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Abstract

This paper consists of three components. In the first, we give an adelic
interpretation of the classical extension class associated to extension of lo-
cally free sheaves on curves. Then, in the second, we use this construction
on adelic extension classes to write down explicitly adelic representors in
GL,(A) for Atiyah bundles I, on elliptic curves. All these works make
sense over any base fields. Finally, as an application, for m > 1, we con-
struct the global sections of I,,(m@) in local terms and apply it to obtain
rank » MDS codes based on the codes spaces Cr,»(D, I-(mQ)) introduced
in [6].

1 Locally Free Sheaves in Adelic Language

Let X be a integral, regular, projective curve of genus g over a finite field F,.
Denote by F' the field of rational functions of X, by A the adelic ring of F', and
by O the integer ring of A.

Let Mx , be the moduli stack of locally free sheaves of rank » on X. It is
well known that there is a natural identification among elements of M x , and
the adelic quotient GL, (F)\GL,(A)/GL,(0O):

¢: MX,’I‘ =~ GLT(F)\GLT(A)/GLT(O) (1)

Indeed, if £ is a rank r locally free sheaf on X, the fiber £, of £ over the generic
point 7 of X is an F-linear space of dimension r. Among its GL,.(F)-equivalence
class, fix an F-linear isomorphism

¢€:E, — F". (2)

Then there exists a dense open subset U of X such that ¢ induces a tribulation
of Eon U
&y E~OF. (3)
To go local, let = be a closed point of X, and denote its formal neighborhood
by Spec(O;), where O, is the z-adic completion of the local ring Ox ;. Denote
by ﬁwAthe fraction field of (335 Since X is separable, the natural inclusion
F — F, induces a morphism

~

Ty : Spec(0,) — X. (4)

Set &, := 7%€ the pull-back of £ on Spec(OD,). Then the fiber E, , of &, over
the generic point admits a natural F,-linear space of dimension r. Furthermore,



since Spec((/’)\m) is affine, for the rank r locally free sheaf gz, there exists a free
O,-module E7’ of rank r such that

~ —

E,~Ey and Ey®s F,=FE.,, (5)

x

where /EE denotes the locally free sheaf associated to E’. Therefore, induced
from the free O,-module structure on E,, there is a natural isomorphism

€t Boy=Ey ®p Fy~FL. (6)

On the other hand, induced from F — F\m there is a natural identification
E, ®r F, = E,,. Hence, induced from ¢ in (2) and the natural inclusion

F— ﬁz, there is a natural isomorphism
& : Evy=E,®p F~ F. (7)

Consequently, for the isomorphisms &, and ET in (6) and (7) respectively,
there exists a unique element g, € GL,(F,)/GL,(O,) such that the following
diagram is commutative

Ea{ ~ ~ Jﬁl ®)

T 9z or
F; ~ F;

In this way, we obtain an element (g.) € [],cx GL,(F,). Furthermore, this
element (g, ) belongs to GL,-(A). Indeed, by (2), for x € U,

Ey ~ O, (9)

This implies that, for such x, g, may be choosen to be the identical matrix
I. := diag(1,1,...,1). We denote the adelic class of (g,) constructed above by
ge for later use.

Conversely, for a class in GL,.(F)\GL,.(A)/GL,.(O), there exists a dense open
subset U of X such that g, are identity matrix for all € U. This yields an
trivial locally free sheaf Of‘?r on U. On the other hand, for a closed point x

of X \ U, the image ¢ 1((5§3T) is a full rank O,-module contained in ﬁ; since

gz € GLI(ﬁ%)7 and hence induces a locally free sheaf g;l(@?r) of rank r on

~

Spec(O,). All these gives the locally free sheaf £ ) of rank » on X by the
so-called fpqc-gluing using the components of (g, ). It is not difficult to see that
the adelic class gg, , coincides with (that of) (g.).

2 Extensions of Locally Free Sheaves in Adelic
Language
Over the curve X, let

E: 0=& — & —E =0 (10)



be a short exact sequence of locally free sheaves. For i = 1,2,3, denote by r;
the rank of &;, and denote by g; € GL,,(A) the adelic class associated to &;
introduced in §1. Our aim of this section is to write down g- in terms of g; and
g2 and, more importantly, the extension class associated to E.

2.1 Classical Approach

In this subsection, we give a classical description of extension. The main refer-
ences is [2].

Applying the functor Hompe,, (£3,-) to E leads to a long exact sequence of
sheaves

0—Homop, (&5,&1) > Homoe (€3, E2) = Homoe,, (€3, E3) i>Ext%9X (&3,&1). (11)

Following Grothendieck, the extension E, up to isomorphism, is uniquely de-
termined by the d-image of the identity element Idg, of Home, (€3,&3) in
EXt]@X (&3,&1). Being working over the curve X, we have

Exty  (€3,61) ~ Exty, (Ox, &) ® &) ~ HY(X, & ® &), (12)
where, for a locally free sheaf £, we denote its its dual sheaf by £V. Note that
Homo, (£3,&3) ~ Home, (Ox, & @ &) ~ HY(X, &) @ &), (13)
(11) is equivalent to the long exact sequence
0— HO(X, &Y ®E1) — HO(X, EY &) — HO (X, EY 0&3) > HY(X, EY ®&1). (14)
In addition, there are natural an isomorphism and a decomposition
EY ® & = Endoy (E3) ~ Ox ® EndY (), (15)

respectively. Here Endop, (€3) denotes the sheaf of endmorphisms of £ and
End) . (€3) denotes the sub-sheaf of Endp (€3) resulting from the so-called trace

zero endmorphisms. Furthermore, since H°(X, Snd%x (&3)) = 0, the morphism
d in (11) is equivalent to the induced morphism

§:HY(X,0x) — HY(X, & ® &), (16)

and the extension E, up to equivalence, is uniquely determined by 0(1), the
S-image of the unit element 1 of H°(X, Ox). Here, as usual, if

E : 0—>& — & —E —0 (17)
is another extension of & by &1, and there exists a commutative diagram

0 —»- & — & — & — 0

BN =

0 - & — & — & —= 0

then ¢ is called an equivalence between two extensions E and E’ of of £ by &;.
Normally, we denote an equivalence by ¢ : E ~ E’.



