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Abstract

For each (m + 1)-tuple n,, = (ng,ny,...,n,) of positive integers, the n,,-derived

zeta function ’}';;Z)(s) is defined for a curve X over F,, motivated by the theory of rank

n non-abelian zeta functions nypq;,,(s) of X/F,. This derived zeta function satisfies
standard zeta properties such as the rationality, the functional equation and admits
only two singularities, namely, two simple poles at s = 0, 1, whose residues are given
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by the n,,-derived beta invariant ﬂ)(("g‘q) for which the Harder-Narasimhan-Ramanan-
Desale-Zagier type formula holds. In particular, similar to the Artin Zeta function
of X/F,, this n,,-derived Zeta function for a curve X over F, is a ratio of a degree
. = g o™ by (1 = Ty )1 = Gn, Ta,)Ts," with

n,, = qli=0". Indeed, A;‘g.’)(Tnm) = ’T"/")(s) is given by

2g polynomial P("m) (Ty,) in T,

(Gn, = DT, By5
(1 =Ty, )1 = gn,,Tn,)

" - —1)—lr(g—1)—C i
Za,(n )(5) (g 1) q(}; ) Tl(li, ) )+a§:]F3(g_ 1))) +

for some n,,-derived alpha invariants { ;.”)(f )} of X/F,. Furthermore, when X
restricts to an elliptic curve, or when n,, = (2 2,...2), established is the n,,,—derlved
Riemann hypothesis claiming that all zeros of £y n'”)(s) lie on the central line R(s) =

In addition, formulated is the Positivity Conjecture claiming that the above nm—derlved
alpha and beta invariants are all strictly positive. This Positivity Conjecture is the key
to control our n,,-derived zetas.

1 n,-Derived Zeta Functions for Curves over Finite Fields

In this section, we define inductively the n,,-derived zeta functions for curves over finite
fields associated to (m + 1)-tuples n,, = (no, .. ., n,) of positive integers ng, 1y, . . . , fy.

1.1 Rank » zeta function

In this subsections, as an initial step in the inductive process to introduce the n,,-derived
zeta functions for curves over finite fields, we recall some basic structures of rank » non-
abelian zeta functions for these curves.

Let X be an integral regular projective curve of genus g over a finite field F, with ¢

elements. We define the rank n non-abelian zeta function ZX,]Fq;,,(s) of X/F,; by

WXE) _ |

é,XTPqn(S) Z Z q#A @) (g y¥*® R(s) > 1. (1)

m=0

Here & runs through rank n semi-stable F,-rational vector bundles over X/F, of degree
mn. Tautologically, by applying the Riemann-Roch theorem, the cohomological duality
and the vanishing theorem for semi-stable bundles over X, we have, for Q = ¢", T = g7,

Zxr,n(T) = Lxp,n(S)

& Q- DT
= n;) ax g, (rm)(T" 67D 4 (QT)ED™) + @y wln(g — 1) + a- - orfree©®
Pxp,n(T)

TA=1)(1 - QI)TE !



where

th(XS) -1 1
a(d d moa(d) = —_— 2
axz,a(d) = Z e g A @
where & runs over all rank 7 semi-stable FF,-rational vector bundle of degree d on X and
PX,]Fq;n(T)
g2
=" axzalm)(T" + QE DTN 4 e (n(g — DTS (1= T)(1 - QT)

m=0

+(Q = DT*Bxr,x(0)
is a degree 2g polynomial in 7 with rational coefficients.
Example 1.1. When n = 1, we recover the (complete) Artin zeta function for X over F,:

WXL _ 1

ZX,]F,,;](S)_Z Z R (g )AL~

d>0 repic?(X)

ARy Z NDY™ = ¢ gz, () =: Te, (9)

m>0 D>0

where Pic?(X) denotes the degree d Picard group of X /Fy, and D runs over effective
divisors of degree m on X.

Furthermore, by the discussion, we have the following:

Theorem 1.1 (Zeta Facts [4]). Let X be an integral regular projective curve of genus g
over F,. Then we have

(1) (Rationality)
PX,]Fq;n(T)
(1-7)(1 - Q071!

is a rational function in T, and Pxg ,(T) is a degree 2g polynomial with rational
coefficients in T.

Zxz,n(T) = Lxpn(T) =

(2) (Functional Equation)

Zxzn(1 = 8) = Lxga(s),  orequivalently, Zyz .,(1/(QT)) = Zyz,.u(T)

(2) (Singularities) The rank n Zeta function Zx g, ..(T) = Tg’lzqu;n(T) admits only
two singularities, namely two simple poles at T = 1,1/Q whose residues are given
by

Resy-1Zxp,n(T) = —Resr=1/0Zxr,:n(T) = Bxp,n(0).



Accordingly, by using the functional equation, we may write

8 8

Pxrn(T) = axz,(0) | [(@xm T = DBxesT = D) = axp,u0) | [(QT? - axe mil + 1)
i=1 i=1

3)

where (@xF,misBxpni) (1 < 0 < g) denotes the naturally paired reciprocal roots of
Py, .n(T) characterized by the following conditions

xFmi PBxpmi = Q  and  axpi +BxF = AXF i
For our own convenience, we often write
X F,0¢-i *= PBXF,i @=1...,8).
and write the polynomial Pxz,q(T) as

PX,]Fq;n(T)

g2
:(( Z g, (r)(T™ + QEDTMT2ED) 4 ol (n(g — 1))Tg—1)(1 —T)(1-QT)

m=0

+(Q - I)TgBS(,]Fq;n(O)) - axp,n(0)

)
Here, we have set
aXFF n(d) BX]R n(d)
Dyg (d) = —— and p o (d) = —— Vd € Z) (&)
Xz @ = o ® Prza® = G 0
using the fact that
g X0
a’X,]Fq;n(O) > ,

#Aut(03") g
Obviously, the leading coefficient and constant term of Pxp, .2(T) are given by ax,]pq;n(O) (0
and axp,q(0), respectively.

There is one more important zeta properties, at least conjecturally, for these zeta func-
tions. Namely,

Conjecture 1.1 (Rank n Riemann Hypothesis). Let X be an integral regular projective
curve of genus g over ;. Then all zeros of the rank n non-abelian zeta function {y,;x(s)
of X/F, lie on the central line R(s) = %

we end this subsection with the following rather easy elementary

Lemma 1.2. Let X be an integral regular projective curve of genus g over F,. Then the
following conditions are equivalent:



(1) The rank n Riemann Hypothesis holds for ZX!]Fq;n(S).
(2) Foralli=1,...,2g,

laxs,l = Vo.

(3) Foralli=1,....g,
a’X,qu;n;i = BX,]F(];";['

(4) Foralli=1,...g,
aX,Fq;n;i €R and aX,]Fq;n;i € (_2 \/é, 2 \/@)
(5) Foralli=1,...g

AXF,n;i € C\R and ﬁX,]Fq;n;i e C\R.

1.2 Special uniformity of zetas

There is another new type of zeta function Z)S(’I%;(S) for curves X over finite fields F,.
These zeta functions are defined using the Lie structures of SL,, or better of the pair
(SL,, P,_1,1), where P,_; ; denotes the maximal parabolic subgroup of SL,, associated to
the ordered partition n = (n—1)+1, consisting of matrices whose final row vanishes except
for its last entry, and the complete Artin zeta function of X/F,. The so-called special
uniformity of zeta functions for curves over finite fields claims that the geometrically
defined rank n-non-abelian zeta function foq;n(s) coincides with the Lie theoretically
defined SL,, zeta function Z;S(’Ll,;q(s). This special uniformity of zetas was conjectures in [5]
and proved in [9], with the help of [3].

Theorem 1.3 (Special Uniformity of Zetas. Theorem 1 of [9]). For an integral regular
projective curve X of genus g over By, we have, forn > 2,

Z VXF, ki« VXF, .k, 1

—1 A _ ns—n+a+k
50 H?:] (- qkj+kj+1) (1-¢ »)
ki+...+ky=n—a

n
gX,Fq;il(S) :Z;S(EF’;(S) = q(;)(gfl) Z
a=1

1 VXF,l - VXF,l

XZX’]Fq(nS —-n+a)

n
where Vg, = ]_[ Zxg, (k) with Txr,(1) = Resy Zx g, (T).
k=1
The importance of this special uniformity of zetas should never be underestimated.
For examples, it has been used in [7] to establish the rank three Riemann hypothesis,
and as to be seen below plays an important role in defining what we call n,,-derived zeta
functions for curves over finite fields.



1.3 Definition of n,,-derived zeta functions

Definition 1.1. Let X be an integral regular projective curve of genus g over IF,. Fix an
(m + 1)-tuple n,, of (strictly) positive integers n,, = (ng,ny,...,n,). The n,-derived zeta
functions, or simply, the level m-derived zeta function, for X over FF, is defined inductively
by

(1) When m = 0, for ny = (n), we set

L0 (s) = Gye (s);

(2) For all m > 1, inductively, assume that the n;-derived zeta functions {y, (nk)(s) have been
defined for all k < m — 1. Then, for n,, := (ng, ny,...,n,) we set

— 4 — n,
qn, = Y, , and Ty, =T,

|

and
’ﬁ(nm—l) ’"(nm l)
() (”'")(g ) Xk * " VXF ok, 1
5 (S) n Z Z p-1 kjt+kji Ny S—y+a+k,
a=l ky,...kp>0 l_[jzl (1 - qnm 1 ) (1 —{qn,,_, )

ki+..+k,=n,—a

—My-1) —~My-1)
1 XFy .l " VX F, L

—Npy S+, —a+1+1 —1 1+l
niaso —qu, " D2 =ga, ™)
Li+..+l=a-1

X é‘(nm 1)(nms _ nm + a)

N

Where";(;lm 1])\] o— l_[ér(nm ])(k) Wlth é«(nm 1)(1) = ReSTnmq=1Z}((?]§’]7])(Tllmf])'
k=1

In the sequel, for our own convenience, we often write

L) = s, Zg (Ta,) =4 (s) and my = = (noymes s = ),

(6)
and call Z (n’”)(Tnm) the n,-derived Zeta function of X over F,.

