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Abstract

In this paper, we develop some basic techniques towards the Riemann hypothesis
for higher rank non-abelian zeta functions of a regular projective curve of genus g
over a finite field F,. In particular, as an application of the Riemann hypothesis for
rank n zeta functions, we obtain some explicit bounds on the fundamental non-abelian
a- and B-invariants of X/F, in terms of X and n, ¢ and g:
th(X,V) -1

x5 n(mn) = FAUY)

1%

1
and  Bxz,.(mn) = —— 0<m<(g-1)
e Zv: #Au(V)

where V runs through all rank » semi-stable F,-rational vector bundles of degree mn
over X. Finally, we demonstrate that the related bounds in lower ranks in turn play a
central role in establishing the Riemann hypothesis for rank three zetas, following H.
Yoshida’s approach to verify rank two Riemann hypothesis.
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1 Special uniformity of zetas

The special uniformity for zeta functions of curves over finite fields is conjectured in [14]
and established in [17], with the help of the result in [9]. In this section, we recall some
basic constructions involved.

1.1 Non-abelian zeta function of a curve over a finite field

First, for a fixed positive integer n > 1, the rank n non-abelian zeta function of a projective
regular curve X over F, is defined in [14]' by

W (X,E)-1

Txrn(s) = ZO ; ‘;ATa@—w& (R(s) > 1) )

where & (in the second summation) runs through rank »n semi-stable vector bundles of
degree mn. This definition is a modification of an old one in [12] in which & is allowed
to take all rank n semi-stable vector bundles of degree m. Even this original definition
in [12] would yield a rational function satisfying the standard functional equation, it fails
to satisfy the Riemann hypothesis. To remedy this, motivated by Drinfeld’s work [3] on
counting two-dimensional irreducible representations of the fundamental group of a curve
over a finite field, we introduce a restriction on the degrees of &, that is, the degrees of V
are required to be divided by n, the rank of & By using the Riemann-Roch theorem and
the vanishing theorem for semi-stable bundles, tautologically, we have

Theorem 1.1 (¢ Properties [14]). The rank n-zeta function Zx,]pq;n(s) of a genus g regular
projective curve X over Iy satisfies the following properties:

(0) ZX,F(,; 1(8) coincides with the (completed) Artin zeta Zx/pq(s) of X/E,.
(1) ngpq;n(s) is a rational function in T = (q~*)".
(2) (Functional equation) Zx,pq;n(l —-5) = ZX‘]F[I;"(S).

Indeed, (0) can be deduced by expressing the Artin zeta ’g:x/pq(s) of X/F, as a sum on
the rationally equivalence classes of divisors, or better, the rational line bundles, of non-
negative degrees on X/F,. Furthermore, if we introduce the non-abelian geo-arithmetic

"While this paper is fundamental to the field, it has never been submitted for a formal publication.



a- and B-invariants of the curve X over F, associated to rank n semi-stable vector bundles
by
HXE) _q

axz,n(d) = Zq#A © 4 Preald = Z v t(a) Vd=0) (@)

where & rums through rank n semi-stable F,-rational vector bundles of degree d on X 2
then by the vanishing theorem for semi-stable vector bundles & and the Riemann-Roch
theorem, we conclude that

axsa(mn) = By a(mn) - (¢ = 1) (Ym 2 g). 3)
In addition, direct from the definition, we have
Bxpm(mn) = Bxp,n(0)  (Ym € Z). “
Therefore, by the standard {-technique for curves, we have the following

Theorem 1.2 ([14]). The rank n-zeta function zx,]pq;n(S) of a genus g projective regular
curve X over B, is given by, with Q = ¢",

Zm (1) 1= Lxz,n(S)

(Q = DBxa(0)- T

8~
Z xmm) (17767104 QDTS g (g = 1) + T ™

m=0

In particular, when n = 1, we have recovered the following standard, but less well-
known formula for the Artin Zeta function of the curve X/F,, with t = g™,

Z(/IF (1) ':ZX/F[,(S)

(g = DBx/z,(0)1

8~
Zax/F (m) (7670 4 g ED) e (g = 1) + d=ni-qn

where, to simplify our notation, we have set axr (d) = axg,1(d) and By (d) =

Bxr,:1(d).
This theorem clearly implies the zeta properties on rationality and the functional equa-
tion in the previous theorem. Indeed, if we set

PX,]F,,;n(T)
(1-T)1-QT)- T8

Zn(T) = ®)
Then Pxp,.,(T) is a degree 2g polynomial in T with real coefficients whose leading coef-
ficient and constant term are g™ a/x,]pq;n(O) and ax,pq;n(O), respectively.

After examining many examples in lower ranks, we formulate the following

2The beta invariant was first introduced in [4].



Conjecture 1.1 (Riemann Hypothesis [14]). The rank n-zeta function ZX,]Fq;n(s) of a pro-
jective regular curve X over F, satisfies the Riemann hypothesis. That is, all roots of
Pxg,n(5) := Pxz,a(q™*) lies on the line R(s) = 1.

Obviously, this is equivalent to the condition that all reciprocal roots of Py, .,(T) are

of norm Q%. Still, there is an apparently weak but equivalent form is that all reciprocal
roots of Pxr,.n(T) are not real, thanks to the functional equation of the non-abelian zeta
é’X,]Fl;n(s)-

The first break-through in this direction is the following result relying on basic prop-
erties of Atiyah bundles [1] and a heavy use of combinatorics:

Theorem 1.3 ([16]). Let E be an elliptic curve over F,. Then the rank n zeta function
{EF,n($) of E satisfies the Riemann hypothesis.

1.2 SL,-zeta functions of a curve over a finite field

Let X be a regular projective curve over F, and let G be a split connected reductive alge-
braic group of rank r over F,(X), the function field of X/F,. Let

(Ve @=0" U0 A= ... ) @ = @, @) W)

be the root system associated to a fixed minimal parabolic subgroup Py of G and its
maximal split torus 7. Here, as usual, V can be identified with the real vector space of
R-span of rational characters of T, and is equipped with a natural inner product (-, -), with
which we may and hence will identify V with its dual V* := Homg(V,R). In addition,
®* c V, resp. @ := —®" | is the set of so-called positive roots, resp. negative roots,
A c V,resp. @w C V, is the set of simple roots, resp. of fundamental weights, and W is
the Weyl group generated by the reflections o, (@ € A). By definition, the fundamental

weights are characterized by the formula (w@;, ajv.) =¢;jfori,j=1,2,...,r, where @’ :=
m%) a denotes the coroot corresponding to a root @ € ®. We also define the Weyl vector
p by |
p=5 Z@ a, ©)
and introduce a coordinate system on V (with respect to the base {@y,...,w,} of V and
the vector p) by writing an element A € V in the form
r r
A= Z(l—sj)wj =p—zsjwj, (7
= j=1

which in turn induces natural identifications of V and Vo = V ®g C with R” and C’,
respectively. For each Weyl element w € W, we set

O, =0t nwld, (8)



be the collection of positive roots whose w-images are negative. It is well-known that the
cardinality of ®@,, coincides with the length ¢,, of w, i.e. the minimal number expressing
w in terms of o, (@ € A).

As usual, by a standard parabolic subgroup of G, we mean a parabolic subgroup of
G that contains the fixed minimal parabolic subgroup Py. From Lie theory (see e.g., [5]),
there is an one-to-one correspondence between standard parabolic subgroups P of G and
subsets Ap of A. In particular, if P is maximal, we may and will write Ap = A \ {a,} for
a certain unique p = p(P) € {1, ..., r}. For such a standard parabolic subgroup P, denote
by Vp the R-span of rational characters of the maximal split torus 7p contained in P, by
V} its dual space, and by ®p C Vp the set of non-trivial characters of Tp occurring in
the space V. Then, by standard theory of reductive groups (see e.g., [2]), Vp, resp. V5,
admits a canonical embedding in V, resp. in V*, which is known to be orthogonal to the
fundamental weight @, and hence ®p can be viewed as a subset of ®. Set

1
©p =" N D pp=; Z @ and cp=2Aw, - pp,al). ©)

Y
aedy

Now, for a regular projective curve X of genus g over a finite field F,, in [13], mo-
tivated by the study of zeta functions for number fields,? for a connected split reductive
algebraic group G, and its maximal standard parabolic subgroup P (defined over the func-
tion field of X/F,), we introduce the period of G and the period of (G, P) for X/F, by

. 1 Zyyr, (@)
A) = =
¥z, Y V;V [Toea(l — g=0vapa™) al:q)[w Ixp,((A,aV) + 1)

and op
‘”X}E,(S) :

G
Res(/l—p, a¥)=0, acAp (’-)X,]Fq (/l)|

sp=s

G
Res;,—o -+ Res;,, =oRes;, ;=0 - - - Ress, =0 wy g, (/l)|x,,=s ,

respectively, where s is a complex variable* and where for the last equality we used the
facts that
(p,@'y=1 (MaeA) and (wi,ajv-) =0;; (V1<i,j<r). (10)

As proved in [7, 13], the ordering of taking residues along singular hyperplanes (1 —
p,a") = 0for a € Ap does not affect the outcome, so that the definition is independent of
the numbering of the simple roots used in the definition.