2.2 Locally Description

In this subsection, we give a more concrete local description of the boundary
map
5 HY X, 8 ® &) — HY(X, & ®@&). (19)

For this purpose, we first recall the adelic interpretation of H(X,&Y ® &1).
Denote by ge € GL,.(A) be an adelic element associated to a rank r locally free
sheaf £. Then

HY(X, & @ &) = A7 J(ATT8 (& @ &) + F1'7°), (20)

where
AT (53:/ ® 51)7 = {a e A" gey &, @ S Orlrs}. (21)

It is not difficult to see that this space is isomorphic to
! ~ ~ ~ ~
[T, Hompz, (B, Brin) / (Homg (B, BY)+Homp (s, Ery)). (22)

Here []' denotes the restrict product of Homz (Eg;zm, Elﬁzm) with respect to

Homg (Egz, Efm) Hence, we should find a natural morphism from Ende, (€3, ;)
to (22) which gives the boundary map (11) for the extension classes.

By applying Homo,, (€3, ), or the same £y ®, to the extension E, we obtain
a short exact sequence of locally free sheaves

0— Homox (53751) — Homox (53,52) — (‘:ndox (53,53) — 0, (23)

since the the functor Home, (€3,-) and £Y® are left and right exactness, re-
spectively. Furthermore, by applying the derived functor of I'(X,-) to (23), we
arrive at the long exact sequence (11), namely,

0— Homo (€3, &) — Homo (€3, ) — Homoy (€3, E3) S Exth  (E3,&1). (24)

To understand this boundary map, we next recall that how the boundary map
in the following well-known snake lemma is constructed.

Lemma 1 (Snake Lemma). Let R be a commutative ring. Assume that

0 — Ay — Aq — Az — 0
¢1l l¢2 l¢53 (25)
0 — By — By — B3 — 0

is a commutative diagram of R-modules with exact rows. Then, for the kernel
and cockerel of ¢;, there is a long exact sequence

0— Ker (¢ ) — Ker(¢o) — Ker(¢s) —— Coker(¢y) — Coker (o) — Coker(¢s) — 0.
In particular, the boundary mapping 6 is defined by
0: Ker(¢ps) — Coker(¢y) (26)
as = ¢a(az) € By mod ¢1(A),

where ay € Ay is a left of the element az € Az.!

LCertainly, & is we—defined. Indeed, since a3 € Ker(¢3) implies that ag has the zero image
in cKer(¢sz). This implies that the element ¢2(a2) of Coker(¢2) belongs to the sub-module
Coker(¢1).



To apply this lemma, we now consider the commutative diagram with exact
rows

0 0 0
L L l
0 — Homg (E5,, Ey,) — Homg (B3, Ey,) — Endgs (B3, >
0 — Homp (Esyy, Eray) — Homp (Esgy, Bren) — Endp (Bsen) — 0
-  Hom(E3,,F1,) — Hom(E3,,Fy,) — End(Ez,) — 0
| 1 !
0 0 0.

(27)
Here, for i =1, 2,3,

2,7

Hom(E; ,, E; ) == Hompz (Ei;mm,ﬁj;zm)/Hom@ (E EN )

Obviously, by (22), we have
!/ —_— _—
HIeXHom(Eg,w, E1,)/Homp(Es,, B ,) ~

! ~ ~ ! ~ ~
HmeXHomﬁw (Eg;z’"’ El’;z’n)/(HzexHom@x (E;zv E1~m) + HomF(ES,na El,n))
(28)
Accordingly, in the senate lemma, we set az to be the identity morphism
Id of Endg (E3,), by the Snake Lemma, we obtain an element x, = §(Id) in

Hom(Eg’x, Elym) Therefore, applying the natural quotient morphism
! —_— _— !/ —_— —_—
I,  Hom(Ese, Ere) — [ Hom(Ess, Eiy)/Homp(Esy, Ery) (29)

we obtain an element ([,]) € Extg (€3, 1), which is nothing but the extension
class for the extension E of & by &, by (28), (22), (20) and (12). This then
completes the proof of the following

Theorem 2. The natural bijections

Exty, (E3,&1) ~ HY(X, &Y ® &)

(I’J o~ o~ l
[LexHomg, (Bou, Brinn) [ (IlexHomg, (B5'y, BT,) + Homp(Es,y, i) )

such that

®(6(1d)) = ([/{I])zEX' (30)

Proof. Indeed, the commutative diagram of bijections are direct consequence of
(22), (20) and (12). And the relation (30) comes direct from the construction
of K. O

We end this section by an effective construction of the inverse map of ®.
Let s, = (s4,y) be be an element of Homp (Es;0,, E1,52,)-



To clarifying the structures involved, first we assume that s, is regular for
all but one closed point © € X. That is to say, there exists one and only one
closed point zg € X such that s, , are regular when x # z9. Choose an open
neighborhood Uy of zp in X such that s, , is regular over Uy \ {xo}. Shrinking
Uy if necessary, we may assume that Uy is affine. Denote its affine ring by Ay, .
Within the r; + r3-dimensional ﬁm—linear space El;ro,n @ E‘g;mo,n, construct an
Ay,-module generated by E77; & {0} and {(520,y(b),b) : b € Esu, }, where, for
i=1,3, By, = L'(Uo,&lu,) so that &y, ~ E/]}_U/O In other words, this new
Ay,-module contained in Ey,; , ® E3., ., is given by

ET Uy Xa0,50g.0 Brvy = {(a+sy(b),b) :a € ETy,, be Egy, }- (31)

Obviously, this Ay,-module is free and hence induces a locally free sheaf which
we denote by &1lu, Xzg,s,, ., €3lu,- That is,

gl‘UO >q$073m0,n 53|U0 = EIA:UO ><]a707510,77 Eé\:UD (32)
By our construction, obviously,

(i) &1lu, is a locally free Oy, sub-sheaf of & |y, X4, &s|u, such that

Szq,m
(E1lvy Xag,5my.0 Eslv) [ (E1luy) = Eslus- (33)
ii) Since s, is regular over U \ {p},
n

(E1ltn Xa0,500.0 E3lt0) |1y ooy = E1lte @ Eslus- (34)

In particular, it is possible to glue the locally free sheaves &1 v, Xuq,s,, ., €3lU,
on Up and (€1 @ E3)|xfzo3 o0 X N {z0} over Uy \ {xo}. Denote the resulting
locally sheaf by &1 x5, €. Obviously, there is a natural short exact sequence

Es, :0 =& — & x4, E3 — E3 — 0. (35)

Moreover, it is not too difficult to see that s, is equivalent to ([kz])zex associ-
ated to Es, constructed before Theorem 2.