Example 1.2. When n,, = (n,,_1, 1) with n,, = 1, we have, in the definition of £, m "’)(s)

l‘l,-,,

the most outer summation ) " = Za:l consisting of a single term a = 1. This 1mp11es

that for the second level, the ﬁrst subsummation }, k>0 18 simply 3} x,._k,>0 , and
ki+..Aky=n,—a ky+...+k,=0
hence the corresponding summand = 1 degenerates; similarly, the second subsummation

> I,..,>0 becomes ) ;>0 and hence the corresponding summand = 1 degenerates
L+..+l=a-1 . L+..+1,=0 . .
as well. In addition, for the case under discussion,

é’(nm 1)(I’lmS — iy +a) = éf}({f;y l)(S).

Therefore,

V() = 40 s). @



We end this subsection with the following comments. If i Fig ‘)(s) is replaced by
c ("'" D (s) for a certain constant factor c. Then all the special Values ( ("”' 0 (k) are replaced

by cg“ Ll ‘)(k) and all the '{;g 112 are replaced by CH;]';- ‘,Z As a result, usmg the inductive

deﬁmtlon the n,,-derived zeta function £y ("m)(s) is replaced by c("'"’“)*”("’l)z)((';;)(s), or
g

the same by ¢ - £/ ("’")(s).

2 Standard Zeta Properties of n,,-Derived Zeta Functions

In this section, we will establish standard zeta properties for the n,,-derived zeta function
Iiw 7 (om) (s) of curves X over F,. In particular, we show that all these derived zeta func-

tlons satisfy the standard functional equation, and are ratios of degree 2g polynomials
PR (Tw,) by (1= T, )1 = gn, T, )T4, -

2.1 Rationality

The first zeta property for the n,,-derived zeta function ("'”)(s) of curves X over F, is
the rationality. Directly, from the 1nduct1ve definition, we see that for each (m + 1)-tuple
n,, = (ng,ny,...,n,) of positive integers, {X m)(s) is a rational function of ¢ := ¢~*. In fact
much better can be established.

Theorem 2.1 (Rationality). Let X be an integral regular projective curve of genus g over
F,. For each fixed (m + 1)-tuple n,,, = (ng,ny, ..., ny) of positive integers, the n,,-derived
Zeta function Z (n’”)(Tnm) of XoverF,isa ratlonal Sunction of Ty, = g™ """,

Proof. We prove this theorem using an induction on m.
When m = 0, this is the rationality statement of Th’gorem 1.1.
Assume now that the n,,_;-derived zeta function Z;Enﬁ'*l)(Tnm,l) is a rational function
=g

of Ty, , = g7 "% Then, Z)((f]'g;")(nms — n,, + a) is a rational function of

q—nom -1 (MS) — =T = Tnm

n,_1
This, together with the fact that both

1 1
(1= and (1= gy

Ny, ny,-|

are rational function of

gms = (gl TS _ T =T
Ny, n,_| ny,

Therefore, Z("’")(T ,.) of X over F, is a rational function of T, as well. O



2.2 Functional equation

In this subsection, we prove the following important zeta fact for n,,-derived zeta function

4w (s).

Theorem 2.2 (Functional Equation). Let X be an integral regular projective curve of
genus g over Fy. For each fixed (m+1)-tuple n,, = (ng, n1, ..., ny) of positive integers, the
n,,-derived zeta function Zf(}”q)(s) of X over B, satisfies thye following standard functional
equality

L1 -9 =5 ®)

Proof. We prove this theorem using an induction on m. When m = 0, this is the functional
equation part of Theorem 1.1.

Assume now that the n,,_;-derived zeta function { 7 (8- ‘)(s) satisfies the functional func-
tion £, 7 (O l)(1 5) = {yr 7 (- 1)(s) Then, for the n,,- derlved zeta function £y ("'”)(s), we have,
from Deﬁmtlon 1.1(2),

-9
’ﬁ(nm—l) '*(Ilm 1)
(") 1)2 Z XFpk ** VXF ok, 1
qn,, 1 kj+kis N (1=8)—n,,+a+k
a=1 kydy>0 Hp LA =gy Y (A =gy ")

ki+..+k,=n,—a

—~My-1) —(ny,_1)

1 YXF, 0t VXE,L

(ﬂm 1) o) Fyoli ol

x g (I’lm(l S) Ty + a) 1 —(1=8)+n,,—a+1+1; —1 L+l
nirso (I—qn, T2 =qu, ™)

h+..+l=a—1
’ﬁ(nm—l ) ’ﬁ(nm—l )
(”m)(g 1) Z Z XFg ki " VX Fykp 1
n,, — kj +k,+1) (1 _ —nms+a+k,,)

p-1
a=1  kyky>0 l_[jzl(l—%,,ll G,y
ki+..+k,=n,—a

"(“m 1) "(nm 1)
1 VXF. b VXE,,

(nm 1)
X { (nps—a+1)
nys—a+1+1 r— L+,
hiogso (I—dn, D nj:l(] i)

(by the inductive assumption on the functional equation for {y P ‘)(s))
’v‘(nnH ) —~My-1)

("n)(g- 1)2 Z XE ki VXE, k, 1
qn, kj+kje — Iy S+ —a+1+k
e S R | (1 —dn, ) A =qp," " ")

ki+..+k,=a—1

/‘(nm 1) "(nm 1)
1 YXF, 0t VXE,L

N S—Npy+a+l1 _ 1+l
nigso =g ™ T2 =gy ™)
L+.+lL=n,—a

X Zp (s =y + a)

(make the changea — n, —a+ 1)



o "(nm 1) "(nwl)
_ ("mg-n Z VXF kit VXE &, 1

TNy kj+kji n,,,s—nm+a+k[,)

=1 kdy>0 le(l Gn, ") (1 —gn. |

ki+...+kp=ny—a

"(nm 1) "(ﬂm 1)
1 VXE, & VXE,,

—My S+, —a+ 1+ r— i+l
w0 (I—aqn) ) Hj:l(l —dn, ")
L+..+l=a-1

M)
X ‘(X,Fq : (nms Ny + a)

(make the interchange (ki, ..., kp) «— (,...,1))
(nm)(s)
as wanted. O

We end this discussion by pointing out that the symmetric exposed in this proof, par-
ticularly, in the final sequences of identities will be used in the next subsection to analyze
the singularities of the derived zeta functions.

2.3 Singularities

Before we state the main result of this section, let us examine the structure of Zf(‘;g')(s) in
g
more details. Set, for 1 < a < n,,

“(p),[a] ._ 7 ny)lal
gX:]]Fq “s) = ZXTI]F,] “(Tw,)

"(nm 1) "(llm-l)
_ ("51)(5,_1) Z X]F Kyt X.Fy.kp 1

i kj+kjsy Ny S—Npy+a+k
)(1 _ TmS=Ny ]1)

p
kiskp>0 Hj:1 (l qnm 1 n,_|
ki+...+ky=n,—a
"(nm—l) "(nm—l)
x((“m‘)(n S—n, +a) 1 VXF,l t VXE,
m m 1 —Ny S+, —a+ 1+l _ L+l
noiso (I=an,”, )szl(l ~dn, ;)
L+..+l=a—1
Then
(nm)(s) Z é’(nm) [a](S) (9)

Definition 2.1. Let X be an integral regular projective curve of genus g over F,. For each
fixed (m + 1)-tuple n,,, = (ng, ny, ..., n,) of positive integers, we define

(1) For any 1 < n < n,, the rational function Axp,n,n(Th,), resp. the polynomial
I'x5,n,:n(Th,), Of Ty, is defined by

"(l‘lm 1) A(“m—] )

VXE kit VXF, &, 1
AX,]Fq;n,,,;n(Tnm) = E _ Kotk %
I—[ 1 1 _ j j+1 P T _ 1
kioendep>0 11—y qn,,_, dn,_, L,

ky+...+k,=n




resp.

Txzm,n(Tn,) = Axzm, a(Tn,) - ]_[ Tn, —1) (10)
=1

(2) For any positive integer n > 1, the n-th n,-derived -invariant for X over F, by

"(l‘lm 1) »(nm,])
_ (M- Z VXE kit VXF, &,

BXFmpiin =, | - Ttk
k>0 l_[jzl (1 —qu,_, )

ky+...+ky=n 11
’v‘(nm-l) ";(nm—l) ( )
ﬁ —(2)(g lﬂ _ XJFq,k, © Xk,
X.Fyiny,_1:n ‘=Aqn,; XEgmy-1:n = 1 k ke
kisskp>0 H — 4n,,_, )
ky+...+k,=n
For our own convenience, we also set
) . _ - (12)
XE, = BXF i, 1= BXF i,

and denote the leading coefficient and the constant term of the polynomial I'y s :n,,:(Tn,,)
in by Ly, and CxF,n,:n» rESpeCtively.

Lemma 2.3. With the same notation as above, we have
(1) LxF,n,n and CxF n,n are given by

";(ﬂmf 1) —ny,-1)

.
_(M)L B X]Fq,kl XFoky  —k,
qﬂm 1 X,qum;n - k,-+k/+| qnm—l
Saral | (1 ~4n, )
ki+..+k,=n
—~ny-1) —~Ny-1)
XF  ky * " "Xk
n _ _ 9 gkp
(_1) CXJF{,:HWM TPXF n,_n T Z kj+kjel
k0 1102 (1 =, )
ky+...+k,=n

(2) Txf m,n(Th,) is a polynomial in Ty, of degree (n — 1), provided that LxF, n,:n

m

AX,]Fq;nm_l,n(qr_lﬁ_, T;,,}) : 1—1?:0 (qﬁ,,,_l Tnm - 1)
Th

is non-zero. In addition, is a degree n

n+1

polynomial of Ty, with leading coefficient qnm ) By

g Mp—131

0y, LS|

(3) Z2 N (T,) = Axsmyin-almn Tl - 08 (s = iy + @) - Axgngia-1 G )

10



Proof. All the statements comes directly from the definition. As an illustration, we give
a proof of the second assertion of (2). By Definition 2.1(1),

]}nm AX,]FLI;n,,,;n(ql_lm . nm) l_[ (’In,,, | llm - 1)

1) 1)

n v .
_ 1 l_[( n(T _1) Z X.Fy.ky X.Fy.kp 1
T qllm 17 My Ktk —n+k,

n g k>0 J | (1— 9, )(Clnm TRt - 1)
"(nm 1) —My-1)

_ 1 .ﬁ(n(T _1) Z VXE, ki = VXF, &, qﬁ;ﬁ”Tnm
Ty, il qn,,_ L, oo H ( . kmtllf,ﬂ)(l_qz;/j,Tnm)

is a degree n polynomial in Ty, whose leading coefficient is given by

"(nm 1) A(“m%) ’“(llm 1) ’“(llm 1)
Z X]F o XF,kp 301 [) " Z XIF(/ ki XIFq kp
| k kG qn,_, ~4n,_, | k itk
ki sk >0 ., 1 ( ~ qn,,_, ) ki skp>0 ] 1 ( ~{qn,,_, )
ky+...+k,=n ki+..+k,=n
as wanted. O

Remark. From this lemma, for a fixed 1 < a < n,,, besides the singularities coming from
the n,,_;-derived Zeta function Z ("”’)(Tn ), we conclude that Z ("'”)’[“](Tnm) admits at least

. e —ny+a+k, 1 1
singularities at Ty, = gy, ' fork, =1,...n,—aandatg,™ ™" forl; = 1,...,a—1,
or equivalently at
—n —np+1 np+a=2 _—np+a+l _—n,+a+2 0 _
Tnm qnmml ’ qnmml vrrte qnmml ’ qnmml ’ qnmml vrrte qnm—l - 1

Accordingly, it appears that the n,-derived Zeta function Z ("’")(T,,m) might admit
many singularities and could be hardly handled. However, one beauty of the derived zeta
function is that there are perfect cancelations among these singularities of the Z)((“H;"”[“] (Tn,,)’s.

