Murmurations and Sato-Tate Conjectures for High Rank Zetas of Elliptic Curves

 $\begin{array}{c} Lin~WENG\\ (on~a~joint~work~w/~Zhan~SHI) \end{array}$

Kyushu University

Murmurations in Arithmetic Geometry and Related Topics Simons Center in Stony Brook November 13, 2024

- Non-Abelian Zetas
 - Stability
 - Rank n Zeta
 - Zeta Facts
 - RH
 - Special Uniformity of Zetas
- ${f 2}$ Rank n Murmurations and Sato-Tate of ${\Bbb E}/{\Bbb Q}$
 - Rank n Zeta of E/\mathbb{F}_q
 - Murmuration and Sato-Tate Conjecture in rank n zetas for elliptic curves \mathbb{E}/\mathbb{Q}
 - Secondary Structures of Distributions of Rank n Zeta Zeros
- Proof of Theorem
 - Structures of α_n and β_n 's
 - Asymptotic Behaviors

Murmuration at Kanmon Straits

Figure: Kanmon Straits: Murmuration

Stability

- X: (conn. reg. proj.) curve of genus g over \mathbb{F}_q
- \mathcal{E} : rank n vec. bundle over X/\mathbb{F}_q
- det \mathcal{E} : determinant line bundle on X/\mathbb{F}_q
- $s \not\equiv 0$: non-zero rational section of det \mathcal{E}
- (s) = zeros poles = $\sum_{k} a_k p_k$
- $deg(\mathcal{E}) := deg(det \mathcal{E}) = \sum_k a_k deg(p_k)$: $degree \text{ of } \mathcal{E}$
- $\mu(\mathcal{E}) := \frac{\deg(\mathcal{E})}{n}$: Mumford's μ -slope of \mathcal{E}
- \mathcal{E} is called (Mumford) semi-stable if \forall subbundle \mathcal{E}' of \mathcal{E}

$$\mu(\mathcal{E}') \leq \mu(\mathcal{E})$$

Rank n Zetas

Definition (Non-Abelian Zeta: Weng)

Fixed $n \in \mathbb{Z}_{\geq 1}$. For a conn. reg. proj. curve X/F_q , define its rank n non-abelian zeta function $\widehat{\zeta}_{X/\mathbb{F}_q,n}(s)$ by

$$\widehat{\zeta}_{X/\mathbb{F}_q,n}(s) := \sum_{\mathcal{E}} \frac{q^{h^0(X,\mathcal{E})} - 1}{\# \mathrm{Aut}(\mathcal{E})} (q^{-s})^{\chi(X,\mathcal{E})}, \quad \forall \quad \Re(s) > 1$$

where \mathcal{E} : rank n semi-stable vec. bdls of degrees $\in \mathbb{Z}_{\geq 0}$ n

Example (Naturality in n = 1)

$$\widehat{\zeta}_{X/\mathbb{F}_q,1}(s) = \widehat{\zeta}_{X/\mathbb{F}_q}(s) := \left(q^{-s}\right)^{-(g-1)} \cdot \zeta_{X/\mathbb{F}_q}(s)$$

w/
$$\zeta_{X/\mathbb{F}_q}(s) := \sum_{D>0} \frac{1}{N(D)^s}$$
, Artin zeta of X/\mathbb{F}_q

Zeta Facts

Theorem (Zeta Facts: Weng)

 $\widehat{\zeta}_{X/\mathbb{F}_q,n}(s)$ satisfies

(1) Rationality: \exists deg 2g polynomial $P_{X/\mathbb{F}_{q},n}(T) \in \mathbb{Q}[T]$ s.t.

$$\widehat{\zeta}_{X/\mathbb{F}_q,n}(s) =: \widehat{Z}_{X/\mathbb{F}_q,n}(T) = \frac{P_{X/\mathbb{F}_q,n}(T)}{(1-T)(1-QT)}$$

$$w/t := q^{-s}, T := t^n \text{ and } Q = q^n$$

- (2) Functional Equation: $\widehat{\zeta}_{X/\mathbb{F}_q,n}(1-s) = \widehat{\zeta}_{X/\mathbb{F}_q,n}(s)$
- (3) Residue in Geometry: $\operatorname{Res}_{s=1}\widehat{\zeta}_{X/\mathbb{F}_q,n}(s) = \beta_{X/\mathbb{F}_q,n}(0)$ w/ α and β invariants in rank n degree d of X/\mathbb{F}_q :