Now we are ready to treat the general case. Assume that, as we may, there
exist closed points x1,...,x, such that

(1) forx & {x1,...,xn}, Sgn is reqular on X,
(2) for eachi=1,...,n, sy, n is reqular for all but one closed point x; € X

Similarly as in a single closed point case above, for each i, choose an affine open
neighborhood U; of z; in X such that U;NU; = 0 if i # j, and on each U;, we can
construct a locally free sheaf &1]y, X4, s, , &3lu,. Consequently, we may glue
these locally free sheaves on the U;’s with the free sheaf (1 @ &3)[x{z,,....2.}
on X ~ {z1,...,2,} on the overlaps U; \ {z;}. In this way, we obtain a locally
free sheaf &1 %, &3 of rank rq +r3 on X, which is an extension of &3 by £;. In
other words, we obtain a short exact sequence of locally free sheaves on X

E57710—>51 — & Nsn53—>53—>0. (36)

In addition, by our construction, it is not difficult to see that (s; ) is equivalent
to the element ([x.]) of E, constructed before Theorem2. In this we have
constructed the inverse of ®. In particular, if all the s, ,’s are regular, then s, ,,
is equivalent to zero and the associated extension is trivial.



2.3 Adeles and Locally Free Sheaf from Extension

As in (10), let
E:0=>& — & — & —0, (37)

be a short exact sequence of locally free sheaves on X. For each i = 1,2, 3, let
9i = (9;,) € GLy,(F)\GL,,(A)/GL;,(O) be the adelic elements associated to
&; introduced in § 1.

Proposition 3. Let ([r,]) € @,cx Homp (E3;$,U7E1;m,n)/HOm@m (B3, BSL)
be the extension class of Theorem 2 associated to the extension E. Then, the
adelic element gy = (g5 ,,) € GL,, (F)\GL;, (A)/GL,,(O) of the locally free sheaf

&y is given by

gl,w R

920 = Vo e X. (38)
0 93,%

)

Here Kk, are viewed as elements of the spaces My, xro(Fy) of 11 X rz-matrices
with entries in F,.

Proof. This is a direct consequence of the proof of Theorem 2, particularly, the
construction of ®~! at the end of the previous subsection. Indeed, by (31),
we have g, . is a upper triangular matrices with diagonal blocks g, , and g5 ,
and with x, as the right-upper block as stated in the proposition. Finally, the
reason that ([kz]) € My xrs (A) comes from the fact that the restrict product

H;exHAOHIﬁ&(ES;z,nyﬁl,;m,n) 0
;EXHom@w (E;I,ElNyz)+HomF(E37,7,E1,T,) !

H/ is used in the quotient space

3 Adelic Interpretations of Atiyah Bundles
3.1 Atiyah Bundles over Elliptic Curves

In the sequel, let X be an elliptic curve over F,. Then the vector bundle over X
are classified by Atiyah in [1] using the so-called indecomposable bundles. After
Mumford introduced the slope stability ([3]), it is know that an indecomposable
bundle over elliptic curves is semi-stable, and it is stable if and only if the rank
and the degree of the bundle is mutually prime. (For a proof, see e.g. Appendix
A of Tu [5].)

Theorem 4 (Atiyah[l]). The semi-stable bundles on an elliptic curve X/F, are
classified as follows.

(1) The bundle I, defined inductively as the unique non-trivial extension of
I,-1 by Ox. In particular, I} ~ I,.

(2) Assume that (r,d) = 1. Then for each line bundle L in the Picard group
Picd(X) on X, parametrizing degree d line bundles on X, there exists a
unique stable bundle W,.(d; L) of rank r and degree d such that

det W,.(A\) = A. (39)
In particular, for any line bundle Ly € Pich (X),

W, (d; L) @ Ly ~ W,.(d + rdy; L& LE"). (40)



(8) Every indecomposable semi-stable vector bundle on X is isomorphic to
I, @ Wy (N).

(4) Every semi-stable bundle on X of slope k/n for mutually prime k and n is
a direct sum of bundles Iy, @W,, (L) for suitable m’s and L’s in Pic®(X).
Here, as usual, the slope is defined as the degree divided by the rank (of
the bundle).

By (40), up to tensor by line bundles, it suffices to consider W,.(d; L) such
that 0 < d < r and (r,d) = 1.

In the sequel of the paper, we focus on the Atiyah bundles I, (r > 2). The
case for W,.(d; L) will be discussed elsewhere.

3.2 Adelic Expressions for of Atiyah Bundle I,

We first give a detailed description for the extension class associated to I,..

3.2.1 Cases of I; and I3

To start with, we consider I, constructed as the unique non-trivial extension of
Ox by Ox. Indeed, since H'(X,0% ® Ox) ~ H°(X,Ox)V ~ F,, there exists
one and only one non-trivial extension of Ox by Ox, determined by the image
of the identity morphism Id : Ox — Ox in .

~

/ ~ ~ ! ~
HmexHomﬁz (Fy, Fy)/ (HmeXHom@z(Oz, O,) + Homp(F, F)). (41)
Since this space is nothing but
A/(O +F) = H'(X,0x) ~ H'(X,0% © Ox)" ~ F,. (42)

to calculate the extension class [k;], it suffices to analyze the quotient space
A/(O + F). For this, we fix an F -rational point Q of X.

Lemma 5. The extension class in AJ(O + F) for Iy is given by

b e =Q
Q
K’I2,CD = (43)
0 T # Q.
Proof. For the rational point Q of X, by the vanishing of H'(X, Ox(Q)),
A=A(Q)+F. (44)

Therefore, by the first and the second isomorphism theorems

A/(O+F) =(AQ) + F)/(A0) + F) = AQ)/(A(0) + A@Q) N F)

N A(Q)/A(0) N A(Q)/A(0)
—(A(0) + A(Q) N F)/A0) T (A(0) + AQ) N F)/A0)  (45)
A(Q)/A(0)

(AQNE)/(A0)NF)
Here, in the last step above, we have used the fact that

H°(X,0x) =A0)NF =AQ)NF = H(X,0x(Q)).