= q

Theorem 2.4 (Singularities). Let X be an integral regular projective curve of genus g
over F,. For each fixed (m + 1)-tuple n,,, = (ng, ny, ..., ny) of positive integers,

(1) The n,,-derived Zeta function Z("‘”) (Tn,) = Tf,'ml Zy (n””) (Tn,,) admits only two sin-
Fy
gularities, namely two simple poles atT =1andT = 1 /qn,, whose residues are
given by
Resr- 1Z( "')(Tnm) = —Resr- l/qan(nm)(Tnm) = BxF, 1, = BXF, m,- (13)

Furthermore,

11



(2) As a rational function of Ty,,, there exists a degree 2g polynomial P (n”‘)(Tnm) with
rational coefficients such that

P(nm)(Tnm)

(1 = T, )(1 = g, T, ) TS

Zy(Ty,) = (14)

Proof. We prove this theorem using an induction on m.

When m = 0, (1), resp. (2) is the Singularities, resp. Rationality, part of Theorem 1.1
for rank n-zeta non-abelian functions, by using the special uniformity of zetas, i.e. Theo-
rem 1.3.

Assume now that the assertions (1) and (2) in the theorem hold for n,,_;-derived Zeta
function /Z\Q'g;‘ )(Tnmf1 ). We prove (1) and (2) hold for n,,-derived Zeta function Z ("'”)(Tnm)

By the remark immediately after Lemma 2.3 and the inductive hypothesis, the poss1ble
singularities of ZQ‘R@;*‘)(T,,M) are all simple poles located at q,‘l’f?] where 0 < ¢ < n,,. Our
first task is to show that except for Ty, = ¢;° , = 1 and ¢;,", the derived zeta Z)((?ﬁ;])(Tnm—l)
is holomorphic at all 7y, = q;rfil for 1 < £ < n,, — 1. Indeed, this can be verified as what
we have done in the final section of [9]. To see this, set

—("m)(g-1) ), A (g-1) n
Rea:=Resy, o c]n,E ]) Z(T'Fq) (T, ) and R;:= Resy, gt qn,E ]) z" )(T,,m).

Then R, = Z’;’l | Req. Furthermore, recall that there is a natural symmetry (a, Ty,) <—
(np—a—1,qn,T, j) for the summands of Z ("m)(Tnm) as exposed in our proof of the func-
tional equation of Theorem 3.2 (see also the comments at the end of §2.2). Hence

Rt’,a = _Rn,,,—(,n,,,—a—l and Rf = S(,’ - Snm—f
where

-1
Se= Z Req
a=0

In addition, directly from Lemma 2.3(3), for 0 < a < £ — 1, we have

_ (—a A(ﬂ D¢, a-t A(n 1) t—a-1
R a —AX,Ft,;n,,,;nm—a(qnm,l) 'Z i (qnm 1) X]yyzn l—a—1 'AXJF ;nm:d—l(qnm,l )
_ t—a ’\(n -1) a—1
—AX,Fq;nm;nmfa(qnm_] XR;" - AXF n,,a— 1(6]nm , )
—(ny-1) (nm 1) ’\(nm—l)
(smce VXE,.l-a =Zy (qnm D VXF,.l-a- 1)

’ﬁ(nm—]) "(ﬂm 1)
Z Z XFy.ky * X]F ky
- p-1 ki+kis
1<s<p<ny, kiseonkp21 Hj=1 (1 - njm,lj

ky+..+kp=ny
ky+...+ks_1=a,ns=C—a

12



Consequently,
’ﬁ(n/n—l ) ’ﬁ(nm—l )
S, = XF, kl “ VX Rk,
= Z Z | = gt :
I<s<p<ng ki,..kp=1 H - nm,]

ki+..+k,=n,,
ki +..+ko=C

which is obviously symmetric under ¢ «— n,, — € by replacing k; by k,i_;. Therefore,
R[ = S{‘_Snm—€ =0.
We claim that with a similar argument, as to be seen in the next subsection, we have that

"(llm 1) "(llm 1)
XF k X]F ko,
Rn = —RO = E 1 P _ pr

kj+kji XFgiy13nm
1<s<psnn  ki,...kp=1 njzl( _Qnm,l )
ky+..+ky=ny

This proves (1) and (2) since the multiple pole at Tp,, = 0 with multiplicity g — 1 comes
directly and solely from the level (m — 1)-derived zeta function, by our inductive assump-
tion,

_ P (Ta, )
Z(nm—l)(T )= !
xF, L0 -
! (1 =T, )1 —¢n,, Tnm—l)Tﬁm,ll
and the relation Ty, = Ty . i

As a direct consequence of Theorems 2.1, 2.2 and 2.4, we have the following

Corollary 2.5. Let X be an integral regular projective curve of genus g on Fy. Then

°?
[SS]

Z:(nm)(s) A(nm)(Tnm) ( ly;)(f)( If:m(g ])+q51i,_])_€Tl(1i,_])_€) (nm)(g 1)))
14

Il
[=)

(15)
(Qnm -1 )Tn,,,ﬂX,qu n,

(1 - Tnm)(l - qn/” Tn/H)

for some n,,-derived alpha invariants { () (f)} and the beta invariant Bx g, of X/Fy.

Proof. By Theorem2.4, Z(n’”)(s) admits only two simple poles at s = 0, 1 with residue

BxF,m,» We conclude that ?“”")(T .) admits two simples at 7,, = 1 and ¢, . This gives
q n
the final term of (15). In add1t10n by the rationality and the singularities explained above

(llm)

(Toy)
for ?“’”)(s) we conclude that Z A(“’")(Tnm) should take the form MIW for a

certain polynomial P("'”)(Tnm) and a certain non-negative integer a, by noticing the fact

13



that in terms of s, # admits no singularity. Therefore, finally, by applying the functional

equation
L =5)=e(s)  orbetter  Zyr(———) = Z{¥(Ta,), (16)
" qn, Tn,
we easily conclude that a = g — 1 and the coeficients of P("’")(Tnm) should take the form
in (15).

With (15) established, what is left is to verify that Bxp ., is given by the closed
formula in Definition 2.1(2). This will be done in the following subsection, in particular,
in Theorem 2.6 below. |

2.4 n,-Derived beta invariants: Justification of the closed formula

By definition and the special uniformity of zetas,

Bxgn, = Rest, 212y (Tn,)
—~n,,_ 1) "(nm 1)

M v
") (g-1 Z k Vi, 1
:qgrj—)l(g )ReSTnm_l( p] 1 kjt+kji Ny S—Ny+a+k,
a1 kekp>0 oy (D =gn, ") (1 =g, )

ki+..+k,=n,—a

1 "';(nm 1) ’ﬁ(nm—l)
x{("'”')(n S =Ny +a) Z h Ly
m m (1 _ —n,,,s+nm—a+1+ll) r—1 L+l
1o >0 4, [T = ¢n, ")
L+..+l=a—1 ’
. "(nm 1) "(nm 1)"(nm 1) ’v‘<nm4)

.
mm) (g1 k k I
:q(z)(g 'Resz, i Z Z ] .
Ny np p- ki+kji1) r—1 L+l
a1 Kooy Ty >0 [T SO, [T =g, )

L+l kg kg =n,—1
L+ +l=a-1, ky+..+k,=n,—a

1 2
X (NS — Ny + a
1— —Ny S+, —a+1+1 1 "mS*"erLHkp X.Fq ( mn mn )
( 4n,,_, (1 - qn,,_, )
. ’v‘(nm 1) ";(nmfl)i;(nmf]) ";(nm—l)(l _ qll*'lrw
nm (g-1) A -V eV Nyt
=%(12)1g Resy, - Z Z —
m- m r+p 1 1 I+l,-+1
a=1 Kt oo Tl >0 [T d=gn, )
Al g 4o Ak p =~ 1
h+.Al=a=1, L+ Al p=ny—a
1 A
X " (NS — Ny + @
1 —Ny S+ —a+1+1 1 o =T+l 2 XFg (m " )
- qn,,-, - N1 )

14



—~Mn,1) —~n,_1)

vy

h-1 dj+d
didi>0 121 (0 = gn, ")

d]+...+d;,=nm—1
“AMy-1)

i _ di+d;, i
L s) (=g ) L0 s = (4 o+ dD)) L (s = + 1)

4,

+
—y S+dy+...+di +1 Ny S—(dy+...+dp-1)
) (I -, )

+
—nys+d;+1 mS—(d)+...+di_1)
- ‘In:,lY ) i=1 1- qg,,,j, ! (1 - 4n,,_,
—~Ny-1) —(n,-1)
Vd, . vdh
h—1 di+d;
a0 15 (=g, "™

di+...+dp=n,—1

) (g=1)
= ql(l"fi)l Res Top=1 (

divdiary gdivesdiag F0D s~ (dy + ..+ d)))

’\(nm— 1)

o XFE, (1 5) N ol (1 - Qnm,lm) “n,_, nSXF,
(A -gutlTy,) & (Gt Ty, = D1 = gttt
dy+ody e
Gt T, 0 (s = i + 1)
+ d1+..A+d,,,1T 1
q}lm,l n, — )
—n,1) o) 1)
3 (’lg”)(gfl) le e th Res {X,]Fq (nms)
=Y, 1] _ A Ty, =1 (1- di+1p )
a0 o (I =gn, ") 4, In,
d1+...+d;,:nm—l
divds, Ay +di e
It (1= gt ) - gt T, L (s = (dy + .+ d)
+
ditotdi ditotdi +1
i=1 (qnllntl ’ lTnm - 1)(1 - qnlrr:l " v Tnm)
dy 4oty e
G T, L (s = + 1)
+ dy+...+djp—q T. 1
(Qnm,l n, — 1)