$$\alpha_{X/\mathbb{F}_q,\mathbf{n}}(\mathbf{d}) := \sum_{\mathcal{E}} \frac{q^{\mathbf{h}^0(X,\mathcal{E})} - 1}{\#\mathrm{Aut}(\mathcal{E})}, \quad \beta_{X/\mathbb{F}_q,\mathbf{n}}(\mathbf{d}) := \sum_{\mathcal{E}} \frac{1}{\#\mathrm{Aut}(\mathcal{E})}$$

Riemann Hypothesis

$$\widehat{\zeta}_{X/\mathbb{F}_q,n}(s) = 0 \Longrightarrow \Re(s) = \frac{1}{2}.$$

This is equivalent to

$$P_{X/\mathbb{F}_q,n}(T) \in \mathbb{Q}[T]$$
 admits no real zeros.

Theorem (Current State)

The RH holds when

- (i) n = 1: Classical, due to Hasse-Weil
- (ii) X = E elliptic curve: Weng-Zagier
- (iii) n = 2: H. Yoshida,
- (iv) n = 3: Weng

Number field analogue established in a weak form for $F = \mathbb{Q}$, $n \ge 2$ by Lagrias-Suzuki (n=2), Suzuki (n=3), Ki (n=4,5), and in general, by myself based on Ki-Komori-Suzuki.

Special Uniformity of Zetas

Set

$$\widehat{\nu}_k := \begin{cases} \widehat{\zeta}_{X/\mathbb{F}_q}^*(1) & k = 1 \\ \widehat{\zeta}_{X/\mathbb{F}_q}(k) \cdot \widehat{\nu}_{k-1} & k \geq 2 \end{cases}$$

and

$$B_k(x) := \sum_{p=1}^k \sum_{\substack{k_1, \dots, k_p > 0 \\ k_1 + \dots + k_p = k}} \frac{\widehat{\nu}_{k_1} \cdots \widehat{\nu}_{k_p}}{(1 - q^{k_1 + k_2}) \cdots (1 - q^{k_{p-1} + k_p})} \cdot \frac{1}{1 - q^{k_p} x}$$

Theorem (Special Uniformity: Mozgovoy-Reineke, Weng-Zagier)

We have, for $(G, P) = (SL_n, P_{n-1,1}),$

$$\begin{split} \widehat{\zeta}_{X/\mathbb{F}_q,n}(s) = & \widehat{\zeta}_{X/\mathbb{F}_q}^{\operatorname{SL}_n}(s) := \widehat{\zeta}_{X/\mathbb{F}_q}^{(G,P)}(s) \\ = & q^{\binom{n}{2}(g-1)} \sum_{k=0}^{n-1} B_k(q^{ns-k}) B_{n-k-1}(q^{k+1-ns}) \widehat{\zeta}_{X/\mathbb{F}_q}(ns-k). \end{split}$$

In particular, for X = E an elliptic curve, for simplicity, set

$$\alpha_n = \alpha_{E/F_q,n}(0) \qquad \text{and} \qquad \beta_n = \beta_{E/\mathbb{F}_q,n}(0).$$

Then

$$\widehat{\zeta}_{E/\mathbb{F}_q,n}(s) = \alpha_n + \beta_n \cdot \frac{(Q-1)T}{(1-T)(1-QT)} = \frac{P_{E/\mathbb{F}_q;n}(T)}{(1-T)(1-QT)}$$

and

$$P_{E/\mathbb{F}_q,n}(T) = \alpha_{X/\mathbb{F}_q,n}(0) \Big(1 - a_{E/\mathbb{F}_q,n} T + QT^2 \Big)$$

w/

$$a_{E/F_q,n} := (Q+1) - (Q-1)\frac{\beta_n}{\alpha_n}.$$

- E: (reg. int.) elliptic curve over Q
- **3** E/\mathbb{F}_{p_i} : the p_i -reduction of \mathbb{E}
- \mathbb{O} $N_1, N_2 \in \mathbb{Z}_{>0}$: satisfying $N_1 \leq N_2$
- $\mathfrak{E}_r[N_1, N_2]$: set of elliptic curves \mathbb{E}/\mathbb{Q} of arithmetic rank r with the conductor in the interval $[N_1, N_2]$.