Denote by mg the local parameter of the local field (ﬁ@, @Q) associated to Q.
We have

AQ)/A(0) = (5" 0g)/ Oq, (46)
since
A0) = H 0, and  A(Q) = H 0, x {ac€ Fo :moa € @Q}
zeX zeX~{Q}
Therefore,
A/(O+ F) = (15'0q)/(ng' ™ 0q) ~ (15'0q)/Qq ~ 15 Fy.  (47)
This verifies the assertion in the lemma. O

Corollary 6. An adelic representor g;, = (g;, ,) for the Atiyah bundle I in
GL2(F)\GL2(A)/GL2(O) may be chosen as

-1
(7)) o

- (48)

glz,x 1 0
<0 1) v @

Proof. This is a direct consequence of Proposition 3 and Lemma 5. O

We end this discussion on Iy by calculating H!(X, Iz). Induced from the
non- split exact sequence 0 — Ox — I — Ox — 0 is a long exact sequence of
cohomology groups

0 —-H"X,0x) = HY(X, L) — H°(X,0x)

49
— HY(X,0x) - HY(X,I,) - H'(X,0x) = 0 (49)

Since H°(X,0x) ~ H*(X, ;) ~ F, and H°(X,Ox) ~ H'(X,Ox), we have

HY(X,I,) ~ H'(X,0x) ~F,.

Next, we consider the Atiyah bundle I3. This is constructed as a non-trivial
extension
01, — I3 — Ox — 0. (50)

Since HY(X, I5) ~ Fy, I3 is the unique non-trivial extension of Ox by Is.

To determine the associated extension class r , we first write H Y(F,gy,) as
the quotient space A®/(A%(g;,)+F?). Since I>(Q) := I, ® Ox (Q) is semi-stable
of positive degree, H(F, g Iz(Q)) = {0} by the vanishing theorem for semi-stable
bundles. This implies that

A? = A%(gp, ) + F* (51)
Thus, similarly to (45), by the first and the second isomorphism theorem,
H'(F,g;,) :(AQ(!J]Q(Q)) +F?)/(A%(gr,) + F?)

~ A(g1,(9)) /A (91,) (52)
 (A2%(gp,q)) NF?)/(A2(gy,) N F?)




Lemma 7. We have

A%(g;,) = H 02 x {(fﬂélal +ag,a1) € ﬁé tay,as € @Q}
zeX~{Q}

AQ(QIQ(Q)) = H 65 X {(—7@1(11 +az,a1) € ﬁé tai,az € wél(aQ}
zeX~{Q}
AQ(QIQ) N F? :{(GQ,O) e F?: ag € Fq} ~F, x {0}
wél(—ﬁélal +as,a):
-1 ’
~ —TH a1 + Q3 = TQQ
Rlong)nF?=| JI @1xq 97 5 C I~

zeX~{Q} ay = 7mQay,
aj,ay € Ox

(53)

Proof. Our description of the space AQ(gI2 (Q)) is a direct consequence for the

space A2 (9z,) so it suffices to calculate the later. In addition, by Corollary 6
gy, is determined as

we have

~ = 1 7,5t a A
A= ] Oix{<a2,a1>eF5:(O 52)(;)60%}

zeX~{Q} (54)
_ A2 -1 2 . %)
= H @xx{(—ﬂQ ay +a2,a1)€FQ.a1,a2€(’)Q}
zeX~{Q}
since as +7r€21a1 € @Q implies that as = —ﬂélal +ah, where a, := as +7161a1 €

1) x. This proves the first two relations.
To prove the third, let (fa, f1) € A2 (97,) N F?2. Then

ord;(f1) >0 Ve e X
ord,(f2) >0 Ve e X N {Q} (55)
ord,(fa+ 75" f1) >0 2=Q

The first implies that fi € Fy, a constant function on X, since rational functions
on X admiting no poles are constant functions on X with values in F,. In
addition, if fi # 0, then by the third relation ordg(f2) = —1. This contrdicts
with the second relation, since there is no rational function on X which admits
a simple pole in the elliptic curve X and admits no other poles. That is to say,
fi = 0. Using this. for fo, by similar reason as above, we have f, € F,. This
verifies the third assertion in the lemma.

10



Finally, we treat th space AZ (@) N F2. By the first (and the second)
assertion(s), we have

A2(912(@) nF?

:( H @z X {(fwélal +ag,a1) € ﬁé tayp,ag € Wél(b\Q}) N F?
reX~{Q}
Ordl(fi) Z 0 vx 7& Qa
=1¢ (f2, 1) € F?: ordg(f1) = ordg(ng'ar) > —1, 3ar,az € Og

ordg(f2) = OrdQ(ﬂ'q_;l(—Wélm +az) > -2,
(56)
Using the same argument as above, we have f; € F,. This implies that

ay € WQ@Q and ordg(f2) > —1. (57)

Thus, fo € Fy, by the same argument as above. This proves the second equation

of the forth assertion in the lemma. In addition, wél(—ﬂélal + az) € Oq.
Hence, if we set a1 = mga) with a} € (5@, then

WéI@Q ) Wél(—ﬂélal +ag) = Wél(—all +ay). (58)

This proves the first equation of the forth assertion in the lemma. O

With this lemma, we may continue (52) to obtain

{(—w51a1+a27a1)6ﬁ5:a1,aQEﬂ'él(’D\Q}
{(—Trélal—&-az,al)eﬁé:al,aQE@Q}

HY(F, =
( gIz) 7761(*77é1a1 +a2’a1) .

-1 _ ’
52 —Tg a1 + a2 = mQay -
HIEX\{Q} z X . , n
a; = TQay,
ay,ay € Ox
{(a2,0)6F2:a2€]Fq}

(=75, Do ' Fy + (1,0)m, ' Fy,
wél(—ﬂélahal) :
HwEX\{Q} 02 x —wélal e moO0x N F?

a; = mgay,a; € Ox

(=75t Vg ' Fy + (1,0)m,'F, .
~ .l — ~ (mg, 0)F,.
(—mg Vg Fy
This then proves the first part of the following
Proposition 8. For the Atiyah bundle I3, we have

(1) The extension class of Ox by I associated to I3 is given by

75h,0 =
o 00 o=@ (60)
(0,00 =#Q.

11



(2) An adelic representative g;. = (gy, ) for the Atiyah bundle I3 in the
quotient space GL3(F)\GL3(A)/GL3(O) may be chosen as

1 7;t 0
0 1 wél r=0Q
0 0 1
13,0 = (61)
1 0 0
0O 1 0 T #Q
0 0 1

Proof. 1t suffices to prove the second part. However, this is a direct consequence
of the first part and Proposition 3. O

3.2.2 General Cases of I,

With the cases for Iy and I3 treated, we are now ready to treat I, for general
r, for which we have the following one of our main result of this paper.

