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CURVATURE OF THE L2-METRIC ON THE DIRECT IMAGE
OF A FAMILY OF HERMITIAN-EINSTEIN VECTOR BUNDLES

By WING-KEUNG TO and LIN WENG

Abstract. For a holomorphic family of simple Hermitian-Einstein holomorphic vector bundles over
a compact Kähler manifold, the locally free part of the associated direct image sheaf over the
parameter space forms a holomorphic vector bundle, and it is endowed with a Hermitian metric
given by the L2 pairing using the Hermitian-Einstein metrics. Our main result in this paper is to
compute the curvature of the L2-metric. In the case of a family of Hermitian holomorphic line
bundles with fixed positive first Chern form and under certain curvature conditions, we show that
the L2-metric is conformally equivalent to a Hermitian-Einstein metric. As applications, this proves
the semi-stability of certain Picard bundles, and it leads to an alternative proof of a theorem of
Kempf.

0. Introduction. Given a holomorphic family of simple Hermitian-Einstein
holomorphic vector bundles over a fixed compact Kähler manifold and paramet-
rized by a complex manifold, one obtains a coherent analytic sheaf over the
parameter space by taking direct image. The locally free part of the direct image
sheaf forms a holomorphic vector bundle over a Zariski open subset of the pa-
rameter space and is endowed with a Hermitian metric given by the L2-pairings
on global holomorphic sections of the Hermitian-Einstein bundles with respect
to the Hermitian-Einstein metrics and the Kähler metric on the Kähler manifold.
Our objective in this paper is to compute the curvature of this L2-metric.

This work is partly motivated by earlier works of various authors on the
analogous problem of computing the curvature of the Weil-Petersson metric on
the moduli space of Hermitian-Einstein vector bundles over a compact Kahler
manifold ([C], [ST], [ZT]), where the Weil-Petersson metric is defined similarly
by the L2-pairing on the harmonic representatives of the Kodaira-Spencer classes
associated to tangent vectors of the moduli space. In particular, the approach of
Schumacher-Toma [ST] is especially inspiring to us, and their observation that
the curvature form of the total space contains the harmonic representatives of the
Kodaira-Spencer classes also plays an important role in our computations.

In the case of a family of ample line bundles over a compact Kähler manifold
of semi-positive Ricci cuvature, the curvature of the L2-metric takes a simple
form (see Theorem 2). When the parameter space is a compact Kähler manifold,
the L2-metric is conformally equivalent to a Hermitian-Einstein metric, which
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leads to the semi-stability of the direct image (see Theorem 3). Our result also
leads to an alternative proof of a theorem of Kempf [Ke2] on the Picard bundle
associated to an ample line bundle over an abelian variety (see (1.4)). A problem
of Narasimhan asks whether for compact Riemann surfaces of genus g and a line
bundle of degree d > 2g � 2, the Hermitian-Einstein metric on the associated
Picard bundle over the Jacobian variety with respect to the canonical polarization
is conformally equivalent to the L2-metric (see [Ke2]). Our result may be regarded
as a partial solution to the higher dimensional analogue of Narasimhan’s problem.

This paper is organised as follows. In x1, we introduce some notations and
state our main results. In x2, we carry out the computation of the curvature of
the L2-metric. In x3, we treat the case of a family of Hermitian holomorphic
line bundles with fixed positive first Chern form. Finally, in x4, we give a short
alternative proof of Kempf’s theorem.

1. Notation and statements of results.

(1.1) Let X be a compact Kähler manifold of dimension n endowed with a
Kähler metric g. Denote the Kähler form of g by !. Let (E0, h0) be a Hermitian
holomorphic vector bundle of rank r over X, and denote the curvature form
associated to the Hermitian connection of h0 by Ω0 2 A1,1(X, End(E0)). Here
A1,1(X, End(E0)) denotes the space of End(E0)-valued (1,1)-forms on X. (E0, h0)
is said to be Hermitian-Einstein if

p�1ΛΩ0 = c � IdE0

for some real constant c, where Λ denotes the adjoint of the operator of exterior
multiplication by !, and IdE0 denotes the identity endomorphism on E0. E0 is
said to be simple if any global holomorphic endomorphism of E0 is a constant
multiple of the identity. It is well-known that E0 is a simple Hermitian-Einstein
vector bundle if and only if E0 is stable with respect to ! in the sense of Mumford
and Takemoto (see [D1], [D2], [Ko1], [Lü], [NS], [UY]). A holomorphic family
f(Es, hs)gs2S of Hermitian holomorphic vector bundles over X parametrized by a
complex manifold S is a Hermitian holomorphic vector bundle (E , h) over X � S
such that EjX�fsg = Es and hjX�fsg = hs. Furthermore, f(Es, hs)gs2S is said to be a
family of (simple) Hermitian-Einstein vector bundles if each (Es, hs) is (simple)
Hermitian-Einstein.