Recall that, by Corollary 2.5, we have

Zoe(ns)
(B o "7, + do " Ta ") # 0l e~ DT D)~ T )1~ o Ti)
(1= To)(1 = g, , Ta,)TE
(qnmfl - 1)T§m g?l?l)
+ — ;
(1= To)(1 = Gn, , Tu TS
and

(0y-1)

(ql‘lmq - l)Tﬁm X,]Fq
(= To)(1 = g, Ta,)TE

— ﬂ(nm—l) _/‘;(nnkl)
=PxF, = VxFul

Resr, - 12}'?];";] )(nm s) = Resr, -1

15



In addition, note that both

/g;(n”' (s = 1y + 1)
m— m— 1 m— - -
Z agr (O T, "0 + g™ g T, )67

(q _ 1)(qﬁ7:,__1Tnm)gﬁ(nm l)

(nm 1)(g 1)(q:llt,;711 Tnm)g—l)) +

(1= g T, )1 = gn,, Gor ™ T, g™ T, )6

1

and
1
(a1 Ty, = 1)
admit no pole at T, = 1 unless d; + ...+ d,—; = 0 or equivalently, unless d;, = n,, — 1, in
which case
1 B 1
( ﬁ::l ) lTn,,, -1 Tn,,, -1
admits a simple pole at T, = 1 with residue 1. Hence, by the functional equation,
ple p i y q
R qgly:] - ITnmA(nm V(s = i + 1) 0 dp <ny,—1
esTl'lm_1 m—
qﬂ::] Fdi- lT — l) 2(11 1)(nm) dh =Ny — 1
Finally, since both
g“m s — (dy + ... +d)))
Za(nm 1)(5) ( di+..+dip )t’—(g—l) i (g—l)—m( ditetdi  y(g=1)~C
qnm 1 n, Qnm,l Qnm,l nm)
1 di+.. +d‘T g (nm 1)
(nm 1)(g 1)(qd1+ +d; Ty )g—l)) + (qnm 1 )(qﬂm 1 nm) B
n,- m X
1 (1 _ qﬁ::l +d,T )(1 o, lqg::l +d,Tnm)(qﬁii.ﬁrd,Tnm)g,l

and
1

dy+...+d; di+..+di+1
(Gn, ;""" Tn,, = DA = g, 77 T,

admit no pole at T, = 1 unless
di+...+d-1 =0

in which case,

1 1
(G T, = DA = g4 T ) (T, = DA = g T,

ny-1

16



. . . . 1
admits a simple pole with residue P hence

-1

_ di+d;, di+...+d;_ n,_ )
. I (=g - i T, L0 (s = (1 + .+ d)
8Ty, =1 Z dy+...+d; dy+..+di +1
i=1 qnlnfl lilTnm - 1)(1 - qn:nfl i Tnm)
0 d|+...+d,'_1>0
— di+d 1, _1)
= (=g Y em = (di+1)
h-1 -1 X.F
Zi:] ditdiy | +1 dl +...t di*l =0
=g, ")

di+...+di-;1 >0

di+diy | S0y p)
(I=gu O (di+1)
( L X% ) di+...+di_.1 =0

=)

_ di+djq+1
(A=gn, ")

provided i = 1. Therefore,

. FOe1) | 5{0-1) 20 (1, 5)
X.Fym, =Yqn,_ h1py _ ditdin Tnm=1(l _ghtr )
dy,....dp>0 i=1 ( l Qn,,,_] ) qnm—] n,

di+..+dp=ny—1
dy+...+dj_ —~m,_)
| Tﬂmgx,f;q (nps —ny, + 1)

R qnm—l
+ Resy. -1
ny di+..+dj-
(Qn,l,,_] " lTnm - 1)
di+d; di+..+d; Ny,
Bl (1 = gy g+ ‘TnI”Z}(’Fq')(nms —(di+...+d))
+Resr, -1 Z i+t (1 di+..+di+1p
i=1 qn,,_, n, — - qn,,_, “m)
—m,_1)  —n,) —m,,-1)
_ ("M)e-b Va, -V, Vi + Z“’”")(n)’ﬁ(nm")
=4, 1 dirdpny (] _ 4] XF, =1
diveeedy>0 (L=, ;") (=g, )
di+..+dp=ny,—1
- " dy+dy\ 7y, 1)
/‘;;I: 1) ";gll 1) (1 _anln—lz){x,]}?ql d +1) )
+ n
1 dit+d s di+dy+1
&0 .:1(1 — Qn:,,,l oy a- 4n,, )
di+..+dp=nyu—1
—yo)  Syer) ERL )]
_ (”é”)(g—l)( IR N
~4ny _ dj+d; di+1
h-1 1 1
dyndy>0 =1 (1 — qn{"_]!* ) (1 —{4n,_, )

di+...+dp=n,—1
=1 P m
dy Ny XF,

dj+dj+l) a- ‘Iﬁi:fdlﬂ))

—M,-1) ) A(“m—l)(dl +1) )

+ ’ﬁf‘:ﬂm—l) +

d|+l:a:2 dz ,,,,, d;,>0
di+...+dp=n,—(d,+1)

—Ny-1) o) —~m,,_1)
V1

7;2](1 - Qnm_l

_ ()E-D Va, Y, M)
L h-1 dj+djs 1— di+1 + Va,
a0 5 =g, ") (1= dh,7)

d1+...+dh:nm—l

17



_ e e m-1) -
n—1 —~My,-1) —~My-1) Z)((n]p 1 (a)’v‘(n 1)

. vy ¥, o
h—1 dj+dj (1 _ d2+a)
=2 dd>0 ;50— ¢qn, ") v,

d2+...+dh=nm—a

=My-1)  Myep)
B (”;”)(gfl) Z le ...de
M- k-1 di+djery’
>0 T (L= gm, )

d1+...+dk=n,,l

since, easily, we have

M) My-)  S0-1) T M) SMye) —(ny,-1)
vd() Vd] ...de _Z vdl ...de Vdo
k-1 dj+djs - k-1 djtdj _do+d)
dodidi>0 im0l = qm, ") do=l  dirdi>0 (I =qu, 7 (= gn, ")
do+d +...+d=ny, di+...+dy=n,—dy

Smyo)  Smyn)

n,
m v Y
- 2 :;m,m 2‘ Gl i !
- a k-1 di+ds _a+d,
a=1 dyod>0 o (=g, ") (1= ¢gn, )

di+..+dy=n,—a

—ny-1) ) —My-1)
St Ym_ eV Vi
—Vnm k—1 di+dji (1 _ l+n1)
di,...dr>0 ]':1(1 —{4n,,_, ) qn,,_;
| +eotdi=n,—1
n—1 —my,-1) =)
+ Z’v\(nmq) Z Va "V 1
a -1 di+d s —atniy°
) diid>0 T2 (L =g, " ) (I =dhn, )

di+...+dy=n,,—a

This then completes our proof of Theorem 2.4, and the following closed formula for the
n,,-derived beta invariants Sx ,.n,, and hence the remaining part of Corollary 2.5 about the
beta invariant.

Theorem 2.6. Let X be an integral regular projective curve of genus g over a finite field
F,. Then
";‘;1111;7.-1) B .";ﬁllklm-l)

_ 6D
Bz, = D T (17)

i1
>0 11211 = gn, ")
dy+...+dy=ny,,

2.5 Special counting miracle
By definition, the n,,-derived alpha and beta invariants
@XF,n,, (&) (t=0,...,g-1D and BX,]Fq;n,,,

determine the n,,-derived zeta function Z;"}?)(s) uniquely. In this subsection, we expose
g

an important relation among them. For this, we set

n, +1:=my,ny,....,n, +1) VYn, =g, ny,...,ny,).
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Theorem 2.7 (Special Counting Miracle). Let X be an integral regular projective curve
of genus g. Then

1 n(@=1) (-
g 0) = gtV aPs(0) - Br,n, (18)

Remark. In the classical setting, namely m = 0, this special counting miracle is conjec-
tured by the author in [5], and proved first for elliptic curves by Zagier and myself in [8],
and later established by Sugahara (see the appendix in [7]). An independent proof for the
classical can be found in [3] and [7] as well.

Proof. By Corollary 2.5, ax,n, (0) is the constant term of the polynomial

(1= 7a,)(1 = gn,Tn,) - Th, ' Z%)(Ta,)

This latest polynomial, by Definition 1.1 is given

(1= 70, )(1 = @, Tn,)
";(nm—l ) "(nm 1)

("m)(g 1 2 Z XF kit VXE,k, 1
- kj+k; —ny+a+k
p= 1 m p—1
el R | O D YO M

ki+..4+ky=n,—a

f%nm-l) f{nm_l)
1 VXF,b " VXE,,

_ng—at+l+l r—1 L+l
sl >0 (1 qn,,_, Tnm) H]':](l - Qnm,l )
L+..+l=a—1 ’

x Ty 1{("’” DN — 1y + @)

By examining the summand in the summation }; .. k>0 , particularly, the factor
ki+..+k,=n,—a

1 Tnm

N t+a+k, Nm+a+k, )

(I=gn,"" "Ta)  (Tn, =G,

we conclude that the non-zero contribution from the summands in the summation ;"
comes only from a = n,,. So we only need to value of the following rational function at

(1= 7, (1 = n, 7o)

"(nm 1) "(ﬂm 1)
1 X]F e X]F A

1+1 L+l
nizso =g\ To) T2 — g ™)

L+..+L=n,-1

><61( £ UTﬁ,,ll{ - ‘)(nmS)

Ny

Recall that

-2
(0, . D—€2(g—1)—C . 2(g—1
T 0w ) =( D afn (O(T, + a7 Taf V) + afn Ve - DT )

oq

~
il
(=}

(qnm - 1)T§,”BX,]F,,;nm_|
(1 - Tn,,, )(1 - qnm Tnm)
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Therefore,
"(nm 1 ) "(nm 1)

(e-1) VXF b+ VX Fyd,
@z m, (0) =g 1ol E OIS —11
niaso 21 —gu ™)

Lh+..+L=n,-1

(&= (n,,- (n,=D(g=1) _ (n,-
ql(lm)l (n ])(O)BX]F l"lm—l qI:?n 1 o (n l)(O)ﬁXF My lnm_l

(n

D=1 (-
=gn" Y (n l)(O)ﬁ)(]F -

as wanted. O

As commented at the end of §1.3, the factor a(“m l)(0) actually introduce an additional
("”“')(O)"'" factor to @xpg,m,(0). This in effect says that there is an unessential factor

(n""')(O)"""1 involved in By, m,-1-

2.6 Positivity conjecture and its application

The n,,-derived alpha and beta invariants ax g, ., (€), BxF,n, plays a key role in the theory

q>Nm
of the n,-derived zeta functions ¢, ("m)(s) for curves over finite fields. In this subsection,

we formulate the following

Conjecture 2.1 (Positivity of n,-derived alpha and beta invariants). Let X be an integral
regular projective curve of genus g over IF,. Then the n,-derived alpha and beta invariants

axgm, (0 (€=0,...,g-1) and  Bxgm, (19)
are always strictly positive.

