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Abstract. As a continuation of our earlier paper [6], we offer a new
approach to murmurations and Sato-Tate laws for higher rank zetas of
elliptic curves. Our approach here does not depend on the Riemann
hypothesis for the so-called a-invariant aE{Fp;n in rank npě 3q even
for the Sato-Tate law, rather, on a much refined structure, a similar
version of which was already observed earlier by Zagier and the senior
author of this paper in [12] when the rank n Riemann hypothesis was
established. Namely, instead of the rank n Riemann hypothesis bounds
´1 ď

aE{Fp;n

2
?
pn

ď 1 on which our first paper is based, we use the as-

ymptotic bounds ´1 ď
aE{Fp;n`pn´1qp`pn´5q

pn´1q
?
p

ď 1. Accordingly, rank
n Sato-Tate law can be established and rank n murmurations can be
formulated equally well, similar to the corresponding structures in the
abelian framework for Artin zetas of elliptic curves.

1. Introduction

For a non-CM elliptic curve E over the field Q of rationals, distributions
of the associated a-invariants aE{Fp

defined by

aE{Fp
:“ 1 ` p ´ #EpFpq,

or better, the associated arguments θE{Fp
, defined by

cos θE{Fp
:“

aE{Fp

2
?
p

, θE,p P r0, πs

for its p-reductions E{Fp satisfies the following famous Sato-Tate law: for
any 0 ď α ă β ď π,

lim
NÑ8

#
!

p ď N : p prime, α ď
a
E{Fp
2

?
p ď β

)

#tp ď N : p : p primeu
“

π

2

ż β

α
sin2 θdθ.

In [6], for any fixed n P Zě1, we prove an analogue for the a-invariants
aE{Fp;n in rank n of the E{Fp’s

aE{Fp;n :“ ppn`1q´ppn´1q
βE{Fp;np0q

βE{Fp;n´1p0q
where bE{Fp;np0q :“

ÿ

V

1

#AutpVq

where V runs over all semi-stable vector bundles of rank n and degree 0 on
E{Fp. To be more precisely, we have the following

1
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Theorem 1. Let E{Q be a non-CM elliptic curve. Denote its p-reduction
by E{Fp. Then, for α, β P R satisfying 0 ď α ă β ď π, we have,

lim
NÑ8

#
!

p ď N : p : prime, cosα ě ∆E{Fp,n ě cosβ
)

#tp ď N : p : primeu

“
2

π

ż β

α
sin2 θdθ.

(1)

Here the big ∆E{Fp,n is defined by

∆E{Fp,n :“

$

’

’

&

’

’

%

?
p cos θE{Fp,2 ` 1

2

´

?
p ´ 1?

p

¯

n “ 2

a

pn´1

n´1

´

π
2 ´ θE{Fp,n

¯

` 1
2

?
p ` 1

2
n´5

pn´1q
1?
p n ě 3

(2)

and θE{Fp,n P r0, πs is defined by

cos θE{Fp,n :“
aE{p;n

2
?
pn

,

Our work in [6] heavily depends on the abelian Sato-Tate law, established
by Taylor and his collaborators, based on the Riemann hypothesis for the
zeta functions ζE{Fp;npsq in rank n.

In this current work, we prove a new genuine Sate-Tate law for aE{Fp;n,
which looks similar in apparence to the above rank n Sato-Tate law, but
based on a much strong estimations than the rank n Riemann hypothesis
used above.

Theorem 2 (Theorems 14, 15). Fix an integer n ě 3. Let E{Q be a non-CM
elliptic curve. Denote its p-reduction by E{Fp. Then we have

lim
NÑ8

#tp ď N : p prime, α ď Θ1
E{Fp;n

ď βu

#tp ď N : p : p primeu

lim
NÑ8

#tp ď N : p prime, α ď Θ2
E{Fp;n

ď βu

#tp ď N : p : p primeu

“
π

2

ż β

α
sin2 θdθ.