Let �: X � S ! S denote the projective map onto the second factor. By
Grauert [G], the direct image sheaf ��E is coherent over S, and is thus locally
free outside a proper analytic subvariety Z of S. Moreover, one has

(��E)s = H0(X, Es) for s 2 SnZ,

where, by abuse of notation, we also denote the holomorphic vector bundle over
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SnZ which underlies ��E by the same symbol. On SnZ, the vector bundle ��E is
endowed with a smooth Hermitian metric known as the L2-metric and is given
by

H(t, t0) :=
Z

X
ht, t0i!

n

n!
, for t, t0 2 H0(X, Es), s 2 SnZ.

Here ht, t0i denotes hs(t, t0). We shall also use the same symbol to denote the
pointwise inner product on Es-valued differential forms induced by hs and g. It
is well-known that the Hermitian-Einstein metric on a simple vector bundle is
unique up to a positive constant factor (see e.g. [UY]). Thus for a family of
simple Hermitian-Einstein vector bundles (E ! X � S, h), h is unique up to a
smooth positive function �(s) on S, and the associated L2-metric H on ��E is
also unique up to the same function �(s) on SnZ.

For s 2 S, we let �: TsS ! H1(X, End(Es)) denote the Kodaira-Spencer
map, and let �v 2 A0,1(X, End(Es)) denote the harmonic representative of �(v) in
H1(X, End(Es)). We let GEs (resp. GEs
E�

s ) denote the Green’s operator on Es (resp.
End(Es))-valued differential forms associated to the @̄-Laplacian � := @̄@̄� + @̄�@̄
on Es (resp. End(Es)). Here �v , GEs , GEs
E�

s are with respect to the Hermitian
metrics hs and g. Denote the curvature form of (E , h) by Ω 2 A1,1(X�S, End(E)).
We will use the symbol [ , ] to denote Lie brackets of Es-valued differential forms,
and we will adopt the Einstein notation of summing up indices which appear in
both subscripts and superscripts.

We are now ready to state our main result as follows:

THEOREM 1. Let (E ! X�S, h) be a holomorphic family of simple Hermitian-
Einstein vector bundles of rank r over an n-dimensional compact Kähler manifold
X and parametrized by a complex manifold S. Let Z � S be the proper analytic
subvariety such that the associated direct image sheaf ��E is locally free over SnZ.
Then the curvature tensor Θ 2 A1,1(SnZ, End(��E)) of the L2-metric H on ��E is
given by

Θtt̄0uv̄ = Ψuv̄ � H(t, t0) +
Z

X
hGEs
E�

s (Λ[�u, �̄v ])t, t0i!
n

n!
(1.1.1)

�
Z

X
hGEs(�ut), �v t0i!

n

n!
,

for s 2 SnZ, u, v 2 TsS and t, t0 2 H0(X, Es), where Ψ 2 A1,1(SnZ) is given by

Ψ(s)uv̄ :=
1

r � Vol(X,!)

Z
X

Tr(Ωuv̄(x, s))
!n(x)

n!
.(1.1.2)

Here Tr denotes the trace and Vol(X,!) denotes the volume of X with respect to !.

Remark. When h (and hence H) is multiplied by a smooth positive function
�(s) on S, the first term of the curvature tensor Θ of H in (1.1.1) is modified
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by �@@̄ log� � H(t, t0), while the second and the third terms of (1.1.1) remain
unchanged.