The positivity in classical situation is rather trivial since we have the following geo-
metric interpretation of these non-abelian invariants:

(XE) _ 1

1
axp,n(d) = 28] FANE) and  Bxp,a(d) = ZS: FAuE) (20)

where & runs over all rank n semi-stable [F,-rational vector bundle of degree d.
Recall that, by Definition 2.1, for any 1 < n < n,,, the rational function Ax g, n,,:n(Th,,),
resp. the polynomial I'x g, .n,,:n(Th,,), of Ty, is defined by

"(ﬂm 1) "(Hm 1)

VXF, k, VXF,k, 1
Ax e myin(Tn,) = Z k & stk
1 _ j+1 m P _ 1
kiseerkp>0 H/ l nnH qn,,
ki+..+k,=n
"(nm 1) ’"(nm—l)
VXE, kit VXF,k, 1
- -1 ki+kis1\ ( Ky

Kt yeeskip>0 HJ':l (1 — 4, ) (Qnm,lTnm - 1)

ky+...+k,=n

20



resp.
Cxg,men(Tn,) = Axgm, a(Tn,) - [ ] (6, To, = 1).
=1

Our main result of this section is the following

Theorem 2.8. All the roots of the polynomial U'x 5, n(Tn,) are real. Furthermore, there
exists one and only one root of I'xF .n,.n(Th,) in each open interval

(nant,)  «k=12....n-1 Q1)

provided that the Positivity Conjecture at the level (im—1), i.e., Conjecture 2.1 on positivity
of the n,,_1-derived alpha and beta invariants, holds.

Proof. We begin with the following

Lemma 2.9. Let k be a (strictly) positive integer. Then Z(“m-‘)(k) and hence /V{XIF ‘k) are

(strictly) positive, provided that the Positivity Conjecture holds at the level (m — 1).

Proof. By Corollary 2.5,

k-1
(qnm_ - )q;,,, ,)ﬁX Ry

(. 1) k A(“’” (1 - k) =
{ ( ) § ( ( nm T l)(Qnm lqnm 1 1)

- k—1)(-(g—1)) (g-D)—t (k-1 H-¢ - k—1)(g—1
+( (n ‘)(f)(q;m ])( (- )+Clni 1) qglm l)((g ) )) (n ‘)(g 1)q£1m7])(g )))

EN
o

~
i}
[=}

Hence ¢ "’"q D(k) is strictly positive when k > 2 since each term involved is strictly positive
by the level (m — 1) positivity conjecture. Similarly,

{nm 1)(]) — Resan Z(nm 1)( Tn )= ,BX,F‘,;nm,l (22)
which is strictly positive by the level (m — 1) positivity conjecture. O

Indeed, by definition, we have,

1) 1) n

VXF, ki VXE,k, 1
rX,quMm,n(Tnm) = Z Kkt k, :
ko0 HJ | (1 —4qn,_, )(Clnm,,Tn,,, - 1) =1

"(nm 1) "‘(nmfl) n

v
VXFhi * VX, k
- okp (q(’ T, — 1)
k+kj+1 Ny m
ki, >0 H ( —qn, , ) =0,0%k,

21



This is a degree n — 1 polynomial in 7y, with real coeflicients. Now, fork = 1,2,...n,

"(nm 1) "(ﬂm 1) n

VXFyki *** VXF,k
—x _ P {—k
er]Fq;nmvn(ql'lm,l) = § : | | (Qnm,, - 1)
1 k ks
Kooy >0, kp=i H ( —qn, , ) -

k1+ +k,=n
—~My-1) ={n,-1) 1) n
Z ViFok VX ko VXA l_[ ( (-« _q
= : 4n - )
p-2 kjtkji kp—1+K -1
iy 0= [T (1 A, )= Gu, =1k,
ky+...+kp-1=n—«
’ﬁ(l‘luk]) B "‘;(HHH) =1 n
— (= 1)) XEq ki XEqkp-1 1 _ ( -k _ 1)
- X.Fy.x kj+k i [ I qnm 1 I,
iy >0 kp=r H (1 ~qn, ) Gn, | [:1 (=x+1
ky+..4kyo =n—«x
k—1 n
_ KeMy-1) -k
=1 Temnelah,) - [ [(1=ab%) T (a5 - 1)
t=1 (=k+1

We claim that this sign is simply (—1)*. Indeed, with this latest relation, an induction in
n can be applied to conclude that the sign of 'y g, i, (¢, ) i given by (=D, To see
this, first we note that

"(nm 1) ";(nm—l ) n

Mm@ = Y o [ (h,0-1)

ko k>0 1_[, 1(1— qn,, ) £=1.6¢k,
ki+..+ky=n

’v‘(nm-l ) ’v‘(nm-l )

( 1)n—l Z XEg kit "X Fykp
- p-1 kj+kji1
Ky pennkp>0 Hj:l (1 ~ 4,

Thus for 1 < a < n, the sign of T'x 5, n,, «(0), Which is the same as the sign of ['x g, n,,.a(¢n.. )
by the inductive hypothesis, is (—1)**!. Consequently, by the inductive hypothesis again,
we conclude that the sign of FX,Fq;nm,a(q;”‘H) is (=1)**!(=1)*"! = 1, since there are sign
changes at ¢,,* | foreachk = 1,2,...,a. Furthermore, since all a—1 roots of ['x g, .n,,.a(Th,,)
are located in the interval (g, a‘an ), then sign of I'y g . a(qn ) is the same as that of

FXF s a(q;i_l), namely, 1. Therefore, FX,Fq,nm,,,,K(qnm) 18 posmve, since by Lemma 2.9,

—~n,- 1)
VXF,«

Therefore there are changes of I'xg, i, .n(Th,) at g,*  fork = 1,2,...,n. This then com-
pletes the proof since I'x g, .n(Th,,) is a degree n — 1-polynomial in Ty, . ]

is (strictly) positive, then the sign of I'xp, n,.n(qn,_ ) is (=1)" as claimed above.

2.7 n,-derived Riemann hypothesis

The most surprising point for the n,,-derived zeta functions of curves over finite field is
that we have the following

22



Conjecture 2.2 (n,,-Derived Riemann Hypothesis). Let X be an integral regular projec-

tive curve of genus g over F,. Then the n,-derived zeta function ¢ ;"F?’)(s) satisfies the
g

()

XF, (s) lie on the central line R(s) = %

Riemann Hypothesis. That is, all zeros of

Obviously, this n,,-derived Riemann hypothesis is equivalent to the fact that all reci-
procity roots a)((“lg). , (1 <€ < 2g) of ny,-derived Zeta function Z M) (5) satisfies the condi-
Fy;
tion that

1
]a;"‘g;g =gl (1<(<2g). (23)

We will prove in the final section that the following

Theorem 2.10. Let X be an integral regular projective curve of genus g over F,. Then the

n,,-derived Riemann hypothesis holds for the n,,-derived zeta function { )(("rj”)(s), for any of
g

the following cases:

(1) g = 1. That is, X is an elliptic curve E over finite field. 2)n, =(2,2,...,2)

This indicates that, being a crucial zeta property, Riemann hypothesis is indeed quite
universal. It admits vast diversities, despite the fact that the pioneers and later fundamen-
talists believed that the Riemann hypothesis is coming from the multiplicative structure
of Euler products.

3 Multiplicative Structure of n,,-Derived Zeta Functions

Before we go further, let us expose the hidden multiplicative structure for our n,,-Derived
zeta Functions of curves.

3.1 Multiplicative structure of Artin zeta functions

We start with m = 0 and ng = 1. Then the associated 0-th (1)-derived zeta function for an
integral regular projective curve X of genus g over F, is simply the complete Artin zeta
function {x g, (s) of X over F;. As such, we have

1

G Vxr () = Lxr, (5) = Z N(D)™ = I—[ N

D>0 PeX
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where D runs over all effective divisors on X, and P runs through all closed points on X.
Furthermore, by applying the rationality and the functional equationwe get, with t = ¢~*,

¢ (1= axze)(1 = By, el)

) = g
g

=exp [Z log(1 — axp,.¢f) + log(1 — Bxp,.ct) — log(1 — 1) — log(1 — g1)
=1
oK

=exp [Z Ni ;)
k=1

where

g

Ne=g‘+1- Z (a'];(,]F[,;[ +ﬁ§.IFq:€)
=i

From this expression it is not difficult to arrive at the following

Lemma 3.1. The Hasse-Weil theorem on the rank one Riemann hypothesis is equivalent
to the condition that

|Nk—qk—1|SC\/; (Vk > 0)

In addition, it is not difficult to see that
Ni = #X(F,).

Furthermore, by applying the above multiplicative structure in terms of Euler product (for
details, see the next subsection), we conclude also that

Ni = #X(F ).

In fact, this relation is equivalent to the Euler product structure for Artin zeta functions.