Definition (Rank n murmuration Function)

The rank n average value $f_{r,n}(i)$ is defined by:

$$\begin{split} f_{r,n}(i) := & \frac{1}{\# \mathcal{E}_r[N_1, N_2]} \\ & \times \sum_{E \in \mathcal{E}_r[N_1, N_2]} \begin{cases} a_{E/\mathbb{F}_{p_i}, 1} & n = 1 \\ a_{E/\mathbb{F}_{p_i}, 2} + p_i - 1 & n = 2 \\ \frac{1}{n-1} \cdot \left(a_{E/\mathbb{F}_{p_i}, n} + (n-1)p_i + (n-5)\right) & n \geq 3 \end{split}$$

¹Here as in the rank one case, for each isogeny class of elliptic curves \mathbb{E}/\mathbb{Q} , only a single representative elliptic curve is selected in $\mathcal{E}_r[N_1, N_2]$.

Murmuration and Sato-Tate Conjecture in rank n zetas for elliptic curves \mathbb{E}/\mathbb{Q}

[Repeated]

In particular, for X = E an elliptic curve, for simplicity, set

$$\alpha_{\rm n} = \alpha_{\rm E/F_0,n}(0)$$
 and $\beta_{\rm n} = \beta_{\rm E/F_0,n}(0)$.

Then

$$\widehat{\zeta}_{E/\mathbb{F}_q,n}(s) = \alpha_n + \beta_n \cdot \frac{(Q-1)T}{(1-T)(1-QT)} = \frac{P_{E/\mathbb{F}_q;n}(T)}{(1-T)(1-QT)}$$

and

$$P_{E/\mathbb{F}_q;n}(T) = \alpha_{X/\mathbb{F}_q,n}(0) \Big(1 - a_{E/\mathbb{F}_q,n}T + QT^2\Big)$$

w/

$$a_{E/F_q,n} := (Q+1) - (Q-1)\frac{\beta_n}{\alpha_n}.$$

The Riemann hypothesis holds for $\zeta_{E/\mathbb{F}_q,n}$ implies

$$-1 \le \frac{1}{2\sqrt{Q}} \cdot a_{E/\mathbb{F}_q,n} \le 1.$$

Since cosin function is strictly decreasing in the interval $[0, \pi]$, accordingly, introduce the rank n argument $\theta_{E/\mathbb{F}_q,n}$ of E/\mathbb{F}_q by

$$\theta_{E/\mathbb{F}_q,n} := \arccos\left(\frac{1}{2\sqrt{Q}} \cdot a_{E/\mathbb{F}_q,n}\right) \in [0,\pi].$$
 (1)

Definition (Rank n Big Delta Distribution)

$$\Delta_{E/\mathbb{F}_{p_{i}},n}^{\mathbb{E}} := \begin{cases} \sqrt{q} \cos \theta_{E/\mathbb{F}_{p_{i}},2}^{\mathbb{E}} + \frac{1}{2} (\sqrt{p_{i}} - \frac{1}{\sqrt{p_{i}}}) & \text{for } n = 2\\ \\ \frac{\sqrt{p_{i}^{n-1}}}{n-1} (\frac{\pi}{2} - \theta_{E/\mathbb{F}_{p_{i}},n}^{\mathbb{E}}) + \frac{1}{2} (\sqrt{p_{i}} + \frac{n-5}{(n-1)\sqrt{p_{i}}}) & \text{for } n \geq 3 \end{cases}$$

$$(2)$$

Non-Abelian Zetas

Secondary Structures of Rank n-Zeta Zeros

3 new aspects emerged from the secondary structures of rank n zeta zeros of elliptic curves \mathbb{E}/\mathbb{Q} :