Theorem 9. For the Atiyah bundle I, we have

(1) The extension class of Ox by I._1 associated to I. is given by

r—2
L~
(ﬂ'Q,O,...,O) r=0Q
HIT,:&: r—1 (62)
——
(0,0,...,0) z#Q.

(2) An adelic representative g; = (g; ) for the Atiyah bundle I. in the
quotient space GL,(F)\GL,(A)/GL,(O) may be chosen as

-1

1 T (11 ... 0 0
0 1 ) ... 0 0
0 O 1 ... 0 0

. r=0Q
-1
0 O 0 1 TQ
0 O 0 ... 0 1
gIT,x: (63)

00 ... 0 O

1 0 0 0

0 0 1 0 0

0 0 O 1 0

0 0 0 1

Proof. We prove this theorem by an induction on r. The cases for r = 2,3 are
verified in Lemma 5, Corrary 6 and Proposition 8.
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Assume now that the assertions in the theorem are verified for all I, when
k <r—1. Since I/ ~ I., we may equally use the exact sequence

0—-I,_1—1I —0Ox —0 (64)
This implies that
HY(X,0%®I, 1)~ HY(X,I,_1) ~ H*(X, I )V ~ H*(X,I,_,)Y =TF,, (65)

since HO(X, I,_1) ~ F, by our induction assumption. Thus it is not surprising
that there is one and only one non-trivial extension of Ox by I._;. To write
down explicitly the extension class (x; ,) associated to the extension (64),
similarly to the case of Iy and I3, we first write H'(X, I, ;) as

HY (X, T, 1) ~(A" g, @)+ F /(A" gy, )+ F?)
Ar_l(g[r,l(Q))/AT_l(QIT_l) (66)
(A=Y g, (@) NFr=Y)/(Ar=Y(g;, ) NEF"1)

~

Lemma 10. We have

Ar_l(glr,l)
r—1 N
B H 51 « (Z(—F@)z_(r_l)ai,...,—ﬂ'Qlal+a2,a1> eFé :
= z i=1
zeX~{Q}

ai,az,...,ar—1 € Og

AT gy, @)

= I o'«

zeX~{Q}

r—1
(Z(—ﬂQ)i_(r_l)ai, ol —Wélal + ao, a1> € Fé :

i=1

a1,02,...,0r,—1 € 7TE?1@Q
r—2
—

A Yg, )NF'={(a;-1,0,...,0) € "' 1 a,_y €F,} ~Fy x {0}72

Ar_l(gr,,.,l(Q)) nF—1

(—mg@)™""2,..., —7@1, 1)7r€21a1
+((=mg) "3, —775217 1, O)Tfélag
= +...+(7r{21,1,0...,0)7r51aT,2 mFT_leg_l
+(1,0...,0)m5 ap 1

a1,42,...,0r-2,0r-1 € Fq

(67)

Proof. Our description of the second space A’“*l(gjril(Q)) is a direct conse-
quence of the structure for the first space A”~!(g Ir—l)’ so it suffices to calculate
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the later. In addition, by our inductive assumption on g;  , we have

AQ(glz)
(ar_l, .,ag,al) c 65_1 :
1 x5yt 0 0 0
0 1 =5 0 0 Ap_1
= ] ortxqlo o 1 0 0 : -
zeX~{Q} Do T S ' € Oq
. . . . . . as
0 0 0 1 om5' | \ @
0 0 o ... 0 1
or—1 .
_ H @r—lx{ (ar—17~-~7a27a1)€FQA~}
zeX~{Q} (lr,1+7Té1(17«,2,...,(12+71'51(11,(11 € OQ
r—1
_ H @r—l « <Z;(—7TQ)1_(T_1)G,Z',...,—’R'Qlal+a2,a1> € Fé :
zeX~{Q} 1,2, ...,0.—1 € @Q
(68)

Indeed, if we set af = as + 776_21@1 S @Q, then ag = a} — ﬂélal. Similarly, for

3<j<r—1,if we set a;-_l =aj-1+ Wélaj,g S (5@, then

j—2

ajo1 =aj_y —mglay, = aj_y —mg! Z(‘WQV_(J_Q)CL;
=1

L ’ (69

=S ()
1

%

This completes our proof for the first relation and hence also for the first two
relations.
To prove the third, let (f,_1,..., f2, f1) € A%*(g;,) N F"~'. Then

ord,(f1) >0 Ve e X
ord,(f2) > 0 Ve e X~ {Q}
ordx(f2+7rélf1)20 r=0Q (70)
ord, (fr—1) >0 Vo e X N {Q}
ord, (fr—1 + Wélfr—Q) >0 z=@Q

The first implies that fi € Fy, a constant function on X, since rational functions
on X admitting no poles are constant functions on X with values in F,. In
addition, if f; # 0, then by the first in the second group relations, ordg(f2) =
—1. This contradicts with the second relation of this group, since there is no
rational function on X which admits a simple pole in the elliptic curve X and
admits no other poles. That is to say, fi = 0. Using this, with an induction
on k + 1. Then if f; € Fy but not zero, we have f admits a single simple pole
on X. This is impossible with the same argument as above. Hence f; = 0 and
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fi+1 € Fy. Therefore, fi = fo = ... = fr—o =0 and f,_1 € F,. This verifies
the third assertion in the lemma.
Finally, we treat th space Ar_l(gl7.71(Q)) N F™~1. By the first (and the
second) assertion(s), we have
Aril(glr_l(Q)) n Frfl
r—1
P Z(_WQ)if(rfl)ai,...,—Wélaq +a2,a1>e Fé -
= 1105 'x (i_l (F!

zeX~{Q} a1, g, Gp € 761@@

(fola"waafl) GFT_I:
Ordx(fi)ZO VI%Q, Viil,...,r—l

day,as,...,ar_1 € (5@
= ordg(f1) = ordQ(ﬂ'élal) > —1,
ordg(f2) = ordQ(ﬂél(fwélal +ag) > -2,

ordg(fr-1) = ordg(mg" (—7g ar—2 + ar_1) > —(r — 1)

(71)
Using the same argument as above, we have ordg(f1) = 0 and hence f; € F,.
This implies that

a; € WQ@Q and ordg(f2) > —1. (72)