3For number fields, the analogue of the two functions to be introduced below are special kinds of Eisenstein
periods, defined as integrals of Eisenstein series over moduli spaces of semi-stable lattices. For details, see [15].

4We should warn the reader that in [13], [15] and [14] a different normalization is used, with the argument
of w%’q (and later of £g"") being given by s = (s, — 1) (= n(s, — 1) in the special case (G, P) = (SLy, Py-1,1))
rather than s = s, as chosen here. With the normalization used here the functional equation relates s and 1 — s
rather than s and —n — s.



To get the zeta function associated to (G, P) for X/F,, certain normalizations should
be made. For this purpose, write wg’m \ = Z ~ewTW(’l)’ where, foreachw € W,

1 l—l Zxye, (A, a"))

T,(Q) := v = .
[Taea(l = g=0vd=ra®) acd, {x/F, (4, @Yy + 1)

Accordingly, we need to undertand the residue
Res{l—p, a¥)=0, aeAp Tw(/l)

Clearly, we care only about those elements w € W (which we will call special) that give
non-trivial residues, namely, those satisfying the condition that Res i, ¢v)=0, aeap Tw(d) #
0. This can happen only if all singular hyperplanes are of one of the following two forms:

(1) (wd — p,a¥) = 0 for some a € A, giving a simple pole of the rational factor
(2) (A4,a") =1 for some a € @, giving a simple pole of the zeta factor EX/IF,,«/L a’y).
For special w € W, and (k, i) € Z2, following [7] (see also [13]) we define
Npy(k,h) :=#a e w '@ : (@,,a") =k, (p,a") = h}
Mp(k,h) := max ](NRW(k,h — 1) = Npy(k, h)).

w specia

=Npyw,(k,h = 1) = Npy (k. h) , (11)

where wy is the longest element of the Weyl group. Indeed, the last equality is guaranteed
by Corollary 8.7 of [6]. Note that Mp(k, ) = O for almost all but finitely many pairs of
integers (k, ), so it makes sense to introduce the product

o

D?ﬁ,(s) = 1_[ HZX,]Fq(kn(S — 1) + W)MrEn, (12)
k=0

h=2

Following [15, 13], we define the zeta function of X/F, associated to (G, P) by
B30 () 1= g ImNB . pOP () - W (5). (13)

Here N, (Py) denote the nilpotent radical of the Borel subgroup Py of G.

Remark. For special w € W, even after taking residues, there are some zeta factors
ZX /F, (ks+h) left in the denominator of Res(—p, ¢vy=0, aea, Tw(4). The reason for introducing
the factor Dg’P (s) in our normalization of the zeta functions, based on formulas in [7]
and [13], is to clear up all of those zeta factors appearing in the denominators associated
to special Weyl elements.

In particular, we have the following



Theorem 1.4 (Functional Equation[14]). For a regular projective curve X over F,,
i (ep =) = Ly (9): (14)

The proof follows closely [7], where the functional equation is established for the
parallel structures on the so-called (G, P)-zeta function of number fields F'.

With all these, we are now ready to introduce the SL,-zeta function of X/F, by spe-
cializing to the case when G is the special linear group SL,, and P is the maximal parabolic
subgroup P,_; consisting of matrices whose final row vanishes except for its last entry,
corresponding to the ordered partition (n— 1)+ 1 of n. That is to say, the SL,,-zeta function
Z?gi;q(s) of X/F, is defined to be

>SL, ._ PSLy P, . 20D (g—1 SL,,,P,_ (SLy.Py-1.1)
LA ()= Lo M@ =g E0 DY) s wy ) (15)

As the first step to understand this zeta function, we have the following

Lemma 1.5 (Lemma 5 of [17]). The finction DS“»F+11(s) is given by

n—1

DLt (g) = HZX/E,(/C) - Lyr, (n3). (16)
k=2

Motivated by our study on the parallel structures for number fields, after verifying
some concrete examples, in [14], we formulate the following

Conjecture 1.2 (Special Uniformity of Zetas). For a regular projective curve of genus g,
up to some constant factor depending only on n and g, we have

Cxzgnl(s) = 53t () (17)

For number fields F, this uniformity of zeta functions is established by using Mellin
transforms to write down the rank n non-abelian zeta function of F in terms of integrations
of Epstein zeta functions over the moduli space of semi-stable Or-lattices of rank n and
degree zero. But Epstein zeta function is a special kind of Eisenstein series, which can be
realized as the residue of the Siegel-Langlands Eisenstein series associated to the constant
function on the Levi subgroup of the minimal parabolic subgroup P ;| corresponding to

n times
the decomposition n = 1 + ... + 1. Furthermore, the moduli space of of semi-stable OF-
lattices of rank n and degree zero can be identified with the truncated domain of Arthur
type within the fundamental domain of SL,(Z). Consequently, with an use of relative
trace formula yields the desired zeta uniformity. For details, please refer to Chapter 15 of
[15].

To pave the same path to establish the special uniformity of zetas for function fields,
the first difficulty is that the analogue construction of Mellin transform has yet to be
developed (see however a work of K. Adachi at Kyushu university on “Rankin-Selberg &
Zagier Methods for Function Fields over Finite Fields”).



1.3 Special uniformity of zeta functions

As said, the special uniformity of zetas claims that, for a global field F', the geometrically
defined rank n zeta function {r,(s) coincides with the Lie theoretically defined SL,-zeta
function ZEL”(S). When F is a number field, this conjectured in confirmed in [15] using
the theories of Eisenstein series by Siegel and Langlands, Arthur’s analytic truncation
and geo-arithmetic truncation of stability, and relative trace formula. When F is a func-
tion field, a totally different approach has been used, thanks to an unexpected work of
Mozgovoy-Reineke [9]. The uniformity of zetas for functional fields has been finally ver-
ified in the paper [17] of Zagier and myself, as a direct consequence of Theorem 7.2 of
[9] and Theorem 2 of [17].

Theorem 1.6 (Special Uniformity of Zetas; Theorem 1 of [17]). For a regular projective
curve X of genus g over F,, we have

B T =Y, 3 e
XFgn =5xF - p-1 . _ ghs—n+a+k
q S n50 nj:l (1 _ qk,+kj+|) (1 q ”)
ki+..+k,=n—a

1 Vi -V,

L= 1- q—nS+n—u+l+11) H;:i(l _ qu+lj+l)
Iseees r =

X ZX’]F(, (ns—n+a)

Indeed, in [9], based on the theories of Hall algebra and wall-crossing, Mozgovoy-
Reineke are able to offer a close formula for {xp, .,(s) in terms of partitions of n and
abelian zeta function ZX/]Fq(s) of X/F,. On the other hand, by examining the Lie structures
involved in great details in [17], Zagier and myself are able to obtain the explicit formula
for Z;S(fﬁl(s) as stated in the theorem above. It is not difficult to verify that this formula of

Z)S(ID‘; (s) coincides with the one for nypq;,,(s) of [9]. Consequently, the special uniformity
g
of zetas for curves over finite fields is established successfully.