- 2 2ed: $(\theta_{E/\mathbb{F}_{p_i},n}^{\mathbb{E}} \frac{\pi}{2})$ is too tiny to be detected. Hence a suitable huge magnification, namely, $\frac{\sqrt{p_i^{n-1}}}{n-1}$, should be introduced.
- 3 3rd: There is a blowing-up within $\frac{\sqrt{p_i^{n-1}}}{n-1} (\theta_{E/\mathbb{F}_{p_i},n}^{\mathbb{E}} \frac{\pi}{2})$. Accordingly, the term $\frac{1}{2} (\sqrt{p_i} + \frac{n-5}{(n-1)\sqrt{p_i}})$ should be added. In particular, for $n \geq 3$,

$$\Delta_{E/\mathbb{F}_{p_i},n}^{\mathbb{E}} := \frac{\sqrt{p_i^{n-1}}}{n-1} (\frac{\pi}{2} - \theta_{E/\mathbb{F}_{p_i},n}^{\mathbb{E}}) + \frac{1}{2} (\sqrt{p_i} + \frac{n-5}{(n-1)\sqrt{p_i}})$$

Theorem (Shi-Weng)

Fix a natural number $n \geq 2$.

- (1) (Rank n Murmurations) Fixed $r \in \mathbb{N}$. For families of a regular (integral) elliptic curves \mathbb{E}/\mathbb{Q} 's, when plotting the points $(i, f_{r,n}(i))$ $i \geq 1$ in the sufficiently large rang, the murmuration phenomenon appear in exactly the same way as the one associated to the $(i, f_{r,1}(i))$'s (of the same families).
- (2) (Rank n Sato-Tate Conjecture) Let \mathbb{E}/\mathbb{Q} be a non CM elliptic curve. For $\alpha, \beta \in \mathbb{R}$ satisfying $0 \le \alpha < \beta \le \pi$, we have

$$\begin{split} &\lim_{N \to \infty} \frac{\#\{p \le N : p : \ \mathrm{prime}, \ \cos \alpha \ge \Delta_{E/\mathbb{F}_p, n} \ge \cos \beta\}}{\#\{p \le N : p : \ \mathrm{prime}\}} \\ &= &\frac{2}{\pi} \int_{\alpha}^{\beta} \sin^2 \theta \mathrm{d}\theta. \end{split}$$

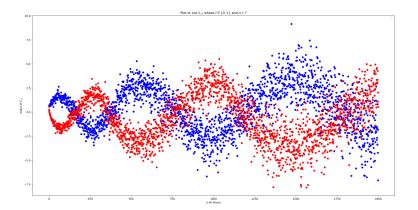


Figure: Plot of $f_{r,n}(i)$ where $r \in 0, 1$ and n = 7, for elliptic curves with conductor in [7500, 10000]. $f_{0,n}(i)$ is in blue and $f_{1,n}(i)$ is in red.

Secondary Structures of Distributions of Rank n Zeta Zeros

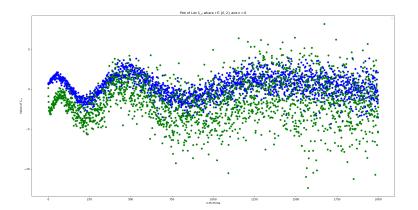


Figure: Plot of $f_{r,n}(i)$ where $r \in 0, 2$ and n = 6, for elliptic curves with conductor in [5000, 10000]. $f_{0,n}(i)$ is in blue and $f_{2,n}(i)$ is in green.

Secondary Structures of Distributions of Rank n ${\bf Zeta}$ Zeros

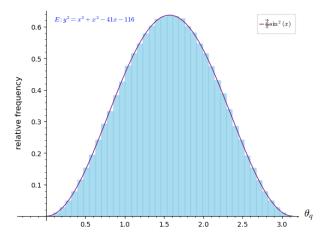


Figure: Sato-Tate distribution of rank 3 zeta function $\zeta_{E/\mathbb{F}_q,3}(s)$ over elliptic curve \mathbb{E}/\mathbb{Q} : $y^2 = x^3 + x^2 - 41x - 116$ and $q \le N = 10,000,000$.

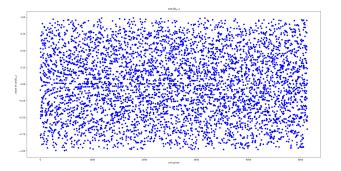


Figure: Plot of $\Delta_{E/\mathbb{F}_q,n}$ over elliptic curve $E:y^2=x^3+x^2-41x-116$ and $q\leq N=50,000$ when n=5.