Similarly, using f; with the same reason, we get fo € F,. With an induction,
the same reason implies that all f; € Fy(1 < ¢ <r —1). This proves the second
equation of the forth assertion in the lemma. To prove the first equation, instead
of using the same argument as above, we decompose the Q-factor subspace

r—1
(Z(T{‘Q)i(rl)ai, ey 77’(510,1 + as, (Zl) S Fé :

Of Aril(glrfl(Q)) as

i=1
a1,a2,...,0r-1 € Wélé\Q
(=mg)~"*2,..., —7617 1)7rggla1 + ((=mg)™ "3, ..., —7751, 1, O)ﬂ'élag
+.4 (75" L0 0 ar o + (1,0, 0)mg e
a1,0G2,...,0r-2,0,-1 € Og
(73)
Essentially with the same argument, by looking the last component wélal of
(—mg) "2, .., fwél, 1)7ré1a1, to have an element (f,_1,..., f2, f1) of F"~!

in the intersection, by working with poles and zeros of rational functions over
elliptic curves, we conclude that a; € m1gOx. Based on this, if we set a1 = mgal,
then, by looking at the part

((77TQ)7T+27 sty 771-(,_217 O)all + ((77TQ)7T+33 sty 77‘-(—217 ]-7 O)ﬂ-élaQ

for fa, we conclude that 71'651@2—‘1-66/1 € Og. This implies that ay = Tga} € 7o O0.

Thus inductively, for ar = mgaj, € WQ@Q, we have for the element

(—mg)™"*2,..., —wék, 0...,0)a) + ((—mg)~"*3,..., —7@’”1, 0..., 0)7rg21ak+1
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associated to fry1, we conclude that
g1 = mQaly, €100  V1<i<r—1. (74)
This proves the first equation of the forth assertion in the lemma. O

With this lemma, we now continue the calculation in (66) to obtain

HY(X,1,_,)
(=7Q) ™+, 15" Day (=mQ) ™+, —15" ay
+((=mg) "3, —7TQ1,1,0) +((=mg) T3, .. 5T 1.1,0)ay
ot (1 1,00 0y g / +o 4 (151 1,0. ., 0)a, g
+(1,0...,0)ar—1 : (1,0...,0)ar_1 :
N A1,02, .., Qpr_1 Eﬂ'él@Q A1,02,...,0;_1 G@Q
((_WQ>_T+2 c TG a1>
+((=7g) P, =gt 1,0)ay
ot (1 1,0 0)a, s ¢ /(R x {0}2)
+(1,0...,0)ar—1 :
a1,ag,...,ar_1 Gﬂéqu
(—mg)~" 12, .. LT ,1)7TQ
+((=mq) ", =gt 1,007
+. +(7TQ 1,00, 0)mg ,
+(1,0...,0 _
7T+2 ( -1 ) ( 1]Fq’0 O)
((=mq) . *WQ Dmg Q
+((=mg) "3, .., —’R'Q ,1,0)mg F
+.4 (7' 1,0, 0 'R
(75)
Therefore, & » is given as in the theorem.
This completes the proof of the Theorem. O

4 Elements in H'(F,g; (mQ))

4.1 Loca Conditions

To start with, we here give a very important property for global sections in

HO(F,g; (mQ)).
Since g; (mQ) is semi-stable of degree mr, by the Riemann-Roch theorem
and the vanishing theorem (for semi-stable bundles, we have

dimg, H(F, g; (mQ)) = mr. (76)

Let f = (f.,..., f1) € H(F, g7, (mQ)). Then, by definition, we have the follow-
ing characterizing condition

(97,(mQ))f" € O". (77)
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Hence by Theorem9, (f,,..., f1) satisfies the conditions

1L rgt 0 ... 0 0
0 1 @' ... 0 0 fr
0 0 1 ... 0 0 fro1 A
: €ery"0h =@
0 1 7! f
0 0 0 0 1
(78)
00 ... 00
0 0 0 0 fr
0 0 1 0 0 fr1 ~
. € O}, z#Q
000 ...10 fi
000 ... 0 1

That is to say, for ¢ # Q, f; € @x V1< j<r. And, at the point @, we have

fr = _Wéifrfl + Wémf; € _Wéifrfl + Wém(?\Q

fol = _T‘—EQ fr72 + ﬂ-émfrl*—l € _WQS fr72 + WémOQ

fs =—mgt(—mgtmg" L A wg" ) +mg™ (79)
= 1" ((=m@) 2 + (=7 f R

fo = —W§1f1 +7Témf§ € —W§1f1 —|—7TémOAQ

fi = Wémf{ € WémOQ

for some f/,..., f5, f1 € Og. We obtain

_ el o

fr =mn i (eme) T
— —2 PN ;

fr = mQ" Yin (mme) T

cee e (80)
fr =aQM(mmg A D)
i =mg" fi
Consequently,
(fmfrfl .. ~af27f1)
r—1 r—2
=my" (Z(-m)rﬂf{, D (=m@) L =g +f£,f{>
i=1 i=1
(81)

((—m@) ™+ (=) "2, =1t 1)
=TQ | 4 (—mg) T (mmg) TR, 1,0) fh
+(_7TQ717"'7070)f7/‘—1 +(170a70)f7/”

for some f/, fl_1,..., f3, f1 € Oq.
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4.2 Cases I, and I3

First we consider case for I5.
When m = —1, we have, at @,

(fo, f1) = 7o ((=mgh D+ (1,0)£5)  3f1, f5 € Oq (82)

This implies that f{ = mq f] € WQ@Q since otherwise f1 is regular at all z # Q
and admits a simple pole at (). This is impossible, since X is an elliptic curve.
Therefore,

(fo, fi) = ((=mg DA + (g 0)f3) = (mg ' (fs = F), f) = (F2, /1) (83)

for some f{, f} € @Q, since similarly, f5 — fi' € m1gO¢q. All these then complete
a proof of the following

Lemma 11. If (f1, f2) € H(F, Ir,(0))s we have

fi.f2€Fg  and  (fo, i) = (f2, /1) at @ (84)
for some |, f§ € F, C Og defined above.