1.4 General counting miracle

As the first application of the special uniformity of zetas of curves X/F,, we next give
closed formulas for the non-abelian geo-arithmetic invariants axg,;,(mn) and Bxg,..(mn)
of the curve X over F, associated to rank n semi-stable vector bundles. Indeed, by Theo-
rem 1.2 and Theorem 1.6, we have

> (Q - DBxp,qa0)-T
@x g () (T8 4 QUDTED) gy (ng = 1) + Fy
’;) (1-T)(1-07T)
= (;)(3_1) C Vkl - Vkp T
_q B —n+a X
; ki skp>0 Hlel(l - qki+k,i+|) (T — g™ +k,,)

ki+..+k,=n—a



g-2
> Z axz, (m) (q(n—a)(m—(g—l))Tm—(g—l) " q(n—u+l)((g—l)—m)T(g—l)—m)

m=0

-1 0)-g" T
+axr, ((g - 1)) + (g — DBxr,(0) - q )

(1 _ qnfaT)(l _ qn—a+lT)

1 T, ..
X 1 n—a+l+L T r—1 L4l
oo >0 ( —-q )H]:1(1_qj /+1)
L+..+l=a-1
since
g-2
ZX,JF,, (ns—n+a)= Z axJE, (m) (q(n—a)(m—(g—l))Tm—(g—l) + q(g—l)—mq(n—u)((g—l)—m)T(g—l)—m)
m=0
(g — DBx/r,(0)- ¢ T
+aye,((g - 1)+ — —.
(1 —g"T)(1 - gq"T)
To simplify our notation, set, foreacha =1,...,n,
(- DFAD]( gy . F@] 7y — (g1 Vki Vi, T
q () =Z"UT) = g - -
kl,...,zkp>0 Hf:;(l — ghitkin) (T — g~m+a+kn)
ki+..+k,=n—a
g-2
x Z ax e, (m) (q(n—axm—(g—l))Tm—(g—l) + q(n—ml)«g—1>—m>T(g—1>—m)
m=0
(g — DBx/e,(0) - ¢"“T
+ -D)+ .
ax/]F‘/((g )) (] _ qn—a’[‘)(l _ qn—a+lT)
% 1 Vi, L

W (=g [T - gl

Li+...+l=a-1

Form =0,1,...,¢ - 1, using the expansion - = ¥;2, ¥, we have

n
¢~ Vay s, (mn) = Resro T8> (Zyz (1)) = ) Resr—o( T2 Z1NT))
a=1

-2 — — [
- Z g 3 gz NG ety > @)
X/Fq Hp—l(l — gkitkiin)
a=1 m=k+C+x k=0 Kiyeenskp>0 =1 q’ =1
ki+..+k,=n—a

— —_ 00
ViV 141 \K
X Z r-la - lj+l,v+1)'z (g ™)+
1oy >0 j=1 q k=0
L+...+l,=a—1

T
+ 6m,gl(a’X/]P ((g-1)- ,_—)
! 11,§>0 Hj=}(1 — glitlien)

L+...+l=n-1



For example, if m = 0, we get

By T,
ax/F, O 1n,..150 ﬁ g2
~C)g-1) tetl=n—1 [T =g77h)
q CVX,]Fq;n(O) Wi, T
0 a -1 — =1
0,g-1| ¥X/F, ((g )) 2 l_{_l»-;»ll;?_ H;li(l_‘ill Tj1) 8

That is to say, for g > 1

o v -
q () l)a'X,Fq;n(O) = CYX/]R,(O) Z W = BxF,n- 1(0) (18)
1l >0 J=1
L+..+l=n-1
smce &L 1 q}1°(X,OX) -1
axr,(0) = Z -1  q-1 . (19

LePic®(X)

This formula was first conjectured in [14] for elliptic curves, which is established in [16]
after examining Atiyah bundles in details and a heavily combinatorial technique in 2016.
In September 2016, using a totally different method, K. Sugahara generalized this count-
ing miracle to all curves over [F,, which was reproved in [9] using Hall algebra and wall
crossing. Similarly,

7DD (Byr,u(0) + Qaxz, (8 — 2n)) = Resr—oT Zyp,u(T)

n - - — —
I D e
- - ks r=1 li+l;

o= _ ghrtkiy =i (I =gt

1
kts..kp>0 n?—l(] ..... 1,>0
ki+..+k,=n—a li+..+l=a-1
x 3 Zaw <k>2<q 08 Z( ey
k+l+k=g k=0
Vi -V, .
—axm(@-1) Y ()

p-1 .
koo 1o (1= gtk
ki+..+k,=n—a

Vi .V,

X ), T

—1 4]

w e 520 —gli*l)
li+...+l=a-1

V...V
+ (g — DBxyr,(0) - r—l—)
ll,§>0 l_[j:i(l - 611/'+l!'+1)

Li+...+=n-1

This then gives a closed formula for Bxr,n(0) after substracting Qozx,]pq;n((g—Z)n) obtained
above. Thus all in all, we have proved the following

10



Theorem 1.7 (General Counting Miracle). For a regular projective curve X of genus g
on By, its non-abelian invariants axg, ,(mn) (0 < m < g—1) and Bx 5, 1(0) for semi-stable
vector bundles of rank n are given by

(M) (e—1
g ©€ Vayg ,(mn)

n — — — —
_ Z q(n—a)(m—(g—l))(_ Z Vi« -+ Vk, Z Vi ..V
k- —1 4.
g Hf 1(1 _ qk,+k_,+1) I H;:l(l - qu+lj+1)

k>0 L1 (L= g™oet) oy = 0
ki+...+k,=n-a L e
p 1+1
IDIPXTIATEONTDY
m=k+{+k k=0
Vll e V[V
+ Om g—l(aX/n: ((g-1)- Z —)
, , - L
[y, >0 ;‘:1(1 _q!+ /+1)
li+...+l=n—1

q_(;)(g— l)(ﬁx,]Fq;n (0))

_ n ( Z Vi, Vk,, Z )73 Vi,
- - p-1 ks r—1 Li+l;
— 1,150 anI (] _ qk/+k/+1) I nj:l(l -q i+ /+1)

ki+..+k,=n—a Li+...+l,=a—1

x[q"-“ PR ][Zm <k>2(q )’ Z( “ll)]

k+l+k=g k+l+k=g-2

Vkl ) Vk n—a—k T/\11 . /\l
—ayE (- 1D) Y ()Y
p-l k k; r— [+1v
kis...skp>0 n 1(1 a /H) 1y,,>0 H] 1(1 ‘M)

ki+..+k,=n—a L+..+l=a-1

- T
l|,§>0 Hj:}(l —qu+lj+l)

Recall that
Bxgn(mn) = BxeaOVmeZ  and  axpa(mn) = ¢"" ¢ Bxg ,(0) (m>g)
(20)
this theorem in fact gives all the values of ax g, .n(mn) and Bxr,m(mn) for all m € Z, since
easily
axg,m(mn) =0 (m < 0). 21
We point out in passing when n does not divide &, the value of QX’Fq;n(d) and ,BX,Fq;,,(d)

have been obtained in [9] and [19], respectively.
We end this subsection with the following comments on ’Z\}S(’IFF"](T). By the special

uniformity, this function is equal to the rank n zeta function of X, which itself is a rational

SMozegovoy-Reineke call such pairs (1, d) generic in [9].

11



function of the form
P X,]Fq;n(T)

Ts71(1 - T)(1 - QT)’
Here Pi{%‘q(T) is a polynomial of degree 2g in T with real coefficients. However, in the

Vkl -~~Vkp

T
l—llffll (l—qkﬁkj*] ) (T_qfrnmk,,
j=

Zys,n(T) =

(22)

summand of Z1@I(s), from the first group

g particularly the term

T q(k] +...+k[,,] )T

(T_q—n+a+kp) - q(kl+m+kl”l)T—l ’

we see that the denominators are given by

1 1 1
T-1 qT—1"""" gme T -1

(23)

(g—DBxjzy (0)-¢"“T

From the second consisting of the whole bracket, particularly the term T T =g T}

we see that the denominators are given by
1 1
qn—aT_ 1’ qn—a+1T_ 1’

(24)

From the third group, particularly the term m, we see that the denominators are
given by
1 1 1
qn—a+l+lT -1’ (] _ qn—u+l+2T)’ e (] _ q11—u+l+u—lT) (25)
Consequently,
n
(s) = [Tg“ [@'T- 1)] )
=0
_ pi‘l)k] e V]fp - qk1+4..+k,,,1 T 1_[ (qu _ 1)
k>0 Lo (=g 0<t<n-a-1
ki+..+k,=n-a (k4. Akp-

g2
—a)(m—(g-1 —a+1)((g=1)=m) 72(g—1)—
X ((ZQ'X/JF,,(’") (q(n am=(g=D)m . gn=atD(g=-m 7 2g-1) m)

m=0

+axe, (= T )AL= ¢ T)(1 ~ "' T)