3.2 Multiplicative structure of n,,-derived zeta functions

It is a natural question whether the multiplicative structure exists for the rank n non-
abelian zeta functions of curves over finite fields. Our first level answer is no in the sense
that there is no possible to obtain an Euler product structure for rank n zeta functions
when n > 2, since Euler product is commutative. However, this does prevent us to go
further to give a more refined studies on the multiplicative structure of the rank n, or more
generally, of the n,,-derived zeta functions for curves over finite fields. To put it plainly,
we claim that

(1) there are natural multiplicative structures for every n,-derived zeta functions of
curves over finite fields and
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(2) this multiplicative structure plays a key role in our proof on the n,,-derived Riemann

Hypothesis on n,,-derived zeta functions for curves over finite fields.
Indeed, by Theorems 2.1,2.2,2.4, we have
Z(ﬂm)(Tnm) _T(g l)me)(Tnm)

—L(nm) I—[[ 1(1 a’X]P Ny, ZTnm)(l ﬁX]F My, an,,,)
¢! Tnm)(l qn,, Tn,,,)

_L(nm) exp [Z N)((nﬁ) N ]l;m )

where
g
(n,,) k k
NyF,« qn +1- Z <aX,IFq;nm,f + aX,Fq;n,,l,[)‘
=1
In particular,
(n,,)
(n,)  XFgl (nm) Hg 1(1 a'X,Fq;nm,()(l _BX,]Fq;n,,l,t’)
XF XF
Fign, —1 Gn, — 1

=Resr,, -1Zy; ’")(Tnm) = Resy, - Z("’”)(Tnm)
=,3X,F¢, My, -

Hence, if we let {; is an [-th primitive root of unity, then

~

!
[0 =1 " ] 20 @ T

k=1 k=1

1(1 XF ny, é’ )(1 X]F nmd’Tlllm)
(1-T} . Gh, Th,)

( m)\[ ( m) l'l,.,,
=L )exp[ZN“lF o ]

_(L(ﬂm))l

since 1 1
[ Im
ko 1 _ myk _
k|:1|(1—{,z)—1 Z and k;(g) —{0 ! m

For the classical Artin zeta function, this then leads to the famous relation that

!
ZX,/IFq,(fl) = 1—[ Zys, (1)
k=1
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with the help of the Euler product and the relation
Ni(X)) = Ni(X).

However, except for the relation above (24), for derived zetas, there is no clearly state-
ment similar to that of the Artin zetas. Thus the best approximation of the multiplication
structure for the n,,-derived zeta function of curves over finite fields is based on the in-
ductive definition, the n,,-derived zeta functions are build up based on n,,_;-derived zeta
functions. In this way, we are lead to the O-th derived zeta functions whcih are nothing
but the rank n non-abelian zeta function ZX’FQ;H(S). Therefore, finally using the special
uniformity of zetas, we obtain a multiplication structure from that of Artin zetas.

As such, the hidden multiplication structure of n,,-derived zeta functions of curves
over finite fields are quite complicated and implicit. However, another form of multi-
plicative structure nm—derived zeta functions of curves over finite fields exists based on

(n,,)
the invariants NV XF I

3.3 Another multiplicative structure for n,,-derived zeta functions

Our next aim is to expose this new form of multiplicative structure for n,,-derived zeta
functions of curves over finite fields, motivated by [8].
To start with, introduce then the well-defined infinite product

. (n,,) 00

NxEym x"
B(nm)(x) = exp Z qm _’1; = Zbg:;jl;kxk' (25)
m=1 1DMm =
Th
en N g (NED) e
T Nzl P NG )
Wk B Gn, - DRQ@, - DRkl
k1+2k2+ =k
and

(nm) (ny,)

B (qnm NX]F m x™ (M) X"
(nm) =¢exp Z(‘]nm 1 | TP NXTP m Ty
B m=

8 (‘lnm (Gnm
=1 (1 ~ A, (’x)( ﬁxn: {,x)
(I =x)1 = gn,x)
Therefore, by clearing the common denominator and comparing coefficients of x", we
obtain the following

Theorem 3.2. With the same notation as above, for k > 0,

(1) 17 (ny) k=27 (0,) _ (Gny) (n,,)
qﬂmbX]F s~ (G, = )qnm bX]F &-1 1, bXF k=2 = Z AxEe bxr %
0<6,0<t'<2g
(+0=k

(ny,) (Gny) (ny,) (Gnyy) (n,)
_bX]F o T AXE bxn: ot T T AYE e DX E k2
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where we have set, fork = -2g,...,-2—-1,0

pom) - — Ik=1
XEk =10 k=-1,-2,...,-2g.

Proof. Indeed, by clearing up the common denominator on both sides of the relation
immediately before this theorem, we get

(1= (1 = gn,X) - BY2 (gn, ¥) = Bz (x)- ﬂ — ayex)(1 - By )

That is to say

(1 - (1~ g, ) Z bk, o = Z bz, kx"l_[ ae) x)(1 - B ).
k=0

=1

By Corollary 2.5, let now

P(q‘];z () & Gnn) L £ (g (4
(qn, ZAX ReX = l_[ (1- . (1 ~ By, )
g (0) =0 =1

((Zagg;;m R R ) EY AN )(1 = )1 = gn, %) + (qn, = DBYE 5

where

(Gn) 4 Gnw)  (Gny)  (Gny)
AX]F =D Z Xxr,0, YxF, 0, VX F it

1<l <..<x<L2g

which are given by

oty =1 k=0

agg%wl k=1

o) (1 + a0+ a0l 2<k<g-1
A;I?Fm ) = (n,, (—q 1))’3(qnm (1(q+ gn,,l)aé?‘fé” - qnmagf%': e k=g

n, Ay x o3 T dn, OxE k=g+1

ﬁ»ng+]a§?%m')2g—2 s qﬂm)qk ¢ g(qlfé")zg 2+l
o Lo g+2<k<2g-1
0, k=2g

Then
(1= (g, + Dx+qn, %) Y b2 gl & = Z Al b o
k=0 k=0
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Or equivalently,

(e 00

‘m m 1 ‘m. 2
Z b(n )kqnmx = (Gn, + 1 Z b(n )k‘lnm t 4n, Z b(n )kqnm“‘kJr
=0 =0
o 28
(q"m (nm) +(
Z Axre Oy, kxk
=0 =0
Therefore,
) 17,(m,) 27 (n,) _ (Gny) (n,,)
G, b X5k~ (dny — Ddn, by k- |+, bxF k2 = Z Axrre  bxze
0<£,0=0'<2g
C+0=k
_ 3, () (Gn) (n,) (Gnyy) (n,,)
=by g T AxE  DxEagor T T AxE 0 DX ke
as wanted. m]

Furthermore, from the same last relation immediately before this theorem, by replac-
ing x with x/q’flm, we get

B (g, /) ayz v, (1 - B/ ah,)

g Ay,
e |

Taking the product for k = 1,2, ..., co, we conclude then

g 1 - aﬁ?‘fg” e )(1 _ﬂgg%m G )

ng'") ﬁ ]—[ - - (26)

k=1 ¢=1 Qnmx)(l - Qnm x)

In particular, inserting x with ¢,,"’, we get

© 7wk + )

By (o) = | | ——
l_l (nm)(o)

k=1

To use this formula, following[8], we recall that, for a fixed positive integer n, the
“g-Pochhammer symbol” (x, g), is defined for x, g € C as

n—1
@ =] ]a-q"0 27)
m=0
This can be extended to
(X @ = l_[(l - q"x) (Vlgl < 1) (28)

m=0
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In our later use, g is supposed to be gp, , which is bigger than 1. Hence we will replace it
by its inverse. This then leads to a version of the so-called “quantum dilogarithm identity”

o0 k —rk .k

k,r>1 Qn,,, » QH,”

Consequently, we have

B = —— e L i) o ) (30)

F, (an'x: ) (*:dat).

Therefore, by [10], particularly, Proposition 2 at p.29, we have proved the following

Theorem 3.3. The number sequence {b( ) } defined in (25) is given by

XFyik
( (qu.:m )[)km ( E?,ﬁ:; L})’wf
1 (61 n,,> 4dn,, ) ke (CIn,,, »4n,, )]q,
3D

) (_ l)k(” +ko— q(k0§+l)+(kg,)
n, _ n,
bX Fyk —

-

k0,+,k0,7,kl+vkl—s»--kg+ ,kg,ZO (qn/n > qnm )k0+ (qnm 4 qnm )k07

koy +ko—+kyy ki etk kg =k

o~
I

In the next subsection, we will expose that, when X is an elliptic curve E, the invariants

bg"];), . are closed related to the beta invariants ,82‘?1_;)‘ .
Fy; JFy;

3.4 Relation between b("'”) Sk and ﬁg';)_ . for an elliptic curve E
q>»
In this subsection, using the techniques developed in [8], we will give an intrinsic relation
between b("'”) Sk and ,82"1;)‘ . When X restricts to an elliptic curve E over F,. The discussion
45
here will be used in the final subsection to prove the n,,-derived Riemann hypothesis for
elliptic curves over finite fields.

Recall that, for general X/F,,

(-1)r~ 1’\(nm l)’\(nm 1) A(nm D
(n,) ._ X]F k) X]P kz X]F kp

X’]Ffi T k] +k2 k2+k3 k,)—l+k,)
bhizt (g = D)@ = 1) (g™ - 1)
Ky ka4 k=

o

X n”‘)(s) so that the constant

Here we have replaced and will replace Z“”‘)(s) with

term of the polynomial P("m)(Tnm) becomes one. By the comment at the end of §1.3, we
see that this modification with constant factors is compatible with our discussion below
since the closed formula in Theorem 2.6 is compatible with such a replacement.
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According to k, = 1,...,n,, rewrite ,8%2 as a sum

Ny

(n,) _ (n;,)
XF, = Z'BX,F,,;K (2 1)
=1

where —My-1) (1) —my-r)
_ 1\ 150 Wy-1) -1
) D"V VX E ok T VXE

XFyit "~ +ky +ks Kp1+kp
ki Kooy 121Ky =C (Clnm_l —1)(%,,,_1 —1)"'(%,,,_1 —1)
ky+hy+etky=ny

1 = ny
_’V\(nm 1) fn=0
TUXF,C np—C PXFqgk
q — k:II m ISZSnm—l

where for simplicity, we have set

n, — €= (ng,na,...,ny — 1)

(1)
XF, it

,B%’;Z). Multiplying this formula by x"» and summing over all n,, > 0, we find that the
generating functions

This recursion in turn defines all of the numbers 3 (and hence also all of the numbers

(o)
(1) _ M) n,
by, () = BxF, .
1, =0
1y =y, i)

of the ,Bg?’}’;’,‘ z (observe that the sum here actually starts at n,, = ¢, so that
Fgs

b%;;‘{?(x) = 0(x) and bﬁ?%z;o(x) =1)

satisfy the identity

20 pPnt)(x)
—~ X.Fys
bR =W (1= )y | (€2 D (2
k=1 4n,_; —

From now on till the end of this subsection, we restrict ourselves to the case that X is
an elliptic curve E over F,. Since g = 1, the factor qﬁ;l = 1. So we may omit™in all the
discussions. For example,
1= a(nm) -5 _ —2s
A(nm)(s) — (nm)(s) — (nm)(o) . E,qunmq qn, Yn,,_,

a 33
EF, SEF, EF, d-gH1 - (33)
where
) _ ()  _ M) (n,,)
Agr, = 9gra = Yer TPEFR:

(nm)

With this, particular, by omitting the constant factor o EF,

ready to state the following

(0) at all levels, we are now
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Theorem 3.4. Let E be an integral regular elliptic curve over F,. Define the n,,-derived

Derichlet series
(ny,— 1) (n,) —ns
3E,JF Z IBEF 4n,._-

n,= (nm 1,1)

Then we have

(nm l>(S) 1_[ (nm;])(s_’_k).