(1.2) Next we consider a holomorphic family of (ample) Hermitian holomor-
phic line bundles (L ! X�S, h) = f(Ls, hs)gs2S over a compact Kähler manifold
(X,!) and parametrized by a complex manifold S, such that the first Chern forms
c1(Ls, hs) satisfy the following condition: there exists k 2 R

+ such that

c1(Ls, hs) =
k

2�
! for each s 2 S.(1.2.1)

Note that if (X,!) is of semi-positive Ricci curvature, then each Ls � KX is
ample, and by Kodaira vanishing theorem, Hi(X,Ls) = 0 for i > 0. Then by a
result of Grauert [G], ��L is locally free over S. Then Theorem 1 gives rise to
the following:

THEOREM 2. Let (L ! X � S, h) be a holomorphic family of ample Hermitian
line bundles with fixed positive first Chern form equal to (k=2�)! for some k 2 R

+

as above. Suppose furthermore that (X,!) is of semi-positive Ricci curvature. Then
the curvature tensor Θ 2 A1,1(S, End(��L)) of the L2-metric H on ��L is given by

Θtt̄0uv̄ = Ξuv̄ � H(t, t0)(1.2.2)

for s 2 S, u, v 2 TsS and t, t0 2 H0(X,Ls), where Ξ 2 A1,1(S) is given by

Ξ(s)uv̄ :=
1

Vol(X,!)

Z
X

�
Ω(x, s)uv̄ � 1

k
h�u, �vi(x)

�!n(x)
n!

.(1.2.3)

Here Ω 2 A1,1(X � S) and �u, �v 2 A0,1(X) are defined similarly as in (1.1). In
particular, the Hermitian connection of H on ��L is projectively flat.

As one will see in the proof of Theorem 2, the pointwise inner product
h�u, �vi(x) in (1.2.3) is actually constant independent of x.

Remark 1.2.1. (1.2.2) implies that with respect to any Hermitian metric on
S, the trace ΛΘ is pointwise proportional to the identity on ��L, i.e., ΛΘ =
�(s) � Id��L for some smooth function � on S.

(1.3) Let L be an ample holomorphic line bundle over a compact complex
manifold X. Denote the Picard variety of X by Pic0(X). There exists a line bundle
known as the Poincaré line bundle P over X � Pic0(X) such that PjX�f0g = OX

and PjX�fsg is the line bundle represented by s 2 Pic0(X). P is unique up to

the pull-back of a line bundle over Pic0(X) (see e.g. [La, Chapter 4]). Denote by
p: X � Pic0(X) ! X (resp. �: X � Pic0(X) ! Pic0(X)) the projection onto the
first (resp. second) factor. The Picard bundle W(L) over Pic0(X) associated to L
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is defined as follows:

W(L) := ��(P 
 p�L).(1.3.1)

Recall also that if the first Chern class c1(X) of X in H2(X,Z) can be represented
by a semi-positive (1,1)-form, then one simply says c1(X) � 0. Recall also that
a vector bundle is said to be poly-stable with respect to a Kähler form ! if it is
a direct sum of !-stable subbundles with the same slope. Then Theorem 2 gives
rise to the following:

THEOREM 3. Let X be a compact complex manifold with c1(X) � 0.
(i) Let L ! X � S be a holomorphic family of ample line bundles over X and

parametrized by a compact Kähler manifold S. Then ��L is poly-stable with respect
to any Kähler form on S.

(ii) In particular, the Picard bundle W(L) over Pic0(X) associated to an ample
line bundle L is poly-stable with respect to any Kähler form on Pic0(X).

Notice that since c1(X) � 0, one can deduce as in (1.2) that ��L (and thus
W(L)) is necessarily locally free. Also Theorem 2 and Theorem 3 apply to a
wide class of manifolds that include Calabi-Yau manifolds and abelian varieties.

(1.4) Let A be an abelian variety. Then its Picard variety is just its dual
abelian variety Â. In this case, one fixes the isomorphism class of the Poincaré
line bundle P over A� Â by requiring additionally that Pjf0g�Â = OÂ. Let L be

an ample line bundle over A, then we get a line bundle P
p�L on A� Â. Denote
the associated Picard bundle over Â by W(L) as in (1.3.1). It is well-known
that as a line bundle over an abelian variety, there exists a Hermitian metric h
on P 
 p�L (unique up to a positive constant multiple) such that its curvature
form is invariant under translations of A� Â (see e.g. [F, Chapter 2, x2] or [MB,
Chapter 2]). Kempf proved the following:

THEOREM 4. [Ke2] With respect to any translation-invariant Kähler metric on
Â, the Hermitian-Einstein metric on the (stable) Picard bundle W(L) is equal to
the L2-metric induced by h and any flat Kähler metric on A.

Thus unlike Theorem 2, no conformal change is necessary here. We will
give a short alternative proof of Theorem 4 using Theorem 2. Kempf’s original
proof of Theorem 4 is rather algebraic, whereas our approach is more differential-
geometric in nature.