+(q = DpBx/z,(0) - qn_“Tg)

X Z & n (qlT—l).

r=le1 _ 1+l
l,..50>0 Hj:](l q’ /+1)n—a+2£€£n

,,,,,

L+..+l,=a—1 t#n—a+1+1

becomes a polynomial of degree (n—a)+2g+ (a—2) = n+2(g — 1) which is independent
of a. Therefore, ’Z\)S(]i;’ (T) is a rational function of the form

Piﬁ;q(T)
Ts ' [1720(@'T = 1)

(26)
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where Pi{;;q(T) is a polynomial of degree n + 2(g — 1) in T. By comparing this with

Pxryn(T)
T T o(¢'T-1)°
when taking the summation }_, Z!9(T) to obtain Z)S({jFil(T) so that among the product
[—[?:O(qu —1), all the factors (g7 — 1), (qZT —1),...,(¢""'T — 1) will be finally cancelled
out from the numerator (so as to leave only the factor T8~'(1 - T)(1 — QT) in the denom-
inator). This is one of the reasons why the Riemann Hypothesis for high rank functions
of curves over finite fields becomes quite complicated, even comparing with what has
happened for high rank zeta functions of number fields.

we see that in fact there are significant cancellations among the Z%(s)

2 Riemann hypothesis for rank two zeta: Yoshida’s ap-
proach

Applying Theorem 1.6 to n = 2, easily we conclude that, up to a constant fact depending
only on the genus g of the curve X/F,,

Oie,29) Ly 25— 1)

SL,
= - 27
gX,Fq(S) - % -1 27
We first use the functional equation to obtain
ASLZ( ) _ {X/]Fq(l - 25) : {X,/Fq(Zs - 1) _ {X/]Fq(zo—) B gx/]pq(_zo—) (28)
ox7,\8) = T 27as 31 1_glv2e  gl2e |
q q q q
where we have set s = % — 0. Therefore,
~ Ly, 20) Ly (<20
SL, _ . . /Fq _ X/Fy
gx,qu(S) =0 if and only if =g = T (29)
Write now <
- [T-, (1 — wig™)(1 —wig™)
e, (9) = —= (30)

g1 =g )1~ g')
where w; € C \ R and |w;| = +/g, guaranteed by the Hasse-Weil Theorem, or better, the
Riemann hypothesis for the Artin zeta function of X/F,. In particular,

wi+ Wl <24g<q+1  (V1<i<g). (31
Then (29) becomes

15,1 = wig) (1 —wig™>")
(I-g2)(1-¢'2)

15,0 - wig*)(1 = wig*")

(1 _ qza)(l _ ql+2o—)
(32)

q4(7'(g—])(q]—2(r_l) — (l_q]+2(7')

13



This is equivalent to
g 8
g A= | [A-wig? )1 -wig ™) = (1-¢7) [ |1 -wig? (1 -@ig™) (33)
In particular, we should have

8 8

g7 1A= | |10 =wig > (A=@ig )] = 11 =g7 1| |10 -wig® (1 ~wig )]
i=1 i=1

(34)

Lemma 2.1 (Yoshida). Fix a real number g > 1. Let a, 8 € C and write ¢ = a + 3.
Assume that o8 = q and that c € R satisfies |c| < q + 1. Then for w € C, we have

>l —aw|-|1 —Bw| if wl<l1

. (35)
<[l —aw|-|1-pBw| if  |w| > 1.

w—al-|lw-p| {

When @ = 1 and 8 = ¢, this lemma degenerates to an estimate on the fractional

—4 . In this sense, Yoshida’s lemma is a natural degree 2

transformation T,(W) :=

generalization from that for fractional transformations. Even an elementary proof can be
given immediately, we delay the details till the proof of Lemma4.5 below, which itself is
a generalization of Yoshida’s lemma.

Therefore, the left hand side of (34) is simply

8
"1 10 = @1 [ 10 = w0ig 7)1 - @ig ™)
i=1

8
=I(1 = @llg ™1 | 166 - wid@® - @)
i=1

> 1L, 10 = 0ig®) (A = @ig*)] - (g7 = Dllg" %7 if R(o) <0
<L, I = wig?)(A = @ig*)| - (g7 = Dllg" 27| if  R(o) > 0.

> T8, 10— wig®)(1 = @ig* ) - [ =Dl if R(o)<0
<15, 10 = w1 =@, - (@ =D if R(o)>0.

which is nothing but the right hand side of (34), provided that g > 1. This implies that
unless R(o) = 0, i.e., o is a pure imaginary complex number, g’)i]g(s) cannot be zero.
This then proves the following

Theorem 2.2. ( Yoshida) Let X be a regular projective curve of genus g, then the SL,
zeta function § XF (s) and hence the rank two zeta function § x/F,2(5) satisfy the Riemann

hypothesis.

14



This result is due to Yoshida [18], during our intensive lectures on non-abelian zeta
functions for number fields in Kyoto. Yoshida, motivated by our works on rank two zeta
functions of number fields [?, 10, ?], actually proves the Riemann hypothesis for a slight
more general zeta function

— Zx/]pq(zs) q_szx/Fq(zs -1
Ixp,(53Ch) = CI(S)I——ql_S - Ca(s oo (36)
where C;(s) takes the form
h
Ci(s) = gL+ g g™ [ | = vig VD)1 = 5ig" 1) (37)

j=1
with constants y; and ¢; satisfying the conditions that y; + §; € R, |y; + 6;] < g+ 1 for a
non-negative real number a and a natural number 4, and C;(s) determined by
Ca(s) = Ci(1 - s) (33)
so that _ _
L= =52 (). (39)

Our SL;-zeta function Z;]L;z(s) is certainly a special form of Yoshida’s type.

3 What can we get from the RH for the rank » zetas?

Before going further, we here deduce the natural upper and lower bounds for the non-
abelian geo-arithmetic invariants axg, ..(mn) (m = 0,...,g — 1) and Bxg, ..(0) of a curve
X/F, by assuming the Riemann hypothesis for rank » zeta function of X/F,. Indeed as we
will see later, in turn, when proving the Riemann Hypothesis for rank three zeta functions,
these bounds in case of n = 2 plays a very important role.

Set now

X F,in (2m)

aX,F,, n (O)

Pz

. 40
ax s, (mn) 40

a;(,Fq;n(mn) = and Bxr,m(0) =

Assume the Riemann hypothesis for the rank 7 non-abelian zeta function of X/F,. By

(5), we have

L, ) = T8 '(1 = T)(1 - OT)
axr,q(0) axr,n(0)

Zyp (1) =

10 (x,09m) OX0x)_1

1 50.In particular, ax/s, (0) = 4

FAUOy L.

. -, . X
9This definition make sense, since @y, ., (0) > L—= 05— e
g AulOX

15



g2
:((Z Wy g () (T" + (QTYED™) 4 @ (n(g = DTS (1= (Q + DT + QT?)

m=0

+(Q - DT*Byg, ., (0)

8
=[ (1 = wxsm DA = Bxje niT).
i=1

i=
where WX/F, mi denotes the reciprocal roots of PX,Fq;n(s). Indeed, WPX,EI;”(S) e R[T]
is a degree 2g polynomial in T of real coefficients with leading coefficient Q% and constant
term 1. By the functional equation of ’Z\X,Fq;n(T), we may regroup all 2g reciprocal roots
of Pxp,..(s) into g pairs, within each pair of which the product of two elements is always
equals to Q. Consequently, the Riemann hypothesis for rank n zeta function of X/F, is

equivalent to the condition that each such a pair is of the form {wx/]pq,n;i, EX/]FM;,-}. This is
certainly equivalent to the condition that

1 .
|oxe, il =07 G=1,...9 (41)
since wx/p, ni - Wx/F,mi = O-

Set now ax g, ni = Wx/F,ni + Ox/F,ni- From Vieta’s theorem between the reciprocal
roots and coefficients of polynomials, by comparing the coefficients of 7% fori=1,...,g
in both sides of the above identity, under the Riemann hypothesis (41), we conclude that
the follows hold:

&y () = (Q + Datys ,(0) = |5, ani] < 26 VO,

a/;(’Fq;n(mn) -0+ l)ag(’]Fq;n((m —Dn) + Qag(’]Fq;n((m - 2)n)| 2<m<g-1
< Dlsiy<iyemcipsag O™ = (?f)Qm/z

[(© = DBz, (0 = (Q + Dy (8 = D) + 0y, (8 = 20m)
< Zl§i|<i2<-~<ig§2g Qg/2 = (?)Qg/Z

Now expand each absolute value inequality, say |k| < ¢ as —¢ < k < c, first, and then add
three consecutive lower and upper bounds, we obtain the follows

~2¢ V0 < @z, (1) — (Q + Dy, (0) <22 VO,
- 0 B (P4)e 2 - 260 VO
< @y, (M) = (Q"+...+Q*+0+ 1)01;%;"(0) Q<m<g-1)
< S 0P R (H)0 N +280" VO,
SR O S ()0 - 260+ VO
< (0 - 1Bz, (0) - (Q¢+...+0Q*+0+ 1)a;LFq;n(0)
< IO T ()0 + 28041 VO

But, by definition, a;(,]FI;”(O) = 1. Therefore, we have proved the following:

16



Theorem 3.1 (Bounds of non-abelian invariants). Assume the Riemann Hypothesis for
the rank two zeta functions of a projective regular curve X over F, of genus g, we have
Jfor the invariants Bxg,.,(0) and a';(,Fq;n(Zm) m=1,...,g—-1)

-2 V0 < &z, ()~ (Q+1) <2 VO

m+1 Qk 3 (iZ_gl)Q(i—l)/Z _ 2ng—1 \/@
SCZX’]F[/;H(mn)—(Q’”+...+Q2+ 0+ 1) 2<m<yg)
< I 0P Bk (%) + 20! VO

- S 0 B ()R - 2200 VO
< Q- DByp 0 (05 +.. .+ Q*+ 0 +1)
2g+1 Q3 3k (2_g)Q(z D2 4 20081 \O

Example 3.1 (Brill-Noether Loci). Even when n = 1, the above result exposes some
intrinsic geo-arithmetic properties of the curve X/F,. Indeed, we may introduce the Brill-
Noether loci within the degree Picard group Pic?(X) of X by setting

X/F ' (d) = {L € Pic?(X) : ®°(X,L) > i} and W;j]Fq(d) :={L e Pic!(X) : (X, L) = i}.
(42)
The W> /7, (d)’s induce a natural stratification structure on Pic?(X) since

Wik, @ =] |Wyk (@ and Wi (d) = Pic!(X), 43)
jzi

It is natural to ask what are the topological or better motivic properties of these refined
structures. Set accordingly

w,(/IF ) = m ' (d) and w;"/Fq(d) = #W;;'Fq(d). (44)
and
hO(X,L)—1 hO(X,L)-1 i
q =i q q-1
K@D = )] o1 o d)= 2 PR R R
Lew;;Fq(d) LEW'/F (d)
(45)
Then
1)
Wil (d) = > wils (d) = #Pic’(X) and  ayye,(d) = 03 (d)—zq W, (@),
>0 i>0
(46)

17



which by Theorem 3.1, is controlled by

=2g+g < axp,(1)—(g+1) <2g+/q
Zm+1 k— 32{<_ (l 1) i-1)/2 _ 286]%1@
SaX/]Fq(m)—(’” +q2+q+1) 2<m<yg)
< Zmn k— 32,_ (:—) (i— 1)/2+2gqm—l \/‘—]
Zg+1 k=3 gk l(Zg)q(z D2 —2gq%' \fg
<(g- DBy, ) = (¢ +...+ ¢ +q+1)
< Zi% 43 Z,— (1 1) D12 4 20g8~ g

since ax/z,(0) = 1.
Recall that, by definition,

1 _
B, (0) = —#PlcO(X) =% = — [ [a ~wxr00 -Gy,
i=1
Hence it admits a natural bound
1 8
0<puz @< — [ [a+ Vo + va
i=1

So, at least for the S-invariant, (47) may not be the sharpest bounds.
Furthermore, we may introduce natural associated invariants

WXL _ |

s, (d) = Z qq%l = Z X/]Fq( )—

VeWsie, (@ jzi

and their associated generating function, for fixed i and d,
. =i i d
Axp,(u,v) = Z ayye, (d) - u've.
i,d>0
Recall that, by the vanishing theorem, we have
d—(g=1) _ 1

— #Pic’(X)  d>g

@)z, (d) = Sia-g-1)

(47)

(43)

(49)

(50)

61y

(52)

So, Ax/r,(u,v) is indeed a rational function of « and v satisfying standard functional equa-

tion, thanks to the duality theorem.

Obviously, there is a natural generalization of this discussion for rank »n semi-stable
bundles. We expect that the non-abelian motivic structures of X/F, may be understood

via the rank n generating function

B(X,Fgu,v;z) = ZA(X, Fyin;u,v)7" = Z aX]F n(mn)u’ Vv,

n>0 n,i,m=>0

18
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Similarly, by the vanishing theorem, we have

qd—n(g—l) _

1 #MxF,.n(0) d>ng (54)

a'):(l/]}?q (mn) = 6i,mn—n(g—l)
where My, .,(0) denotes the space of isomorphism classes, or better by including the
geo-arithmetic structures, the moduli stack of semi-stable vector bundles of rank »n and
degree mn on X rationally over F,. So, Bx/Fq(u, v;z) is indeed a rational function of u
and v satisfying standard functional equation, thanks to the duality theorem. For details,
please refer the final section on motivic structures of curves over general base fields.

We end this discussion with the following application of the Riemann hypothesis.

Lemma 3.2. For a regular projective curve X of genus g over Fy, we have

Bxr,2(0) 1 . Vs q
(VT - m > 0. In particular, = > 71 (55)
I I
Slight differently,
o301
o2 (56)
= _
vi 2q-1
Proof. Note that
Brr20) 1 ) MtTa 1 v g
v g+1 v g+1 v ¢ -1
Now
v (v d- wxr,iq (1 = Oxrq7) g2 V(g - 1)?
v UL (U - wxyrug ) (L= oxrq")? ) g7 26 D(1 - g72)(1 - qq72)
1 & (@xypi— 4 Nwxyri—q7") 1 7
q* 3! (1 = wxmuq (1 = Oxpaq") (1 - wxriq (1 - Oxpq7") ) g+ 1

(since wy/p,iwx/7,i = q)

ﬁ (@x/F,i — 4 Wi —qh) 7 5> ﬁ | 7 =
= — V2 v
(1 = wx/r,iqg7 A — Ox/rq7") ) 4> = 1 q* -1

i=1 i=1

by Yoshida’s lemma, since |¢7'| < 1 (and ¥, > 0 and ,VT; > 0)
%
1
¢ - q

21" T @-Dg-n

where in the last step, we have used the fact that there exists at least one F, rational point
in PicO(X). This verifies (55).

q
q° -1

- #Pic’(X) >
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In addition, since #Pic’(X) > 2, we have 2¢*#Pic’(X) + 3 > 34>. This implies that

qzqi -#Pic’(X) > 3. Therefore,

7 2 301
& #PIc’(X) > S —. (57)
=

>__ 7T
o (@-Dg-D
as wanted. O

This result will be used in the next section to prove the rank three Riemann hypothesis.