(3)

Here, we set

cos Θ1
E{Fp;n

:“∆1
E{Fp;n

whenever
ˇ

ˇ

ˇ
∆1

E{Fp;n

ˇ

ˇ

ˇ
ď 1 and

cos Θ2
E{Fp;n

:“∆2
E{Fp;n

whenever
ˇ

ˇ

ˇ
∆2

E{Fp;n

ˇ

ˇ

ˇ
ď 1 where

(4)

∆1
E{Fp;n

:“
1

2pn ´ 1q
?
p

´

aE{Fp;n
´

`

p5 ´ nq ´ pn ´ 1qp
¯

, and

∆2
E{Fp;n

:“
aE{Fp;n ´

´

p5 ´ nq ` pn ´ 1qaE{Fp
´ pn ´ 1qp

¯

´6{
?
p

.

(5)
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Thanks to the remarkable work [5], we now have the murmuration struc-
tures in mathematics. Accordingly, for n ě 3, in [6], we introduce the
murmuration functional

fr,npiq :“
1

#ErrN1, N2s
ˆ

ÿ

EPErrN1,N2s

1

n ´ 1
¨
`

aE{Fpi ,n
` pn´1qpi `n´5

˘

. (6)

as our non-abelian analogue of [5]. In this paper, we offer a new murmuration
functional fnew

r,n piq by setting

fnew
r,n piq “

1

#ErrN1, N2s

ˆ
ÿ

EPErrN1,N2s

´

aE{Fpi ,n
` pn ´ 1qpi ´ pn ´ 1qaE{Fpi

` pn ´ 5q

¯

¨
´pi
3

.

(7)
Then with the same method as in [6], we have the following

Theorem 3 (Theorem 17). For families of a regular (integral) elliptic curves
E{Q’s, when plotting the points pi, fnew

r,n piqq pi ě 1, n ě 3q in the sufficiently
large range, the murmuration phenomenon appears in exactly the same way
as that for the pi, fr,1piqq’s.

We end this introduction with the following illustrative figures, in addi-
tions to the similar figures in[6].

Figure 1. Sato-Tate distribution of rank 3 zeta function
ζE{Fq ,3psq in terms of ∆1 over elliptic curve E{Q : y2 ` xy “

x3 ` 87x ` 442 and q ď N “ 10, 000, 000.
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Figure 2. Sato-Tate distribution of rank 3 zeta function
ζE{Fq ,3psq in terms of ∆2 over elliptic curve E{Q : y2 ` xy “

x3 ` 87x ` 442 and q ď N “ 10, 000, 000.

Figure 3. Plot of fnew
r,n piq where r P 0, 1 and n “ 5, for

elliptic curves with conductor in r7500, 10000s. fnew
0,n piq is in

blue and fnew
1,n piq is in red.

Figure 4. Plot of fnew
r,n piq where r P 0, 1 and n “ 5, for

elliptic curves with conductor in r7500, 10000s. fnew
0,n piq is in

blue and fnew
2,n piq is in green.
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2. Rank n Sato-Tate Law based on Rank n Riemann Hypothesis

2.1. Non-Abelian Zeta Function: Background. By definition, for a(n
integral regular projective) curve X{Fq (defined) over the finite field Fq with
q elements, its Artin zeta function is defined by

ζX{Fq
:“

ÿ

Dě0

1

NpDqs
<psq ą 1,

where D runs over all effective divisors on X{Fq. Recall that, a formal
sum D “

ř

P nPP with rational integral coefficients is called a divisor on
X{Fq, if, for all but finitely many P , nP “ 0. Moreover, such a D is
called effective, denoted by D ě 0, if nP P Zě0 for all P . As usual we set
NpDq :“

ś

P NpP qnP . Here, for each algebraic point P on X{Fq, if we set
kpP q to be the residue field of X at P , and the norm NpP q of P is defined
by NpP q :“ qrkpP q:Fqs.