Or equivalently,

M) _ pMn-1) _ p(ne1)
EF, ~ FEF;n EFgn

= bR V0, = @m0 (34)

Proof. Obviously, both side of (34) are polynomials of a("m Y Hence it suffices to verify

(34) for infinitely many special values of a("’" V) for fixed nm or the same for fixed n,,_;
and n. Motivated by [8], we take

agp = ar=q" v ¢ (ke Zs) (35)

Accordingly denote by ,8(“’") * and ﬁgl’];" g’k the specialization of ﬁ(n'”) and ﬁg’% ' z to this
gy

value of a( 1) = = a; and by b("”’) k(x) and p{"1) k(x) the corresponding generating series.

XF,il
Then (32) specnahzes to the 1dent1ty

0 b(nm l)k(x)

1),k —My-1).k L XIF P
bn (0 = Vg 1‘ZT =1 (36)
p=1 qnm T 1
where v™-D* denotes the specialization of v to a("m ) .= g using (33). In this
XFyil p P = Ak g :
way, if we can guess some other of numbers ,6’%"3;) ];,, say b(E'”I;),k[, whose generating function
Fy;

satisfy the same identity, then we automatically have
(n,).k_ “(ny).k ).k
ﬂE,]Fq(’ ﬂE]Fq(’ = bE]F S

The reason for looking at the special values (35) is that the relation (26) for this value
(nm—l)

of a = a; implies that the generating function B(n’”") (k > 0) is given by
e — 1- oo
(ny-1).k (- an{: 1rx)(1 B qﬁ: 1 Jx 1 - qnm 1
Bz =] H G)
= (] - qnm—]x)(l - qnmfl i=1 1- qnm 1
(in particular, it is a rational function of x) and also that the numbers vé"];i‘g’k are given by
Fy;
et (5Kt oy, Jesk
éﬂﬁ—};»k - D™ 4, @ny )eCny, Vo1 Gny Vit I<t<k
m 0 >k
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as one checks directly using Proposition 2 at p.29 of [10]. Here and the rest of the section,
we use the notation (x),, , ) for the g, ,-Pochhammer symbol

. 1 n=0
X, ym = .
@t TN A= (1 =gy ) (=g x) n> 1.

Note that (x)m,,_, ) is indeed the gy, ,-Pochhammer symbol, obtained from the g-Pochhammer
symbol by a simple replacement of ¢ with gy, ,. Hence the g, ,-Pochhammer symbol(x),, , »)
satisfies all standard properties for the g-Pochhammer symbols. For example, if we let

[ k } L (In, )1
F 1) (qnm—l )(nmfl ,V)(qnmfl )(nmfl k=r)

be a generalized g or better gy, ,-binomial coeflicient. Naturally, these gy, ,-binomial
coeflicients satisify the following two well-known gy, ,-versions of the binomial theorem

: o [k [k +r—1 |
Z(—l)rqni%] [ } X' = (x)(nm—l,k) and Z } "= -_—,
=0 R (W) prr U (X @y-1.4)

(38)

where k denotes an integer > 0.

Proposition 3.5. For k > 0 and € > 1, the generating function B(;]';’,‘g’k(x) is a rational
Fy;
function of x, equal to 0 if € > k and otherwise given by
£y my-1).¢
B K (x) = (1) (Gn, 0,1 048) Xy (x) (39)
XEy5l - (Gn,_,) ( ) 3 (M)
-1 )10y, (@, 1,6-1) Dk (%)
where Df{"’”")(x) is defined by the product expansion
k .
DY@ = [ |@h,. —»
j=1
and where Y,E"’”")’[(x) is the polynomial of degree k — € defined by
k=t 1y, ck=t-re1y [ fe k
Y]Enm-l),f(x) ::ZQI(I",Z_I)Jr( 2 )[ ] [k ' ] X
r=0 "o, I I
(40)

k
=Coeflicient of Z¥~¢ in ]_[ (1 + qf;mle)(l + qf;mlex)
j=1

Proof. First note that, easily, the equation of the two expressions in the last relation for
Y,E"’”")’g(x) follows from the first formula of (38).
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To prove this proposition, we take (39), with Y,E“’”’l)’((x) defined as 0 if £ > k, as the
definition of the power series B%;}k(x) forall £ > 1 and k£ > 0 and then prove that
these power series satisfy the identity (36). Inserting equations (37), (39) and the defining
formula (40) for Y, ,ﬁ"’”")’g(x) into (36), we conclude that after multiplying both sides by a

common factor that the identity to be proved is

(¢ k
o Y () = [ } D ()

(ny,-1)
k
(qnm—l )(nm—]»k+1) [k +p Y(n,,,,l),p(x) (=x)?
p -
(G0 Do) S LT ], G
(41)

But by a similar yet simpler partial fractions decomposition argument as the one we just
used above we conclude that Y. ,E"’”")’f(x) equals (qf,m?l + 1x)~! times the coefficient of Z*~¢

in the same product H’}:1 (1 —qf,"HZ)<1 —q{;"H xZ) as the one used in the original definition

(40) of Y, ,(cn'”") ’f(x), so that the left hand side of (41) can be written, using the first equation
of (38), as

k k—C
KE~(3) yy )y , ks j (| K ;
2 Y™ (x) = Coefficient of Z* in ]—1[(1 +qnmf]Z)z(;qn”i] cesl, )(xZ)“.
j= = m—1

As such, then, (41) follows immediately form the following lemma by replacing x by xZ,
multiplying both sides by H];=1 (1 +qn,, Z) and comparing the coefficients of Z* on both
sides.

Lemma 3.6. For fixed k > 0 and € > 1, define two power series 7—'1("’”")(x) and 7—'2("’"")()()

by
SILES (—x)P
FI™ D) =(=gn,, D) o
pzz; k+1 (My-1) Qn:r,fl -1
1) k i (sh+es| K
T (x) :=[ ] A+ =) g2/ g
) o s,
Then
(M) oy (Gn Y k1) ()
Fym(x) =~ Fi () 42)

(G0, 01,0 (@0 Dy k0)

Proof. First, from the second equation of (38), we conclude easily that the power series
Tﬂ("””‘)(x) and ?';"m")(x) satisfy the simple functional equation

(1+ gn,X)dh, T2 (qn, ) = (1 + g7 x) 7™ (x)
k+p —x

(=) = 1+x

(Dy-1)

=(=qn,_, X),_, k+1) Z
p=1
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and slightly complicated functional equation, by using telescoping series,

(1+ gn, %), 3™ (g, ) = (1 + gt )73 ()

k ( ¢ 1+qf,”lx] (e[ k C+s f—C-s 1) 8
= A |- ', = 1) = (e, " = 1)gm, " x) %’
[5 A e L+ ot s (nmfl)((n l ) (n ' )n ] )

k+t€
k} ( k)X ¢ k k-1 (1)ets
= 1-g,5 )— - 1—q7)+ 1-q, 20X
|:£ (nm_l) ( nml)1+x ( nml) ( nml)sz:(; €+s_l (nm_]) n,_|
k+{—1
k-1 CN+U(s+1) i1
- (1 - Qfl _ ) nmz, xs+
l ; (5w,
(Gn,, ), k+1) x

(Gn, )00y Dy, k-0) 1+ X

Together these implies (42), since it is easily seen that a power seroes ¥ (x) satisfying

(1+ qn, x)d5,  F(qn,.0) = (1+ 5! x)F (x)
for some integers k > 0 and £ > 1 must vanish identically. This proves the lemma. O

With the lemma established, as said earlier, we have completed our proof of the propo-
sition as well. O

We finally verify (26) using this proposition. For this it suffices to show that the
sum over £ > 1 of the rational functions (39) coincides with the right hand side of (37).
Combining (39) with the second part of the relations in (40) for Y,E"’”")’g(x) and the second
equality (38), we conclude

(n,_1) oo k
1 D" (x) 1),k -1
< ] ZBx,Fqgf () =Z(_x)
=

x1 ~4n,., 5

k+7¢

ket], M@

(1)

I, (1+4h,.,2)

=Coefficient of Z¥! in
(I+ xZ)(l + qf,:Ele)

But by comparing poles and residues (after making a partial fractions decomposition), we
see that

e (+an,z) T (-anx")  TT (1 -an ')
= + + Pra(2)
1+ xZ)(l + qﬁ:}le) (1 - qﬁ:}])(l + xZ) (l - q,’lffll)(l + q’,‘lf“}]xZ)

34



where Pi_»(Z) is a polynomial of degree < k — 2 in Z. It follows that

) k k k

M)k N (—x) k(k+1) J—k=1_—1
Z BX]F IZ () = TRV 1_[ 1 - qnm 1 + v, (l ~4n,, * )
=1 Dk (x) j=1 =1

k j
1- X
=—1+ | | q—'_'j"' =—1+ Bgfg")’k(x),
J=1 1_qﬂm71x !

O — 1, this completes

where, in the final equality, we have used the relation (37). Since B,
the proof that the sum of the function B("'“ ! é,(x) defined recursively by (36) coincides with

the right hand side of (26) and hence, by What we have been said, completes our proof of
the theorem. O

4 Zeros of n,,-Derived Zeta Functions

4.1 Riemann hypothesis for (ny, ny,...,n,_1,2)-derived zeta functions
In this subsection we prove the following

Theorem 4.1 ((2,2,...,2)-Derived Riemann Hypothesis). Let X be an integral regular
projective curve of genus g over F,. For each fixed (m+ 1)-tuple n,, = (ng,ny, ..., Ry-1,2)
of positive integers, the n,,-derived zeta function { ("'”)(Tnm) of X over F, satisfies the Rie-
mann hypothesis, provided that the Riemann hypothests for the n,,_i-derived zeta function
Z¢w(Tn,) holds.