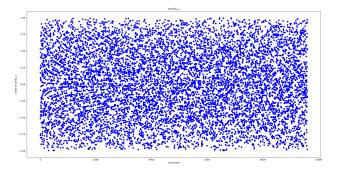


Figure: Plot of $\Delta_{E/\mathbb{F}_q,n}$ over elliptic curve $E:y^2=x^3+x^2-41x-116$ and $q\leq N=100,000$ when n=5.

Secondary Structures of Distributions of Rank n Zeta Zeros

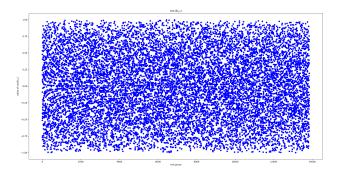


Figure: Plot of $\Delta_{E/\mathbb{F}_q,n}$ over elliptic curve $E:y^2=x^3+x^2-41x-116$ and $q\leq N=150,000$ when n=5.

Secondary Structures of Distributions of Rank n Zeta Zeros

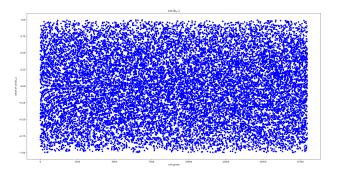


Figure: Plot of $\Delta_{E/\mathbb{F}_q,n}$ over elliptic curve $E:y^2=x^3+x^2-41x-116$ and $q\leq N=200,000$ when n=5.

[Repeated]

In particular, for X = E an elliptic curve, for simplicity, set

$$\alpha_{n} = \alpha_{E/F_{\alpha},n}(0)$$
 and $\beta_{n} = \beta_{E/F_{\alpha},n}(0)$.

Then

$$\widehat{\zeta}_{E/\mathbb{F}_{q},n}(s) = \alpha_n + \beta_n \cdot \frac{(Q-1)T}{(1-T)(1-QT)} = \frac{P_{E/\mathbb{F}_{q};n}(T)}{(1-T)(1-QT)}$$

and

$$P_{E/\mathbb{F}_q;n}(T) = \alpha_{X/\mathbb{F}_q,n}(0) \Big(1 - a_{E/\mathbb{F}_q,n}T + QT^2\Big)$$

w/

$$a_{E/F_q,n} := (Q+1) - (Q-1)\frac{\beta_n}{\alpha_n}$$
.

Theorem

(i) [Counting Miracle: (X = E: Zagier-Weng; X general: K. Sugahara and Mozgovoy-Reineke)]

$$\alpha_{X/\mathbb{F}_q, n+1}(0) = q^{n(g-1)} \beta_{X/\mathbb{F}_q, n}(0) \quad \forall \quad n \ge 0$$

(ii) [Semi-Stable Mass: Harder-Narasimhan, Laumon-Rapoport, Zagier, Weng]

$$\beta_{X/F_q,n}(0) = \sum_{p=1}^n \sum_{\substack{k_1,\dots,k_p>0\\k_1+\dots+k_p=n}} \frac{\widehat{\nu}_{k_1}\cdots\widehat{\nu}_{k_p}}{(1-q^{k_1+k_2})\cdots(1-q^{k_{p-1}+k_p})}$$

(iii) [2-step Structural Recurssion: Zagier-Weng] For $n \ge 1$, $\beta_{-1} := 0$ and $\beta_0 := 1$,

$$(q^{n}-1)\beta_{n} = (q^{n}+q^{n-1}-a_{E/\mathbb{F}_{q},1})\beta_{n-1}-(q^{n-1}-q)\beta_{n-2}$$

When n = 1, we have

$$\begin{aligned} (q^{1} - 1)\beta_{E/\mathbb{F}_{q}, 1} = & (q^{1} + q^{1-1} - a_{E/\mathbb{F}_{q}, 1})\beta_{1-1} - (q^{1-1} - q)\beta_{1-2} \\ = & q + 1 - a_{E/\mathbb{F}_{q}, 1} = \#E(\mathbb{F}_{q}). \end{aligned}$$

Accordingly,

$$\zeta_{E,1}(s) = \beta_0 + \beta_{E/\mathbb{F}_q,1} \cdot \frac{(q^1 - 1)t^1}{(1 - t^1)(1 - q^1t^1)} = \frac{1 - a_{E/\mathbb{F}_q,1}t + qt^2}{(1 - t)(1 - qt)}$$

i.e. the classical Hasse-Weil zeta $\zeta_{E/\mathbb{F}_q}(s)$.