From the standard zeta theory, it is well known that
(i) (Rationality) ζX{Fq

is rational function in t “ q´s. Indeed, there is
a monic polynomial PX{Fq

ptq P Zrts of degree 2g such that

pζX{Fq
psq :“ tg´1 ¨ ζX{Fq

psq “
PX{Fq

ptq

p1 ´ tqp1 ´ qtq

(ii) (Functional Equation)
pζX{Fq

p1 ´ sq “ pζX{Fq
psq.

(iii) (Geometric Interpretation of Ress“1
pζX{Fq

psq)

Ress“1
pζX{Fq

psq “
#PicpXqpFqq

q ´ 1
.

Now let us regroup the D’s according to their rational equivalence classes
rDs, then one arrives at

ζX{Fq
psq “

ÿ

rDs

#tD ě 0 : D P rDsu r t0u

q ´ 1
pq´sqdegrDs

“
ÿ

LPPicpX{Fqq

qh
0pX,Lq ´ 1

#AutpLq
pq´sqdegpLq

(8)

where PicpX{Fqq denotes the Picard group of X{Fq and for each line bundle
L P PicpX{Fqq, h0pX,Lq denotes the dimension of the 0-th cohomology
group H0pX,Lq of L over X. Indeed, this is because that there is an one-
to-one correspondence between the set of effective divisors D in a rational
equivalence class rDs and the set of divisors psq for a Fq-line Fq ¨ s of a
nontrivial global sections s of the line bundle OXpDq.

As such, it is only temptation to define the rank n zeta function for
X{Fq by the formal summation

ř

V
qh

0pX,Vq´1
#AutV pq´sqdegpVq where V runs over

all rank n vector bundles over X{Fq. However, this does not work due to
the unboundedness of the the space of rank n vector bundles with a fixed
degree. One can sense this, in degree zero and rank 2, by examining the
family OP1p´nq ‘ OP1pnq for n P Z even over the projective line P1{Fq.
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Fortunately, this unboundedness problem has already been tackled by
geometers for decades. Following Mumford, to obtain a nice family in fixed
degree for rank n vector bundles, stability condition should be included.
Accordingly, one may try to introduce the rank n zeta function for X{Fq by
consider the summation

ÿ

V

qh
0pX,Vq ´ 1

#AutV
pq´sqdegpVq <psq ą 1, (9)

where, instead over all rank n vector bundles, V only runs over all rank
n semi-stable vector bundles over X{Fq. This works very nicely up to a
certain reasonable stage. In fact in the senior author’s first attempt [8],
this summation was used. In particular, by the standard zeta techniques,
with helps from the vanishing theorem for semi-stable vector bundles, the
Riemann-Roch and the duality, such defined series are verified to enjoy some
of the major standard zeta facts stated above, such as the rationality, the
functional equation and the geometric interpretation of the residue at s “ 1.

However, examples suggest that, even with all semi-stable vector bundles
counted, such defined generating functions do not satisfies the Riemann
hypothesis. This indicates that there are something fundamentally wrong
in this totality counting. It takes the senior author for several years to figure
out the exact reason – not until a paper of Drinfeld ([3]) on counting rank
two super-cuspidal representations of the fundamental groups of X{Fq was
introduced to him.

Definition 4 ([9]). Fix an integer n P Zą0. Let X{Fq be an integral regular
projective curve of genus g. Then the rank n zeta function of X{Fq is defined
by

pζX{Fq ;npsq :“pq´sqnpg´1q ¨ ζX{Fq ;npsq

:“
ÿ

V

qh
0pX,Vq ´ 1

#AutV
pq´sqχpX,Vq p<psq ą 1q

(10)

where V runs over all rank n vector bundles over X{Fq whose degrees are
multiples of n.

Tautologically, as to be expected, by standard zeta techniques and the
vanishing theorem for semi-stable vector bundles, the Riemnn-Roch theorem
and the Duality, we have

Theorem 5 (Zeta Facts [9], see also [13]). Fixed n P Zě1. The rank n
non-abelian zeta function ζX{Fq ;npsq of an integral regular projective curve
X{Fq satisfies the following standard zeta properties:

(1) [(Naturality)] We have
ζX{Fq ;1psq “ ζX{Fq

psq.