4 Riemann hypothesis for rank three zeta of a curve over
a finite field

4.1 Decompose rank three zeta

Let X be a regular projective curve of genus g over a finite field F,. By the special
uniformity of zetas, we have, (up to a constant factor depending only on n and g),

Oxzn =z (5)
1

n — —_
Z Z Vig oo vkp
- p-1 kitk; _ ns—n+a+k,
a=1 ki,...k,>0 Hj:] (1 U +1) (1 q p)
ki+..+k,=n—a

1 T, ..,
(1 — q—nx+n—a+l+l|) H;;i(l _ qli”ﬁl)

X ?X’Fq (ns—n+a)
It yeenl >0
Lh+..+l=a—1

In particular, when n = 3, we have

Cxra(9) =535 (9)

v % )~
- (1- q2)(1 _q3s—l) + (1- q35) gX,Fq(3S -2)
U —
T g s
V2 i =
+ (1= q) + TR Er=r) Ixr,(35)

3
>

“lal _. =2 >2
Z Oxye,(9) = xjp,a + e,

a=1
[ Z;?Fqﬁ(s)]

>
=Cxr, a1+ =3

)?/R,g(s)
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Here, as before,

V2 v
gX/IF (s) = ((1 _ 2)(11 — 1) a- 39)] ¢xr,(3s=2)
-2
Z)[(2/]]17,,( )= = 3s)(11_ g~3+3) {xr,(3s = 1)

V2

V2 —
ZE]F"(S) - [(1 —) - qz)(ll— q‘3”2)J bz, (35)

and we have used the following definition

2 3
Cia () = 12}(/]P (5) + L, ()
7 1;2 —
ZW §Xr GBs-D+ ((l,qiﬁz) + (l,qZ)(ll,q—f&HZ)) {xr,(35)
1 2
§X/r 3(8) '_?}[(/]IF ( )+ 12)[(/11'5 (s)

1
i + b ) e, 35 - D)+ i Do, Bs = 1)

(58)

Our strategy, motivated by [10] where a similar result is proved for rank three zeta of the

field of rational, to prove the Riemann Hypothesis for {x/z,.3(s) is first show the following

Proposition 4.1 (Riemann Hypothesis for E)Z(/Z]F 5(8)). For a regular projective curve X
4

over Fy, all zeros ofz)f/z]F 4(8) lie on the line R(s) = 3
4
Then based on this proposition, we prove the following

Theorem 4.2. For a regular projective curve X over Fy, there is no zero onX,]Fqﬁ(s) lies
in the half plane R(s) < %

Assuming this theorem, easily we have the following

Theorem 4.3 (Riemann Hypothesis in Rank Three). For a regular prOJectlve curve X
over F,, all zeros of the rank three non-abelian zeta {x]p 3(s) and SL3-zeta {X (s) of

X/F, lie on the line R(s) =

Proof. This is a direct consequence of Theorem4.2. Indeed, the functional equation
claims that

Lxr,a(1 = ) = Lxm(9). (59)

Hence, there is no zero of EX,Fqg(S) lies in the half plane R(s) > % as well. Therefore, all
zeros of rank three zeta Z\X,pqg(s) lies on the line R (s) = % |
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. . .0 —n+
4.2 Estimation on the ratio =< whena+b=n+1
{xpg (1-ns+n=b)

In this subsection, we will establish the following remarkable

Proposition 4.4. Let X be a regular projective curve over F,. Then for any integers a and
b satisfying the condition that a + b = n + 1, we have

Lpns—n+a) |(>1  if |g7<1
_ {XF, i Iqwl (60)
Ixr,(1—ns+n-b)| <1 if g > 1.
where o is defined by s = % + 0.
Proof. The point is to apply the functional equation for the abelian zeta function
-~ — 15, (1 = wx/r,.iq )1 = Wx/z,iq7")
e, (1= 9) = e, (5) = ——= ‘ (61)

gD - g1 - ¢'=%)

to the abelian zeta factor ZX 5, (ns — n + b) appeared in the denominator of m )
? {xr, (1-ns+n—b)

when a + b = n + 1. Accordingly, for s = % + o, we have

> _ . ,(1-ns+n-b)(g-1) - _n
{xp,(ns —n+a)-q _ &R0 -3+ @D

Zxg,(1 = ns +n = b) - grs-n+ae=1) - Ly, (1 —no + 1 —b)
- 1- wX/]Fq,ié]_"o—Jr%_a)(l - EX/]Fq,iC]_mH%_a) (1- q—l+no-—g+b)(1 _ qno-_%”,)
ax/]ﬁq,iq_HmT—%er) (1- q—mr+§—a))(1 _ ql—mr+g—a)

] (1- U)X/Fq,iq_lﬂw—_%)rb)(l _

=g 27D [ﬁ " - “’X/Fq,ilIf_“)(q"” :EX/]F(,,iq%_a)" ]
=t (1= wX/]F‘I”'qilm(Fﬁh)(l - wx/]Fq,iCI*”""’E*b)

(1- q_1+"‘7‘%+b)(1 _ qno'—%Jrh)
(@ =g ) (q"" —q'+27)

To estimate this latest expression, we next give a the following generalization of Lemma 2.1
of Yoshida.

Lemma 4.5. Let g and « be real numbers satisfying g > 1 and « > 0. For any complex
number a, 8 satisfying a8 = q and |a + 8| < g + 1, we have,

B B B B > 1 if w] <1
w—aq"|-lw-Bq"| =1 -agw|-|1 - Bg"w|- . (62)
<1 if w > 1
In particular, when k = 0, we recover Yoshida’s inequality:
> 1 if w<l1
w—al-w=pg=I1-awl-|1-pBw- . (63)
<1 if  |wl > 1.
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Proof. We start with the following

Sublemma 4.6. For a fixed real number q > 1, as a function of x in the region x > 0,

fi@) =g 1" g+ 1) 20 (64)
Proof. Clearly, f(0) = 0. Hence it suffices to verify that
£ = (247" = g*(g + D) logqg = ¢"logq - (24" = (g + D) > 0.  (65)
But this is a direct consequence of the fact that for g(x) = 2¢**' — (g + 1),
g(x)=2¢""1ogqg >0 (66)
since g(0) =g —1>0. O

Back to the proof of the lemma. We follow Yoshida’s approach closely. By a direct
calculation,

w = ag"Plw = B¢ = (w? = (@ + B)g“w + aBg™)(W* = (@ + B)g"W + aBg™)
= Wl* = (@ + B)g Wl (w + W) + (@B)g™ (W* + W) ()
+ (@ + By gl = (@ + BYaB)g™(w + W) + () g™
11— ag*wP|1 — Bg“w|* = (1 — (@ +B)gw+ aﬁqz’(wz)(l — (@ +B)gw+ aﬁq2KW2)
= (@B q* " = (@ + B)@B)g W (w + W) + (@B)g™ (W + W) (b)
+ (@ + By g = (@ +B)g (w+ W) + 1
Subtracting (b) from (a), we get
w — agPlw = Bg' = 11 = ag"wl’l - Bgwl®
= (1= @B)g™)(ml* = 1)((1+ @Bg™ )Wl + 1) = (@ + B (w +W)))
Set now |w| = r. We claim that
(1+(@Bg™)(r +1)-2r(@+p)g" = (1+g*)(P+1)-2r(@+p)g" >0 (r#1) (67)
since the discriminant of this degree two polynomial with real coefficients in r is given by
A =4 + B> — 4(1 + > < 4((q + 12> - (1 + 247 + q4k+z))
— 4((q2 +2g + g - (1 + g% + q4x+2)) — 4((q2 + g - (1 4 q4x+2))
=4fp(20) <0

by Sublemma4.6. Indeed, when D < 0, the claim is trivial since the leading coefficient
(1 + ¢g**1) is strictly positive. In addition, even if this discriminant is zero, which is
equivalentto x = 0 and @+ = g+ 1, (67) holds as well, since the degree two polynomial
becomes (g + 1)(r — 1), which is strictly positive when r # 1. |
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Back to the proof of Proposition 4.4. By the calculation above Lemma ??, we have

{xp,(no— 35 +a)

= = |= -
{xp,(1 —ns+n—>b) {xr,(1 —no + 35 —b)
-2n0(g-2) | q*(l+n—(a+h))(g—1)|

{xp,(ns—n+a)

1]

i=1

- (UX/]Fq,iq%_a)(qno_ - aX/]I-?q,iéﬁ_a)

— “Trno—1+b
(1 — wx/F,.iq wxE,iq ")

(1 _q—1+no'—%+b)(1 _ qna-_%_’+b))
. (qn(r _ q%—a))(qmr _ ql+§—u))

1+no-—g+b)(1 _

Now apply Lemma4.5 to each pair of factors of the numerator within the product

- 1’ namely, with the parameters @ = wy/z, i, 8= wWxys,i (=1,...,8), k = % — aand

w = ¢"7, which is applicable thanks to the Riemann hypothesis, or better, the correspond-

ing theorem of Weil, for the Artin zeta function ZX/Fq(s) of the curve X/F,, we have, for
8§22,

ZX]F (no -3 +a

Zxz,(1 —no+ 4% - b)

ZXF (ns—n+a)

é’x]p (1-ns+n- b)
— |q—(l+n (a+b))(g— 1)|

8
all
i=

(1 - wxyr,, q’“’*z (1 - @x/r,iq" )
(1 _ (’-)X/F —l+no-% +b)(1 _ "-)X/]Fq,iq —1+no-% +b)

S E A
<1 if g > 1.