Next, we treat the case m = 2 for I3(2Q). This time, we go back to the
condition R R
feny?0q  and  fo+wy'fiemy?Oq (85)

From the first, we see that ordg(f1) = 0, —2. Moreover,

(a) If ordg(f1) =0, ordg(f2) = 0,—2. This gives a three (=one+two) dimen-
sional subspace in H(F, 912(2Q))

(b) If ordg(fi) = —2, ordg(f2) = —3. This gives an one dimensional subspace
in HO(F, 91,20))

Now we are ready to study H(F, 9z, (mQ)) for general m by an induction

on m. Assume that when m = k, there is a basis of H'(F, gIz(kQ)) constructed
from the table

[ordg(fi)\ordg(f2) [ 0 [-2 [ ... [ -k+1 [ -k |-kl |
0 OO0 | ... O O] X
-2 OO0 ...] O |O| X
| 6lo| . 0 [0 X
-k XX ... X X! O

Table 1: Pole orders occurring for (fo, f1) € H°(F, 912(kQ))

induced from the relations
fie Wék@Q and fo+ Wélfl < ﬂék@Q. (86)

Here in the table above, O (resp. X), means that the values for (ordg(f1),ordg(f2))
occurs (resp. does not occur). In particular, the total dimension H°(F, 912(kQ))
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is given by (k — 1) +k + 1 = 2k. Then for (f2, f1) € H°(F, 912((k+1)Q))7 with

the same discussion, we see that
ordg(f1) =0,—-2,-3,
OrdQ(fQ) 207 _2a _37

Moreover, from Table 1, not only we should enlarge the table, but to recheck
the cases involved. It is not difficult to deduces the following

,—(k+1)

(k4 1), —(k+1)— 1. &7

[ordo(fi)\ordg(f2) [ O [ -2 ... [ k+1 ]| -k [-(k+1) | -(k+1)-1 |
0 oOj01... @) ) [0) X
-2 O[O0 | ... @) ) [0) X
-k+1 O[O0 | ... Q) ) Q) X
-k O|10{... O O (0] X
(k1) X [ X X | X| X )
Table 2: Pole orders occurring for (fs, f1) € HO(F, 912((k+1)Q))

In particular, the total dimension H(F, 912((k+1)Q)) is given by k+(k+1)+1 =
2(k+1).

With I done, next we check I5. The difference is that one more relation is
added, namely

fs+molfa € 1™ 0q. (88)
For this, with carefully case-by-case checking, we arrive at the following
[ordg(f2)\ordo(fs) [0 [-2 ... m+1 | -m [ -m-1 ] -m-2 |
0 OO0 ... @) O X X
-2 OO0 ... 0 O X X
-m+1 OO0 ... ) O X X
-m X | X| ... X X (0] X
-m-1 X | X X X X 0]

Table 3: Pole orders occurring for (f3, fa) of (f3, fa, f1) € H(F, gls(mQ))
In particular, this implies that the dimension of HO(F, gl3(mQ)) is given by
m—-1)+(m—-1)+m+1+1=3m. (89)

4.3 Case for I,

Continuing the discussion in the previous subsubsection, in the case for I, one
more condition should be added, namely

fatmglfs € 1y Oq. (90)

For this, with carefully case-by-case checking, we arrive at the following
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[ ordg(fs)\ordg(fs) [ 0 [-2 ] | m+1[-m[-m-1[-m2][-m3|
0 O] O 0] 0] X X X
-2 O] O 0] 0] X X X
-m+1 0|0 0] 0] X X X
-m X | X X X O X X
-m-1 X | X X X X (0] X
-m-2 X | X X X X X (0]

Table 4: Pole orders occurring for (fy, f3) of (f4,..., f1) € H(F, 91, (mQ))

In particular, this implies that the dimension of H°(F, g14(mQ)) is given by
m-=1+m-1)+(m-1)+m+1+1+1=4m. (91)

Therefore, for general I,., we should have

’ o(fr—1)\o(fr) H 0 ‘ -2 H ) ‘ -m-+1 ‘ -m ‘ -m-1 ‘ ‘ -m-(-2) ‘ -m- (r-1) ‘

0 O] O [0 [0 X X X

-2 OO (0] (0] X X X

mil |00 0 [0 X X X

-m X | X X X O X X

-m-1 X | X X X X X X

-m-2 X | X X X X X X
—m—('r—3) X | X X X X 0] X
(2) [ XX X | X ]| X X 9)

Table 5: Pole orders occurring for (f., fr_1) of (fs,..., f1) € H(F, gIT(mQ))

Here o(f) := ordg(f). In particular, this implies that the dimension of H%(F, 91,(m@))
is given by

r—1 r—1

—
m=-1)4+...4(m—-1)4+m+14+...+1=rm. (92)

5 Rank 7 Codes Cr(D, g; (mQ))

5.1 Some General Results

Let p1,p2,...,pn be mutually distinct F -rational points of X. Set D = p; +
p2 + ..., +p, be the associated divisor on X. The, for any m > 1, using the
constructions in [6], we obtain a rank r code Cr(D,g;,(mQ)), defined as the
linear space

{ (fa(p1), fr(p1); fo(p2), Fr(p2); - -5 fa(pn), f1(pn)) :} 0

(f2, f1) € HY(F, g1,(mQ))
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By Tablel, ordg(fi) > —m, ordg(f2) > —m — 1 and it is possible to have
ordg(fi) =—m and ordg(f2) =—-m—1 (94)
Now we are ready to state the next main theorem of this paper.

Proposition 12. Let (n,m) € Zzzo- Assume that p1,...,pp, @ are Fy-rational
points on the elliptic curve X with additive operation @ satisfy the following
conditions.

(1) @ is the zero element of the group (X (Fy),®),
(2) P1D...BDm B Pmt1 = Q

(3) Pm D@ Pm+1 € {pm+27 cee 7pn}

Set D = p1 + pa+ ...+ pn be the divisor on X associated to the p;’s. Then for
the D-balanced, semi-stable g;, (mQ) € GLa(A), the dimension and the minimal
distance of the rank r code space Cp,(D,g; (mQ)) are given by

kD7g12 (mQ) = 2m and dD>912 (mQ) = 2(71 — m) — 1, (95)
respectively. In particular, we have
kD.g,,(m@) T dD,g, (m@) =20 =1 ={p, (mq) — 1. (96)

Proof. We begin with the following well-known

Lemma 13. Let Zle n; P; be a divisor on the elliptic curve X with Q as its
zero element. Then

Z niP; = (f) (97)
i=1
for a certain rational function f if and only if
(1) >2i_ nideg(P;) =0, and
(2) @i [l P = Q.

n

——
Here, for a closed point P € X and an integer n, we write [n|P for P& ... & P.