That is to say, the rank one zeta function ζX{Fq ;1psq coincides with
the classical Artin zeta function ζX{Fq

psq of X{Fq.
(2) (Rationality) There exists a polynomial PX{Fq ;npT q P QrT s of degree

2g, such that

ζX{Fq ;npsq “
PX{Fq ;npT q

p1 ´ T qp1 ´ QT q
.



MURMURATIONS AND SATO-TATE LAW II: BEYOND RIEMANN HYPOTHESIS 7

In the above, we have set T :“ Tn :“ tn, Q :“ Qn :“ qn.
(3) (Functional Equation) ζX{Fq ;npsq satisfies the standard functional

equation
pζX{Fq ;np1 ´ sq “ pζX{Fq ;npsq.

In addition, we have the following
Conjecture 6 (Riemann Hypothesis, [9]). The rank n non-abelian zeta
function ζX{Fq ;npsq of an integral regular projective curve X{Fq satisfies the
Riemann hypothesis. That is to sap,

ζX{Fq ;npsq ùñ <psq “
1

2
.

This conjecture remains widely open, even its number theoretic analogue
has been established (except when n “ 1 for the lack of symmetry), up
to a finite box depending on n ([10]). Besides the classics, the first major
breakthrough in this direction is the following:
Theorem 7 (Weng-Zagier [12]). Let E{Fq be an elliptic curve. Then, for
n ě 2, ζE{Fq ,npsq satisfies the Riemann hypothesis.1

2.2. Riemann Hypothesis in Rank n for Elliptic Curves. By the
rationality of the rank n zeta functions for an elliptic curve E{Fq, there
exists a degree 2 polynomial PE{Fq ;npT q P QrT s such that

ζE{Fq ;npsq “
PE{Fq ;npT q

p1 ´ T qp1 ´ QT q
.

Moreover, if we define the so-called α and β-invariants in rank n for a curve
X{Fq by

αE{Fq ;npdq :“
ÿ

V

qh
0pX,Vq ´ 1

#AutpVq
and βE{Fq ;npdq :“

ÿ

V

1

#AutpVq

where V in the summations runs over all semi-stable vector bundles over
X{Fq of rank n and degree d. Clearly, βE{Fq ;npdq indeed counts semi-stable
vector bundles naturally, by introducing the weight 1

#AutpVq
for each V, being

compatible with the language of algebraic stacks. Much better, we have the
following fundamental relation.
Theorem 8 (Counting Miracle. Theorem 3 of [12]). For all n ě 0, we have

αE{Fq ;n`1 “ βE{Fq ;np0q.

Our approach is through a detailed analysis of the semi-stable vector
bundles on E{Fq which then can be narrowly down to the so-called Atiyah
bundles, together with a complicated combinatorial discussion. As a direct
consequence, in ([9]), we show the following

1We mention in passing that, besides this elliptic curve case, the Riemann hypothesis
for ζX{Fq,npsq has been established successfully when

(0) (Classical n “ 1) X “ E by Hasse, X in general by Weil.
(i) n “ 2 by H. Yoshida, see e.g. §2 of arXiv:2201.03703.

(ii) n “ 3 by Weng in ‘Riemann Hypothesis for Non-Abelian Zeta Functions of
Curves over Finite Fields’, arXiv:2201.03703.

(iii) g “ 2 asymptotically by Shi, in preparation.
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Theorem 9 (Equation 6 and Theorem 3 of [12]). With the same notation
as above,

PE{Fq ;npT q “ αE{Fq ;np0q

´

1 ´ aE{Fq ;nT ` QnT
2
¯

where the a-invariant of E{Fq in rank n is defined by

aE{Fq ;n “ pQn ` 1q ´ pQn ´ 1q
βE{Fq ;np0q

βE{Fq ;n´1p0q
.

In particular, we have βE{Fq ;0p0q “ 1 and hence, when n “ 1,

aE{Fq ;1 “ pq ` 1q ´ pq ´ 1q
βE{Fq ;1p0q

βE{Fq ;0p0q
“ q ` 1 ´ #EpFqq “ aE{Fq

which is nothing but the classical a-invariant of E{Fq. Consequently, the
rank n-zeta function of E{Fq is completely determined by the b-invariants.