(1- q—1+no——§+b)(1 _ qng‘—g+b))
. (q'w' — q%—a))(qno' _ ql+%—a))

In particular, when a+b = n+1, we have §—a = —1 -4 +b and hence the denominator and

numerators are identical for each pair of factors W1th1n the product le Consequently,

{xp,(ns —n+a)

EX,Fq(l —ns+n-—>b)

<1 if |gv> 1.

_ '(1 _ qmr+g—a)(l _ qno'+%—a+l))

>1 if Jg7l<1
@ =5 )g - ¢ | {

Now, by applying Lemma4.5 again to the numerators involved, with parameters ¢ = 1,
b= g, k=735 2 —aandw = ¢"7, we get

{xp,(ns—n+a)

Zx,pq(l —ns+n->b)

1
(a+b=n+1, s=:§+0') (68)

>1  if |gvl<1
it g > 1.

as wanted. O
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Otyn®
4.3 Estimation on the ratio TG = o whenb =a+1

XFqin
By definition,
Vi Vi 1 1 Vi -V,
“lal Z ST, -1 itk D) (]—gntatk Z lesy>0 it T+l 71 T
XF, n(s) ki+.. +kp—n a H 1 (=g 77 (=g "1 li+..+l=a-1 (1=Tq ])H (=g 7Tt
Z:[b] ( Viy -k 1 1 Vi, -V,
5 3 1 Vip S LTy
X.Eysn ktyenskp> - Kitkie1) (1_,-n+b+k lyeisdr>0 n—bt 1+ -1 T+l
k1+...+kp—n p T (=g 80 (=g ¥ /1) S n 2 | (=T ) T (=g
{X]p (ns—n+a)
{xIF (ns—n->b)

Write s = % + o, then the zeta factor becomes

Lxr,(ns —n + a) B L, (n = 4 +a)

zqu(”s —n+b) B ZX,]R,(”O' -5+Db)

T3+

g~ EraE=D)
« [ﬁ (1- U)X/Fq),‘qf(”"*%*“))(l - EX/]Fq,iq(”o';”))) . (1 - q—(na—§+b))(1 _ ql_("‘r_%”))

g (- wX/]Fq’iq*(n(r*%b))(l - EX/Fq,iq*(no'—ngb)) (_qf(mf—gm))(l _ qlf("”’%”))

[ - wX/qu,iq_nO—+%_a)(l - DX/qu,iq_mﬂ'g_a)] (g - q—na'+§—a)

i=1

(@x/F,i — 4" N wxE, i — g ) (=g )

(sinceb=a+1 and wxF,iWxr, =q Yi=1,...,8)

Therefore, by applying Yoshida’s lemma to the factors in the denominator with the pa-
rameter & = wy/g, i, B = Wx/r,; and w = g7"77279, we have

Ty, (no 1 + a) nor+-a)

Lxz,(no =2+ b)

_|la-4q
(1 _ ql—no'+§—a))

. > 1 lq—na+%—a| > 1 ~
{ el <1 (b=a+1) (69)

That is to say, we have proved the following

Proposition 4.7. For a regular projective curve X over F,, we have

{xp,(no— 5 +a)

Ixz,(no = 2 +b)

(q—q™"*2)
- (1 _ ql—n{r+%—a))

J>1 lq"7| < |3~ (b = a+1) (70)
<1 |qmr| > |q2 a|
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This implies that, when b = a + 1,

“lal
X,Fq;n(s)
~1b]
{xr,n(8)
Vi Vi 1 1 Vi -V,
Zklf—l":lfpfr? " I‘[?;ll(l_q“j*"‘jﬂ) (lfq_”m*'kp*'%*'mr) le-il-l“:l[,fao—l (liq—%—/m+n—a+l+[1) n;’;ll(l_qu*'l;#])
B oty =n— ekl =
2 Kiky>0 Ty ! 2l >0 - LIt
seeesp > - jtk; —n+a 2 no senesly > ~ 2 —no+n-a - i+
Kboiontmant U (=g 7 (=g et donny 4 2 ) (g 370ty 1 (=g 70e)
—no+5— n_
o a-a i | > lg"| < |g%~]
a- ql—no'+%—a)) <1 lg"| > q%—al
Vi - Vky 1 1 iy Vi
Z ki ek >0 = Tk —n Z Lyl >0 P -1 T+
k1+l.‘.+k::n—a 7:1 (1-¢ ) (1*‘](“0 2+a)+kp) 11+l...+l,:a—1 (I-¢ e ZM)H”]) n;:l (1_f1!+ )
) 2 Kieky>0 Ty 7 2 L0 L Ly
seeesKp > - itk no—12+a 3 seeesby> —(no-2+a - i+
ki +..f+kp:pn—a—1 H?:ll(lqu’%f”) (1=g"7 270 1) 11:—...+l,=a (1= 7727 n§=ll(1’q"’+lj”)
(q—q | [>1 9" < |5~
( _ql—(no'—§+a)) <1 lg™| > |q§—a|

So we are lead to consider the norm of the following rational function in the first big factor

rX/]Fq;n,a(O-)
Y ki YTy - 2 hd ! YT
kl+{jj;’k:j,?_a T (=g (g Tty &) 20 | (g o Tty T =g 7o)
- 5 Vi Vi 1 5 Vi -V,
" +k1;k;rk:pn>?a_1 Hfz_ll (lquﬂﬁk/'*l ) (]_q(rwf%+a)+l+kp) l]l}i—’;l—rl?fu (]_qf(mrf%w)ﬁl ) nfz_ll (]—qlf”/*-l )

fX/IFq;n,a(O—) . gX/]Fq;n,a(a—)

Sx/e nar1 () - x/F, ma+1(07)

Here in the last step, we have set accordingly

Vk .. '/V\k,, 1
Fomma@) = : (71)

. S0 nf:_ll(l _ qk,-+k/+1) (1- q('ﬂT*%*G)*’kp)

and I
1 vy ..V
aa(0) = - . 72
8x/Fyina(0) ll,§>0 (1 — g-r=3+a+i+l) 1—1?:—11(1 — glitlin) (72)
L+..+l=a-1
Therefore,
“lal n n
)Zqu;n(s)  SxiEna(0) - 8x/Ema(0) | (g — g ) | > 1 lg""] < |5~
2&?]]1: _n(S) fX/]Fq;n,a+l(o-) : gX/]Fq;n,aJrl(o-) (1 - (]1_(”0—_%+a)) <1 |qw| > |61%_“|
Fy;
(73)
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We end this subsection with the following comments. It appears to be very tempting
to apply Yoshida’s lemma to the factor in the middle with parameters @ = 1, § = g and
w = g~~3*9_ Unfortunately, this would only result inequalities in opposite directions.
Nevertheless, as to be seen in the subsection below, there will be a nice total cancelation
on this middle factor from the factors in the first group on the ratios of f and g’s.