Consequently, by the condition (1) and (3) in the theorem, it is possible to
choose an element f; € F' such that

(fr0) =p1+p2+...+ (Pm © Pms1) — MQ. (98)

Similar, by the condition (1) and (2) in the theorem, it is possible to choose an
element fs € F such that

(f270) =p1+p2+...+DPm —|—pm+1 — (m + 1)Q (99)

Obviously,
(f20f10) € H(F, g;, (mQ)). (100)
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Therefore,

Z dord,, (f;)>1 = M+ (m+1) =2m + L. (101)

ij=1

On the other hand, by Table 1, we have

n,2
max{ Z 5ordpi(fj)21 i (fo, f1) € HO(F,gI2(mQ))} <m+(m+1)=2m+1

ij=1
(102)
Therefore,
n,2
max { " Gowa, (215 (f2. 1) € HO(F,g5,(mQ)) } =2m+1. (103)

i,j=1

Hence, by the fact that the length of the code Cr,(D,g; (mQ)) is nr, from
Lemma 17 of [6], we conclude that the minimal distance of Cr.(D, g; (m@)) is
given by

n,2

dD,gI2(mQ) =2n — max{ Z 60rdpi(fj)21 : (f27f1) € Ho(Fu gIz(mQ>)}

i,5=1

=2n—(2m+1)=2(n—m)—1

(104)

Next, we calculate the dimension kD’gI (m@) of our rank 2 codes. Note that
2
deg(g, (m@Q — D)) = 2(m — n) < 0, by the vanishing theorem,

H°(F,g1,(mQ — D)) = {0}. (105)
This implies that
kp.g, m@) = h°(F,g1,(mQ)) — h°(F, g1,(mQ — D)) = 2m — 0 = 2m, (106)
Therefore, by (115) and (106),
kD»gzz(mQ) + dD7912 m@) = (2(n —m) — 1) +2m = 2n — 1. (107)
This completes the our proof. O

With similar arguments, we have the following

Proposition 14. Let (n,m) € Z220. Assume that p1,...,pn, @ are Fg-rational
points on the elliptic curve X with additive operation & satisfy the following
conditions.

(1) Q is the zero element of the group (X (F,),®),
(2) 1 ® ... D Pm D Pmt1 B Pmtz2 = Q

(3) P ® Pm+1 ® Prmt2, Pmt1 D Pmt2 € {Pm+43,---Pn}
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Set D = p1 +pa+ ...+ py be the divisor on X associated to the p;’s. Then for
the D-balanced, semi-stable g;,(mQ) € GL3(A), the dimension and the minimal
distance of the rank 3 code space Cr (D, g; (mQ)) are given by

kD,g,3 (mQ) = 3m and degzg(mQ) =3(n—m) -3, (108)
respectively. In particular, we have
kp.g, (mQ) T dD.g, (m@) =31 —=3="{pg, (m@) =3 (109)
More generally, we have the following

Theorem 15. Let (n,r,m) € 2320 satisfying n > m + 2r — 2. Assume that
Dis---,DPn, @ are Fy-rational points on the elliptic curve X with additive oper-
ation & satisfy the following conditions.

(1) Q is the zero element of the group (X (F,),®),
(2) pP1D...Dpm @pm+1@---@pm+r—l :Q

(3) PmBPm+1DP- - - BPm+r—2BPmtr—15-- - Pmtr—2BPm+r—1 € {pm+7"a ce 7pn}

Set D =p1 +p2+ ...+ py be the divisor on X associated to the p;’s. Then for
the D-balanced, semi-stable g; (mQ) € GL,.(A), the dimension and the minimal
distance of the rank r code space Cp,(D,g; (mQ)) are given by

r(r—1
kp.g, mgy=rm  and  dpg (mq)=r(n—m)— % (110)
respectively. In particular, we have
r(r—1) r(r—1)
kD,gzr(mQ) + dD7gIT (mQ) = TN — = ép,gh (mQ) — 5 (111)

5.2 MDS Codes Cr(D,g;,(mQ))

The previous subsection gives some general results for Cr(D,g; (m@Q)). It is
then a natural question when Cr(D, g; (mQ)) becomes MDS. To simplify our
discussions, we assume r = 2.

By definition, for MDS codes Cr(D, g;,(mQ)),
kp.g,,m@) +dD.g, (m@) = €p.g, (me) + 1. (112)
On the other hand, by the discussion in §5.1,
kp.g, (m@) = 2m and £D7g12 (mQ) = 2n. (113)
Hence, for MDS codes,
dp.g, (mq) =2(n —m) +1. (114)
Recall that, by Lemma 17 of [6],
n,2
dp g, (m@) =20 — maX{ > Gordy,(1)21 ¢ (f2, f1) € H(F.gp, (mQ))}

4,J=1

(115)
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All these imply that, for MDS codes Cr(D, g7, (mQ)),
n,2
ax{ 3" Gora,, 215 (f2 1) € HO(F, g5, (mQ)) b =2m 1. (116)
i,j=1

Our aim in this subsection is to find a global section (fa, f1) € H°(F, g;,(mQ))
such that

> bora,z1(fi)=m—1 and Y bora, >1(f2) = m. (117)
=1 =1

Recall that, from the discussion in §5.1, for (fa, f1) € H°(F, glz(mQ)),
ordg(fi) > —m and ordg(f2) > —(m+1). (118)
and there is only one Fy-subspace (f20, f1,0)F, of H(F, glz(mQ)) such that
ordg(fi) = —m and ordg(f2) = —(m +1). (119)

For example, if the following conditions are satisfied, the corresponding codes
Cr(D, gr,(mQ)) is MDS.

(0) @ is the zero moment of the elliptic curve X/F,,

(1) (f1) =p1+... 4 Pm—2+ 2Pm-1 — MQ,

2) (f2)=p1+.. 4Pt +2pm — (M +1)Q,

(3) Pm-1= [2]pm,

(4) PLEp1®... CPu—2®2pm-1=p1OP1D...OPm—2OPm—1® [2]pm = Q.

Obviously, if (3) and (4) are satisfied, then so is (1) and (2) by lemma13.
For example, if X (F;) contains a cyclic subgroup of order 4 generated by pj,,
then (3) and (4) are satisfied by taking p1, ..., pm—2o satisfying

P1LD.. . Bpm—2=0Q. (120)

Motivated by this, we may also take any cyclic factor of X/F, generated by
Pm, then assume that p,,, [01]pm = Pm—1, [@2]Pm; = Pm—2. ... to obtain rank r
MDS codes Cr(D, g; (mQ)). In any cases, there are many many ways to obtain
MDS codes using Cr(D, g; (mQ)).
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