Accordingly, the Riemann hypothesis for the rank n zeta function of E{Fq

is equivalent to the fact that the degree two polynomial 1 ´ aE{Fq ;nT `

QnT
2 admits only non-real complex zeros. That is to say, the associated

discriminant is strictly less than 0, or the same
ˇ

ˇ

ˇ

ˇ

aE{Fq ;n

2
?
Qn

ˇ

ˇ

ˇ

ˇ

ď 1 (11)

With a sophisticated combinatorial discussion, what we finally arrive in [12]
is the following upper and lower bounds:

Theorem 10 (Theorem 6 of [12]). For n ě 2, we have

1 ă
βE{Fq ;np0q

βE{Fq ;n´1p0q
ă

?
Qn ` 1

?
Qn ´ 1

. (12)

This then leads to the inequalities

2 ą aE{Fq ;n ą ´2
a

Qn (13)

which are already noted in [12]. In other words, (12), or the same (18), is
much refined than (11).

In fact, much refined structures on the β-invariants in rank n is exposed.

Theorem 11 (Theorem 13 of [12]). The β-invariants in rank n for elliptic
curve E{Fq satisfies the following recursion formula: for n ě 1,

pqn´1qβE{Fq ;np0q “ pqn´qn´1´aE{Fq
qβE{Fq ;n´1p0q´pqn´1´qqβE{Fq ;n´2p0q,

with the initial conditions βE{Fq ;0p0q “ 1 and βE{Fq ;´1p0q “ 0.

Consequently, all the β-invariant invariants and hence the rank n zeta
function ζE{Fq ;npsq are completely determined by q, n and aE{Fq

. Based on
this, we obtain the following asymptotic result

Theorem 12 (Theorem 6 of [6]). We have
aE{Fq ,1 “ aE{Fq

, aE{Fq ,2 “ 1 ` aE{Fq ,1 ´ q, (14)
and

aE{Fq ,n “ p5 ´ nq ` pn ´ 1qaE{Fq ,1 ´ pn ´ 1qq ` O
´ 1

?
q

¯

pn ě 3q (15)
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In particular, for n ě 3

aE{Fq ,n „ p5 ´ nq ` pn ´ 1qaE{Fq ,1 ´ pn ´ 1qq ! 0 pq Ñ 8q. (16)

Consequently, following the classical approach to formulate the Sato-Tate
law for the distributions of the zeta zeros of elliptic curves E{Fp’s associated
to E{Q, we are led to the construction of the big ∆-distributions by single
out aE{Fq

as stated in the Introduction. However, even it is very natural to
use the Riemann hypothesis, or equivalently, the bounds ´1 ď

aE{Fq ;n
2

?
Qn

ď 1,

to introduce θE{Fq ;n P r0, πs via

cos θE{Fq ;n :“
aE{Fq ;n

2
?
Qn

for an elliptic curve E{Q, one easily verify that the corresponding θE{Fpi ;n
’s

have an obvious limit point π
2 when n ě 3. This then yields the first struc-

tural distributions of the Dirac symbol δπ{2 for the θE{Fpi ;n
’s. Unfortunately,

θE{Fpi ;n
´ π

2 is too tiny to be observed. Motivated by Theorem 12, a huge

multiplicative factor
b

pn´1
i should be introduced so that the secondary level

distributions of θE{Fpi ;n
can be studied. However, with this enlargement, a

further blow-up of additive scale ´pn ´ 1qpi is automatically introduced.
It is for the purpose to eliminate this new complication, a term of 1

2

?
pi is

added, and hence to arrive finally at the normalized big ∆-distributions:

∆E{Fp,n :“

$

’

’

&

’

’

%

?
p cos θE{Fp,2 ` 1

2

´

?
p ´ 1?

p

¯

n “ 2

a

pn´1

n´1

´

π
2 ´ θE{Fp,n

¯

` 1
2

?
p ` 1

2
n´5

pn´1q
1?
p n ě 3.