4.4 The Riemann hypothesis for ?)—(’%;3(@

In this subsection, we prove the following

Proposition 4.8 (Riemann Hypothesis for 2“;[;],3(5)). Let X be a regular projective curve
Fy;

over F,. Then all zeros of’g’;’%ﬁ(s) lie on the line R(s) = %

Proof. Indeed, from the definitions in the previous subsection, particularly, in (71) and
(72)taking parameters n = 3, a = 2 and a = 3, we have

Vi« Vi, 1

;:11 (1 = ghtkiny (1 = gBr=3+21+k)

Sxrz,p000) = Z

K1 ymonrky>0
ki+..+kp=1
— 1 _ 1 5,
= Vkp PV =V oy — —
p:l,k,,:l (1 - q( o2t ) P) (1 - C]( -5+ )+ ) 1 —-q o+35
and N N
Vk] e vkp 1
SfxiE3241(0) 1= Z _ 1
e Kiyoky>0 Hi:ll(l - qkf+kf+l) a- q(3("%+3)+kp)
k|+..,+k,f:3_3
Similarly,
1 T
8x/r,32(0) 1= — p_ll
W o (1= g Grmardtiehy [T (1 - glitlien)
L+ 4=2-1
1 N 7
- Z DTSN P
LA (1 = g Bt drlehy 1 — g3+
and
() ! ViV,
8X/F;32+1\0) 1= = — -
b o (1= g Or=3s31l) () gl

1 _ 1 ViV,
= 3 vy + Z 3 -1
AT (1 _ q—(3o-—§+3)+1+ll) s (1 _ q—(3(r—5+3)+l+l,) Hj;l (1 _ qu+lj+1)
T L=l=1
-2

(1- q—30'+%) (1- q—30'+%—1) 1- 612
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Therefore,

Jxir,32(0) - 8x/r,:3.2(00)

Jxip3241(0) - gx/8,3241(0)

rx/p,32(0) =
_ 30+3-1
_ 1 1-¢g 2

: 3
v L\ —3(r+1—1(’\/l q ) 1-g3*+2
((vf tip) g R 1

Consequently, by the result in the previous subsection, particularly, by (73), we have

EX%_I]F’”(S) (g-g )| |>1 7] < |q272
e e e o IR P
lg4] > 1 7] < g
_ 1 >1 |q3‘7| < q‘%
TG G L el
Lemma 4.9. we have
|
7 = v o |q3‘7| ) q_? (74)
EEEm e | R N
Proof. To see it clearly, set o = —é + 7 so that 30 = —% + 37, and let

(EJF 1 )_q-smgq(’vj q )

Dx /g, 32(7) :=2 R = TIo g
V) 1 3l V2 q*
=2 (;—?H_—qz)‘q (q;—fl_—qz)
:Zq'(%+lq2)' (%E“Ll_lq:)_ 3¢
"l —1 (q% + lzqz)
where in the last step, we have used Corollary 3.2 that
% + I—qu > 0. (75)

Note that the condition |¢*”| < ‘q‘%

is equivalent to |q3T| < 1, and similarly for the
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opposite direction. Hence it suffices to verify that

2q-(’vé+ 1 ) (%Jr 12)
1

1-q

_ 3T <1 |q3T' <1
T q_zz) q | = DX/]Fq,S,Z(T){> | 77 > 1 (76)
Vi

In other words, for w = q3T, we have to show that

(1) When |w| < 1, then w should be contained inside the disc of radius —

s)

2 q
26](7% + l—qz)
v + 1-¢2
centered at A—qz; and
V_2
q’{,?[ + 1_q2

(2) When |w| > 1, then w should be totally located outside the disc of radius

1
2 (f—z + 4 )
_ q v 1-¢?
2 1
W Ee
centered at — >
V2
= +
qv% 1-¢>

An elementary discussion implies that this would happen if and only if the disc of radius
1

V2 1
= + 1-42
; -q . . o
NI centered at ‘l = should be totally contained in the unit disc [w| < 1.
V2 V2
2Q(’v?l + 1-¢2 CI;—% + -4
l\% + l—lqz
Since — — € R s a real number, this means that
"i_% + lq 2
v —q
» 1
1 'v_il + 1-¢*
- . + — 7 > -1
v v o 4
Zq(»v2 + l—qz) Aq’\/\% + l_qz (77)
V2 1
1 . i iz <1
) q ) 7
2‘1(";% + 1_q2) ‘]fvil iy
That is to say,
v 1
1 v + 1-¢2 1
14 R R (78)
) Vo, 4 )
24(“% + %) 9%t Ty 2‘1(3? + 1)
or the same
= 1/2 + L1
V) 1/2+1 a1 3 1
= > max , = (79)
Vi qg-1 q+1 2g-1
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which is guaranteed by (56) in Corollary 3.2. O

We are now ready to complete our proof of the proposition. Indeed,

1713]
1 28xE,3(5
(2] _ 272 =131 _ 513 Fys
X,Fq;3(s) - ng,Fq;?s(S) + gx’]pq;g,(s) = (X’]Fq;?,(s) [—AB] ’ s +1 (80)
S X.Fy;3

By Lemma 4.9 just proved, all the zeros of the second factor lie on the line R(s) = 1 -1 =

276
%. Accordingly, it suffices to show that the zeros of 2[3] (s) cannot be the zeros of

X.EFy;3
7121 (s). Recall that

X.F;:3
2[2] (s) := A12 ZX]F Bs—-1)
X/F, (1- q3s)(l _ q—3s+3) g
2[3] (s) = 2 + Vlz Z 3s)
X/F, . (1 _ q—3s+3) (1 _ qz)(l _ q,35+2) X.F,

Obviously, the zeta zeros from the zeta factor’(}/pq(?a s), which are on the line of R(s) = %,

cannot be the zeros of ZX/]F(](:SS — 1), which are on the line R(s) = %, by the Riemann

hypothesis for the Artin zeta function ¢ F/Fq(s). This then leaves the zeros of the rational

3]

function factor in {y ;. ,(s), which is clearly not on the line of R(s) = % Therefore, all
Fy;

17713]

. 38x5,3(5) .
zeros of {g‘:)%]mﬁ(s) +Z\§]{Tq;3(s) are coming from the second factor % +11in (80) and
Fy

hence lie on the line R(s) = %, as wanted. |

4.5 Rank three Riemann hypothesis

Now we are finally ready to complete our proof of Theorem 4.2 and hence Theorem 4.3.

. . 5
We start with the function Ry;r, 3(s) := (1 4 ) . Recall that

Gy ®)

1274701 - Ty
T T (1 - ¢'T)

1
2)%51‘423(” = _2)[(2,1]%;3(” +Z\£I]Fq;3(s) =

2 81

Here, by the Riemann hypothesis for Z)ﬁv 3(s) established in the previous subsection, we
have

il =07 Vi<i<n+2g-1) (82)
Then

— 1 1
Gin,(9) =005, a(9) + 580k 5(9) = 50k 5(1 = 9+ Lk 5(1=5)
+2(g-1) i n -
5ea-2 1 Eeor-y)

:(QT)—g+1 [T)_o(1 - 5—’;) Costreirs2 [T - 1)
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Therefore,

l—1n+2(q I)(l T)/)

~x[2] ~l1] 177121 _
Ixp3 ) Oxpa(9) + 38 5(8) T [Ty(1-¢'T) T D Ty,
(2] T 172 —13] - WEDOT_yy  AJO VOT — 2L
Zx]y: 3(S) {X]F 3(S)+§X]F 3(S) =) ll H’ﬁ':( (/?Tl%) Q i=1 QT Vo
Q7 *¢lre2 =0\ )
1-Ty;
We examine the factor QT—%” under the condition that |y;] = Q'3 forall 1 <i <
)

n+2(g — 1). Write then y; = Q3 ¢, Then

1- Ty,- | 1=TQBe® | |1 - QT Q /0
Note that
176 .00 |2
ll— vorg et t L @ -DA+PIITE
VOT — Q7!/6e~1% OIT? — Q'3(e T + ¢i*T) + Q™3
Obviously,
‘ <1 ITI < VO )
VO 71 > VO

This implies that Ry/p,.3(s) has no zero in the region R(s) < % Now note that, by §4.1,
we have

_ 72 (9
Tx5,5(9) = L () + D 5(9) = Lo, g<s>[1 + ’”f—3] = 3, a(9) Ry 5(5) (84)
X/IF 3

Thus, to prove Theorem 4.2, what is left to to show that the zeros of Z;?F ,3(5) cannot be the
.

zeros of Z:X’]Fq;:;(s). But this is clear, since all zeros of Z;?F 4(5) lie on the line R(s) = 1 -1
.
by the functional equation.

gX/]F 3(1 - S) gx/]p 3(S)~ (85)

In particular, Z;?F 4(1 —s)and Z;?F 5(s) cannot have any common zero. Therefore, from
(84), the zeros of { x.F,:3(s) cannot come from the first factor { X[Z] (s), but all come from

zwq 4(5)

the second factor (1 + = ) This proves Theorem 4.2 and hence also Theorem 4.3.

(5)
X/IF 3
We mention in passing that an analogue of this result holds for the rank 3 zeta function

ZQ;3(S) and hence the SL,, zeta function 2(31‘3 (s) the field Q of rationals has been proved by
Suzuki [11] (See also [15] for general discussions).
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