In particular, all the (2,2, ...,2)-derived zeta function g“( 22 () of X over F, lie on the
line R(s) = %

Proof. We start with m = 0, then this theorem is proved by Yoshida. For details, please
refer to Theorem 2.2 of [7] and the related discussions.
To deal with general situation, from Definition 1.1(2), we have

"(Ilm 1) "(Ilm-l )

—n,) VXE ki VXEk 1 <nm D
o (o) =g5 >0 D) - M (2s - 1)
a=1 ky,..k,>0 Hf 1(1 - ('In,,, ]/+1) (1 - n:v,, 1 p)

ki+..+k,=1

l ’“(nm 1) ";(nmfl)

(nm D02 VXEli  VXF,

+ qnm 1 Z { ( S) Z —2s+1+[; l'+l/‘+l
A =dn, "I

J J
L0 J:l(l—%m,l )
L+..+=1

Hence ~o ) —o )
é‘nml(zs_]) gnml(zs)
v (Ta,) = dh, Ve a

~da.) (1 ~ g )
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By Theorem 4.1, we may write

5., — axg,n,.cTh,

2
—{qn,_, Tnm,l )

r(s) = an ()

Furthermore, by our condition on the zeros of (m — 1)-th derived zeta function

we have, forall 1 <€ < g,

(l - Tl‘lmf])(l —{qn,,_, Tnmfl)Tﬁr;}]

My )( S)

XF,

2
1 —axgm, 1 eTn, = 4n, Ty, ) = (1 - aXs]FqQHm—ls(’Tnnkl)(l _ﬂX:Fq;nmfls(Tnmfl)

and

bxF m, . = axFm, 0 and  laxpn, . = Van,,-

Therefore,

G @s -1

(Dy-1)
{xr

(29)

(Ty,) = 0 =

This is equivalent to,

Sy, )(ZS -1 Z)((}t{—l)(zs)

> XF,

T;' -1 (1—gn,Tn,)

or better,

8
H[:1 (1 — @XF iy, 1.t9n, Tnm)(l - IBX,F,,;nm_I,L’CIn,"_] Tn,,,)

+ =
I-q) (=g

(1 -¢n,Tn,)

(1 - qnmfl Tnm)(l - qnmfl qnm—l Tnm )q
TS, (1= exsym, Tl )(1 - Breym, o Tal)

=(Ty, = 1)

(¢=De-1

0y n,

n,;,

This latest condition is equivalent to

(1= Ta)(1 = gu, , TaDTaE ™"

g
£=1 (1 = OXFyny-r, 09, Tnm)(l = BXE 1,090, Tn,,,)

-1
(1 ~qn,, T“m )qgfnfl)

8
Hle (Tnm - a’X,]Fq;nm_],f)(Tnm - bX,]Fq;nm_|,f)

(Tnm - qnmfl )Tnm

To facilitate our ensuing discussion, now we recall the following elementary

(43)

(44)

(45)

(46)

Lemma 4.2 (Yoshida). Fix a real number q > 1. Let a, 8 € C and write ¢ = a + .
Assume that aff = q and that ¢ € R satisfies |c| < g + 1. Then for w € C, we have

>
w—al-lw=8l=|1-aw|-|l -Bw| {<

36

1
1

if
if

wl <1
[w| > 1.



The interested reader may find a proof of this lemma, together with a generalization
from Lemma 4.5 of [7].
Hence, by applying Lemma4.2 to w = g;! Ty, we get

8
=1 (Tnm - aX.Fq:nmf],é’)(Tnm - bX.]Fq;nmf],é’)

(T, — qn,,. )T,

g
=1 (1 — XX F 1.0, Tnm)(1 = BxE,m,1.t9n,., Tn,,,)

-1
(1 —Yqn,_, Tnnl)qgfnfl)

8
H[:] (qllmf] Tnm - aXan;nm—lsé])(qnmfl Tnm _IBX,F{,:HHHJ)

(1 = gn,, T, g Y

y <1 if lgn, Tn,l<1
> 1 if Ign, ,Tn,|> 1.

g -1 _ -1 _
=1 (‘1 ot T @y g, 1)(%%1 To,Bxg, m,r 1)

(1= gn,., T, )dh,")

y {< 1 it gn,  Tn|<1

> 1 if Ign, ,Tn,|> 1.

8
(=1 (Tn,,lax,Fq;nm_l,f - 1)(Tnmﬁx,1?q;nm_|,£ - 1)

(1= gn,, Tn,)db "

we it gn,  Tn|<1
> 1 it gn,  Ta|>1.

This leads to a contradiction, by comparing the first and the last expressions. Therefore,

the reciprocity roots of the n,,-derived zeta function 2;]112")(7‘11,”) lie neither in the region of
4

neither [Ty, gy,_,| < 1, nor in the region |Ty, gy, ,| > 1. Therefore, all reciprocity zeros of

the n,,-derived zeta function Z)(('?F) (Th,,) satisfy the condition
g

|aX,]Fq;nm,Z| = Vqn, Me=1,...,29).

This is exactly what we are wanted. O

4.2 n,-derived Riemann hypothesis for elliptic curves over finite fields
In this subsection, we prove the following

Theorem 4.3 (n,,-Derived Riemann Hypothesis for Elliptic Curves over Finite Fields).
Let E be an integral regular elliptic curve over F,. For each fixed (m + 1)-tuple n,, =
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(ng,ni,...,ny,) of positive integers, the n,,-derived zeta function { (""’)(Tnm) of E over F,
satisfies the Riemann hypothesis.

Proof. We use an induction in m. When m = 0, this is proved in [8] by Zagier and myself.
Assume that the n,,_;-derived zeta function g (1) (Ty,,_,) of E over F, satisfies the

Riemann hypothesis. We examine the case for the nm-derived zeta function ¢ ("’”)(Tnm)
using the techniques developed in [8]. This now becomes rather easy. Indeed, by d1rectly
applying Theorems 3.2 and 3.4 we have the following

Theorem 4.4. Let E be an integral regular elliptic curve over . For each fixed (m +
D)-tuple n,, = (ng,ny,...,n,) of positive integers, the n,,-derived beta invariants are
determined by the following recursion relations:

m (nm) m n (1) p(m)—1 m—1 (1,)—2
(qﬁmq - 1) (‘I:ln - qﬁm T 9%, l ) XF, (‘13”,4 - qﬂm—l) X.F, (47)
together with the initial conditions B("’” v = andﬁ(nm v =,

Corollary 4.5. We have
(-1 ,71)
XF, " @2 o+

(,-1,n—1) n/2
XF, n,,, ~ 1

(48)

Proof. we prove this corollary using an induction in 7.
(1) n = 1. Recall that, when n,, = 1, by Example 1.2, we have

20)(5) = 5 (s). (49)

This implies that, by the inductive hypothesis in terms of m,

o] <2V = 2 Vam - (50)

Furthermore, by (51),

2 (n-1,2) _ (-1 p(My-1,1)
(qnm,] - 1) )?]F : (qnm 1 +qn,, — a}?]F : ) £Fq] - (qnm—l - ql‘lm—l) -1 (51)
Hence
1< qn,,, 1 + qnm 1 -2 anmfl
qnm 1 1
m-1,2 n
g?]F v qnm T, _agl]F Y
ﬁ(nm WD Qnmfl -1
qnm 1 + qnm 1 + 2 anm 1 qnm 1
Qnml_l qnml_]
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(2) Inductively, assume that the assertions hold when n < k — 1, we want to verify the
assertion for n. Recall that, by Theorem 4.4, we have

n (Ny-1,n) _ ( n n-1 M-1)\ p(M—1,n—1) n—1 (Ny,-1,n—2)
(qnmq - 1) XEB, (qnmq *dn,., ~ Ap, ) X.F, - (qnmq - qmm) XF, (52)

Therefore, by the inductive hypothesis in n,

(Dy—-1,1) n n—1 _ (1) 1 (1,-1,n—2)
By, In,-, t 4n,., ~ 9xF, qu —an,., Bxz,

(,-1n-1) no_ noo_ (0-1,n—1)
Bxr, n,., — 1 .~ 1 By
n n—-1 _ (Myu_1) -1
>qnm4 tdn,, ~ Axp, _ Yn,.y ~ Yo
n n
qnmfl - 1 qnm—l - 1
(0y,-1)
G, TG0,y — axF,
= — > 1
qn,_, ~ 1

and, by the inductive hypothesis in n again,

(Ny,-1,17) —1)/2
XF, Gy, + 1
(0,,-1,n—1) (n=1/2 _ 1
X.F, Ny

n n-1 _  mu1)) _ ( n/2 2 _ ~1/2
<(qnm—l *n,., ~ AxF, ) (‘Inm-l + 1) _ R N e |

q:llm,] - l qg,,,,l - 1 qg'lnt})/z + 1
| K (n=D/2 _ 4
-1 n n—1 n,-
<—— 40, + @, 1) =2qn,_ —1=\qn_ — o) 75—
e LR e N
_ 2 1/2
1 2an - dn ) ams, — 1)
=T 2 <0
qnm—l - 1 qnmil + ]
as wanted. O

Now we are ready to verify the n,,-derived Riemann hypothesis for elliptic curve E
over F,. Indeed, by Theorem 2.7, the special counting miracle and Corollary 2.5, modulo

the constant factor agl%‘“)(O) as commented at the end of §2.5, we have
g

ﬁ(n‘m{_lvnm)
1- ((qnm + 1) - (‘lnm - 1) ﬁu:fill,nm—l) Tn, + qn, Tx%m
(1) — pm,—1) XEq
Z0(T,,) = B (53)

(1= 70.)(1 - u.Ta,)

By Corollary 4.5, the discriminant of the quadratic numerator is negative. Hence, by
Lemma 1.2, the n,,-derived Riemann hypothesis holds for elliptic curve E over F,. O
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We end this paper with the following comments. First, the Positivity Conjecture is
supported by what we call the asymptotic positivity claiming that when ¢ is sufficiently
large, all n,,-derived alpha and beta invariants are strictly positive. Secondly, to establish
the general n,,-derived Riemann hypothesis, it appears that the Positivity Conjecture plays
a central role. Thirdly, the construction of the n,,-zeta functions admits counterparts for
number fields and for L-functions. Finally, there is also a question on the relations among
various n,,-derived zeta zeros. All these will be discussed elsewhere in due courses.
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