(17)

In Theorem 4 of [6], we are able to establish the following:

Theorem 13 (First Version of Sato-Tate Law in Rank n). Fix a natural
number n ě 2. Let E{Q be a non CM elliptic curve. For α, β P R satisfying
0 ď α ă β ď π, we have

lim
NÑ8

#tp ď N : p : prime, cosα ě ∆E{Fp,n ě cosβu

#tp ď N : p : primeu
“

2

π

ż β

α
sin2 θdθ.

Our proof of this theorem is based on Taylor and his collaborators’ works
on the classical Sato-Tate law on the abelian a-invariants aE{Fp

’s.

3. Sato-Tate Law in Rank n: Beyond Riemann Hypothesis

3.1. Riemann Hypothesis is Too Rough. Recall that (18) claims that

2 ą aE{Fq ;n ą ´2
a

Qn p@n ě 2q. (18)
This is clearly much strong than the bounds

ˇ

ˇ

ˇ

ˇ

aE{Fq ;n

2
?
Qn

ˇ

ˇ

ˇ

ˇ

ď 1,

which is well known to be equivalent to the Riemann hypothesis in rank n.
This has already been observed in [12].

Our first paper on the rank n Sato-Tate law is based on the rank n Rie-
mann hypothesis. This leads to, as mentioned above, a huge multiplicative
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factor
a

pn´1, together with a further blowing up of additive scale ?
p, in

the definition of the big normalized ∆-distribution above. Since this ap-
proach is guided by the Riemann hypothesis in rank n, when such a big ∆
was introduced in [6], or much earlier in [10], we thought, at the moment,
that this approach was extremely natural.

However, recently, after examining the structures involved in the big ∆
more carefully, we find out that it is rather artificial to use

a

pn´1

n ´ 1

´π

2
´ θE{Fp,n

¯

in the definition of ∆E{Fp;n, since after all,
´

π
2 ´ θE{Fp,n

¯

is rather tiny, and
hence should be of the same scale as

sin
´π

2
´ θE{Fp,n

¯

“ cos θE{Fp,n “
aE{Fp

2
?
pn

.

Or equivalently
a

pn´1

n ´ 1

´π

2
´ θE{Fp,n

¯

“
aE{Fp

2
?
ppn ´ 1q

.

which, in terms of Theorem 13, or better (15), simply means that, up to
normalization, the big ∆-distribution in rank n ě 3 is essentially nothing
but αE{Fp?

p . Accordingly, for a genuine structure in rank n, we are led to teh
following new yet more direct approach to the rank n Sato-Tate law.

For simplicity, in the sequel, unless otherwise is stated, let assume that
n ě 3. Then, by (15), we have as q Ñ 8,

aE{Fq ,n “ p5 ´ nq ` pn ´ 1qaE{Fq ,1 ´ pn ´ 1qq ` O
´ 1

?
q

¯

.

Therefore, we set now

∆1
E{Fp;n

:“
1

2pn ´ 1q
?
p

´

aE{Fq ,n ` pn ´ 1qp ` pn ´ 5q

¯

and when
ˇ

ˇ∆1
E{Fp;n

ˇ

ˇ ď 1, we set

cos Θ1
E{Fp;n

“ ∆1
E{Fp;n

.

The up-shot is the following:

Theorem 14. Let E{Q be a non-CM elliptic curve. Denote its p-reduction
by E{Fp. Then, for α, β P R satisfying 0 ď α ă β ď π, we have,

lim
NÑ8

#
!

p ď N : p : prime, α ď Θ1
E{Fp,n

ď β
)

#tp ď N : p : primeu

“
2

π

ż β

α
sin2 θdθ.

