Denote by gX the induced
locally free sheaf on X, or equiva;ently, the associated projective OF -module in
g∞.

Let (L, ρ) be a metrized invertible sheaf on X. Denote by L its associated
rank one projective OF -module. Since OF is Dedekind, we may identify L with
a certain fractional ideal of F . Denote this fractional ideal by the same letter
L, by an abuse of notations.

For an element φ ∈ gX ⊗OF
L ⊂ gF ⊂ g∞, we denote its images under the

Chevalley characteristic morphisms χF and χ∞ by χ(φF ) ∈ cF and χ(φ∞) ∈ c∞,
respectively. It is not difficulty to see that χ(φ) ∈ c(OF ).

The element φ can also be used to identify X with the horizontal section
associated to φOX in gX⊗L. In this way, we obtain a morphism aφ : X → cOF

.
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Definition 16. Let G/F be a split reductive group.

(1) The pair (G, φ) consisting of an arithmetic G-torsor G and an element φ ∈
gX ⊗OF

L with L/SpecOF ) an invertible line sheaf is called an arithmetic
Higgs G-torsor.

(2) The characteristic arithmetic curve associated to (G;L;φ) is defined to be
the scheme Xφ of arithmetic dimension one obtained from the morphism

X
aφ→ cOF

through the base change tOF
→ cOF

. That is to say,

Xφ = X ×cOF
tOF

induced from the product diagram

Xφ

χφ−→ X

←
−

←
−

aφ
tOF

χ−→ cOF
.

(30)

Obviously, the morphism χφ : Xφ → X is a finite (|W | : 1)-covering, even
highly ramified in general. Here, as usual, W denotes the Weyl group of G/F .

Remark 2. (1) The above construction is motivated by the construction of
spectral curve (for G = GLn) and cameral curve (for general reductive G)
by Beauville-Narasimhan ([1]) and Donagi- Gaistgory ([3]), respectively.

(2) When G = GLn, with the identification t ≃ SpecF [t], the Chevalley
characteristic morphism may be viewed as the assignment for diagonal
matrices to their unorded eigenvalues. For this reason, we sometimes also
call Xφ the arithmetic eigen curve of X associated to φ.

In the forthcoming papers ([11], [12]), we will use arithmetic characteristic
curves to construct arithmetic Hitchin fibrations and study the intersection ho-
mologies and perverse sheaves for the associated structures, following (Laumon-
)Ngo’s approach to the fundamental lemma ([9]) using Hitchin fibrations ([8]).
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