Example (n = 2)

Similarly, when n = 2, we have

$$\begin{split} (q^2-1)\beta_2 = & (q^2+q^{2-1}-a_{E/\mathbb{F}_q,1})\beta_{2-1} - (q^{2-1}-q)\beta_{2-2} \\ = & \frac{(q^2+q-a_{E/\mathbb{F}_q,1})(q+1-a_{E/\mathbb{F}_q,1})}{q-1}. \end{split}$$

$$\begin{split} \zeta_{E,2}(s) = & \beta_{E/\mathbb{F}_q,1} + \beta_2 \cdot \frac{(q^2 - 1)t^2}{(1 - t^2)(1 - q^2t^2)} \\ = & \frac{q + 1 - a_{E/\mathbb{F}_q,1}}{q - 1} \times \frac{1 - (a_{E/\mathbb{F}_q,1} - q + 1)T + QT^2}{(1 - T)(1 - QT)} \end{split}$$

Obviously, $\alpha_2 = (q + 1 - a_{E/\mathbb{F}_q,1})/(q-1) = \beta_1$ is a constant depending merely on the elliptic curve E/\mathbb{F}_q and, in particular,

$$a_{E,1} = a_{E/\mathbb{F}_q,1} = q+1-\#E(\mathbb{F}_q) \qquad \text{and} \qquad a_{E,2} = a_{E/\mathbb{F}_q,1}-q+1.$$

Theorem (Asymptotic behavior of $a_{E/\mathbb{F}_q,n}$: Shi-Weng)

We have

$$a_{E/\mathbb{F}_q,1} = a_{E/\mathbb{F}_q}, \qquad a_{E/\mathbb{F}_q,2} = 1 + a_{E/\mathbb{F}_q,1} - q \quad \text{and} \quad$$

$$a_{E/\mathbb{F}_q,n} = (5-n) + (n-1)a_{E/\mathbb{F}_q,1} - (n-1)q + O\left(\frac{1}{\sqrt{q}}\right) \quad (n \ge 3)$$

Recall that

$$f_{r,n}(i) := \frac{1}{\#\mathcal{E}_r[N_1, N_2]}$$

$$\times \sum_{E \in \mathcal{E}_r[N_1, N_2]} \begin{cases} a_{E/\mathbb{F}_{p_i}, 1} & n = 1 \\ a_{E/\mathbb{F}_{p_i}, 2} + q - 1 & n = 2 \\ \frac{1}{n-1} \cdot \left(a_{E/\mathbb{F}_{p_i}, n} + (n-1)p_i + n - 5 \right) & n \ge 3 \end{cases}$$

$$-1 \le \frac{1}{2\sqrt{Q_n}} \cdot a_{E/\mathbb{F}_q,n} \le 1.$$

$$\theta_{E/\mathbb{F}_q,n} := \arccos\left(\frac{1}{2\sqrt{Q_n}} \cdot a_{E/\mathbb{F}_q,n}\right) \in [0,\pi].$$

$$\Delta_{E/\mathbb{F}_q,n} := \begin{cases} \sqrt{q} \cos \theta_{E/\mathbb{F}_q,2}^E + \frac{1}{2} (\sqrt{q} - \frac{1}{\sqrt{q}}) & \text{for} \quad n = 2 \\ \\ \frac{\sqrt{q^{n-1}}}{n-1} (\frac{\pi}{2} - \theta_{E/\mathbb{F}_p,n}) + \frac{1}{2} (\sqrt{q} + \frac{n-5}{(n-1)\sqrt{q}}) & \text{for} \quad n \geq 3 \end{cases}$$

Essentially, our functionals $f_{r,n}$ and Δ_n transform asymptotically the a-invariants $a_{E/\mathbb{F}_q,n}$ in rank n into that for $a_{E/\mathbb{F}_q} = a_{E/\mathbb{F}_q,1}$ in rank one, for which the murmurations and the classical Sato-Tate are carefully studied by He-Lee-Oliver-Pozdnyakov and established by Taylor and his collaborators (Clozel, Harris, Shepherd-Barron), respectively.

Thank You

Thank You

Fukuoka, November 13, 2024