(19)
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Proof. Note that, by Theorem 12, or better (15), asymptotically, as p Ñ 8,
ˇ

ˇ∆1
E{Fp;n

ˇ

ˇ ď 1. Hence by Theorem 12, or better (15) again, we have

lim
NÑ8

#
!

p ď N : p : prime, α ď Θ1
E{Fp,n

ď β
)

#tp ď N : p : primeu

“ lim
NÑ8

#
!

p ď N : p : prime, cosα ď ∆1
E{Fp,n

ď cosβ
)

#tp ď N : p : primeu

“ lim
NÑ8

#
!

p ď N : p : prime, cosα ď
aE{Fp
2

?
p ď cosβ

)

#tp ď N : p : primeu

pby Theorem 12, or better (15), based on the prime number theorem)

“
2

π

ż β

α
sin2 θdθ

(20)
Here in the last step, we have used the result of Taylor and his collaborators
([1], [2], [4], [7]) on the classical Sato-Tate law. �

3.2. Sato-Tate Law in Rank n: New Observing Spot. After intro-
ducing the big∆1-distributions, our calculations indicates that in fact the
difference

aE{Fpi ,n
´

´

p5 ´ nq ` pn ´ 1qaE{Fpi ,1
´ pn ´ 1qpi

¯

for large i is oscillating between ˘ 6?
pi

.
At the beginning, we thought that there might be a new type of distribu-

tion law hidden behind this. However, through more detailed computations,
we witness that, numerically for all examples,

cos Θ2
E{Fq ;n

:“
aE{Fq ;n ´

´

p5 ´ nq ` pn ´ 1qaE{Fq
´ pn ´ 1qq

¯

´6{
?
q

or better, these new Θ2
E{Fpi ;n

obey the classical Sato-Tate law. In fact, we
have the following

Theorem 15. Let E{Q be a non-CM elliptic curve. Denote its p-reduction
by E{Fp. Then, for α, β P R satisfying 0 ď α ă β ď π, we have,

lim
NÑ8

#
!

p ď N : p : prime, α ď Θ2
E{Fp,n

ď β
)

#tp ď N : p : primeu

“
2

π

ż β

α
sin2 θdθ p@n ě 3q.

(21)

Proof. We start with the following

Theorem 16. Let E{Fq be an elliptic curve. The for a fixed n ě 3, we have

aE{Fq ;n “ p5 ´ nq ` pn ´ 1qaE{Fq
´ pn ´ 1qq ´ 3

aE{Fq

q
` O

ˆ

1

q

˙

. (22)
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Proof. We use an induction on n. Recall that from Theorem 11,
pqn´1qβE{Fq ;np0q “ pqn´qn´1´aE{Fq

qβE{Fq ;n´1p0q´pqn´1´qqβE{Fq ;n´2p0q,

with the initial conditions βE{Fq ;0p0q “ 1 and βE{Fq ;´1p0q “ 0. By definition,

aE{Fq ;n :“ pqn ` 1q ´ pqn ´ 1q
βE{Fq ;np0q

αE{Fq ;np0q
.

Thus, from the counting miracle that
αE{Fq ;np0q “ βE{Fq ;n´1p0q,

we arrive at the structural recursion formula for aE{Fq ;n:

aE{Fq ,n`1 “ 1 ´ qn ` aE{Fq
`

pqn ´ qqpqn ´ 1q

qn ` 1 ´ aE{Fq ,n
(23)

In particular,
aE{Fq ,2 “1 ´ q ` aE{Fq

aE{Fq ,3 “1 ´ q2 ` aE{Fq
`

pq2 ´ qqpq2 ´ 1q

q2 ` 1 ´ aE{Fq ,2

“1 ´ q2 ` aE{Fq
`

pq2 ´ qqpq2 ´ 1q

q2 ` q ´ aE{Fq

“2 ` 2aE{Fq ,1 ´ 2q ´ 3
aE{Fq

q
` O

ˆ

1

q

˙

.

(24)

This verifies (26) when n “ 3.
Now assume that (26) holds for n. By (23), we have

aE{Fq ,n`1

“1 ´ qn ` aE{Fq
`

pqn ´ qqpqn ´ 1q

qn ` 1 ´ aE{Fq ,n

“1 ´ qn ` aE{Fq
`

pqn ´ qqpqn ´ 1q

qn ` 1 ´ p5 ´ nq ´ pn ´ 1qaE{Fq
` pn ´ 1qq ` 3

aE{Fq
q ` O

´

1
q

¯

“p4 ´ nq ` naE{Fq
´ nq ´ 3

aE{Fq

q
` O

ˆ

1

q

˙

(25)
by a tedious, long yet trivial, calculation. �

From Theorem 16, namely, (26), we have

aE{Fq ;n “ p5 ´ nq ` pn ´ 1qaE{Fq
´ pn ´ 1qq ´ 3

aE{Fq

q
` O

ˆ

1

q

˙

. (26)

Hence

aE{Fq ;n ` pn ´ 5q ´ pn ´ 1qaE{Fq
` pn ´ 1qq “ ´3

aE{Fq

q
` O

ˆ

1

q

˙

Therefore, asymptotically,
aE{Fq ;n ` pn ´ 5q ´ pn ´ 1qaE{Fq

` pn ´ 1qq

´6{
?
q

“
aE{Fq

2
?
q
.
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Therefore, our Theorem is equivalent to the classical Sato-Tate law for non-
CM elliptic curve E{Q established by Taylor and his collaborators ([1], [2],
[4], [7]). �

We end this section by the following comments: The Sato-Tate laws in
higher ranks can be observed from various spots, which have quite differ-
ent geo-arithmetic meanings. These Sato-Tate laws exposes what should be
called the secondary structures behind the Riemann hypothesis, and some-
time are much refined than the Riemann hypothesis in higher ranks. By
contrast, all these Sato-Tate laws in higher ranks are essentially unique –
they are canonically equivalent to the canonical one.

4. Rank n Murmurations for Elliptic Curves

To understand rank n murmurations for elliptic curves E{Q’s of arithmetic
rank r, in [6], based on a weak version of (26) in Theorem 16, namely,

aE{Fq ;n “ p5 ´ nq ` pn ´ 1qaE{Fq
´ pn ´ 1qq ` O

ˆ

aE{Fq

q

˙

,

the following functional functional fr,npiq on the rank n average value is
introduced in [6]:

fr,npiq

:“
1

#ErrN1, N2s
ˆ

ÿ

EPErrN1,N2s

$

’

’

&

’

’

%

aE{Fpi ,1
n “ 1

aE{Fpi ,2
` pi ´ 1 n “ 2

1
n´1 ¨

`

aE{Fpi ,n
` pn ´ 1qpi ` n ´ 5

˘

n ě 3

(27)
where N1, N2 P Zą0 satisfying N1 ď N2, and ErrN1, N2s denotes the set
of elliptic curve over Q of arithmetic rank r with the conductor in the
interval rN1, N2s. Here, as in the rank one case, for each isogeny class of
elliptic curves E{Q, only a single representative elliptic curve is selected in
ErrN1, N2s.

Next, we use Theorem 16, namely, a stronger estimate

aE{Fq ;n “ p5 ´ nq ` pn ´ 1qaE{Fq
´ pn ´ 1qq ´ 3

aE{Fq

q
` O

ˆ

1

q

˙

,

to introduce, for n ě 3, a new murmuration functional fnew
r,n piq by setting

fnew
r,n piq “

1

#ErrN1, N2s

ˆ
ÿ

EPErrN1,N2s

´

aE{Fpi ,n
` pn ´ 1qpi ´ pn ´ 1qaE{Fpi

` pn ´ 5q

¯

¨
´pi
3

.

(28)
Then with the same method as in [6], we have the following

Theorem 17 (Rank n Murmurations). For families of a regular (integral)
elliptic curves E{Q’s, when plotting the points pi, fnew

r,n piqq pi ě 1, n ě 3q in
the sufficiently large range, the murmuration phenomenon appears in exactly
the same way as that for the pi, fr,1piqq’s.
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Proof. The same proof for Theorem 4 of [6] works here as well since essen-
tially, what fnew

r,n piq really counts is aE{Fpi
by Theorem 16. �
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