2. Curvature of the L2-metric.

(2.1) Throughout x2, we will follow the notations in (1.1). Let (E ! X �
S, h) be a holomorphic family of simple Hermitian-Einstein vector bundles as
in Theorem 1. Let m = dimC S and n = dimC X. For s 2 S and v 2 TsS, recall
from (1.1) that �v 2 A0,1(X, End(Es)) denotes the harmonic representative of
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the Kodaira-Spencer class of �(v). Recall also from (1.1) the curvature tensor
Ω 2 A1,1(X�S, End(E)) of (E , h). We shall need the following proposition, which
also plays a crucial role in the computation of the curvature of the Weil-Petersson
metric by Schumacher-Toma [ST]:

PROPOSITION 2.1. [O], [ST, Proposition 1] With respect to local coordinates
s = (si)1�i�m for S, z = (z�)1���n for X and coordinate tangent vector @=@si 2 TsS,
one has

�@=@si(z) = Ωi�̄(z, s)dz̄� 2 End((Es)z)
 T�z X for z 2 X.(2.1.1)

Remark. Proposition 2.1 can be interpreted as follows: For s 2 S and v 2 TsS,
extend v arbitrarily to a vector field ṽ on an open neighborhood U of s in S. Then
lift ṽ horizontally to a vector field on X � U � X � S, which we denote by the
same symbol. Then the relative differential form (in the X direction) associated
to the contraction ṽ [Ω 2 A0,1(X � U, End(E)) restricts to �v on X � fsg.

We are now ready to give the proof of Theorem 1 as follows:

Proof of Theorem 1. Choose local coordinates s = (s1, : : : , sm) for S, where
m = dimC S, so that ��E is locally free at s = 0 and of rank p. Choose a holomor-
phic trivialization ft1, t2, : : : , tpg of ��E over a coordinate neighborhood U � S
containing 0 such that the L2-metric H on ��E satisfies

@Hab̄

@si

���
s=0

= 0 for 1 � a, b � p, 1 � i � m.(2.1.2)

Here Hab̄ = H(ta, tb), and we will use the letters a, b to index ft1, : : : , tpg thereafter.
Note that ft1(s), : : : , tp(s)g forms a basis of H0(X, Es) for each s 2 U. We will
use the letters i, j to index coordinate functions s1, : : : , sm on S and we will use
the Greek letters �,� to index coordinate functions z1, : : : , zn on X. In the sequel,
covariant derivatives will be used with respect to the Kähler metric g on X, the flat
connection on S and the Hermitian connection on (E , h). We will use the standard
semi-colon notation to denote covariant derivatives, so that ta;i := r@=@si ta, ta;� :=
r@=@z� ta, etc. With respect to the above trivialization, the curvature tensor Θ of
(��E , H) at s = 0 is given by

Θab̄īj(0) = �@2Hab̄

@si@s̄j

���
s=0

(2.1.3)

= � @2

@si@s̄j

Z
X
hta, tbi!

n

n!

���
s=0

= �
Z

X
hta;īj, tbi!

n

n!

���
s=0

�
Z

X
hta;i, tb;ji!

n

n!

���
s=0

= : I1 + I2.
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First we deal with the integral I2. Denote by HE0 the harmonic projection
operator on E0 with respect to the Laplacian, so that at s = 0,

ta;i = HE0 (ta;i) +�GE0 ta;i,(2.1.4)

where GE0 is as in (1.1). Then it follows from (2.1.2) that at s = 0,

Z
X
hta;i, tbi!

n

n!
= 0 for 1 � a, b � p, 1 � i � m.(2.1.5)

Since ftbg1�b�p forms a basis of H0(X, E0) at s = 0 and HE0 (ta;i) 2 H0(X, E0), it
follows from (2.1.5) that

HE0 (ta;i) = 0 for 1 � a � p, 1 � i � m.(2.1.6)

Combining (2.1.4) and (2.1.6), we have, at s = 0,

Z
X
hta;i, tb;ji!

n

n!
=

Z
X
h�GE0 ta;i, tb;ji!

n

n!
(2.1.7)

=
Z

X
(h@̄�GE0 ta;i, @̄

�tb;ji + h@̄GE0 ta;i, @̄tb;ji)!
n

n!

=
Z

X
hGE0 @̄ta;i, @̄tb;ji!

n

n!

(since [GE0 , @̄] = 0 and @̄�tb;j = 0).

In terms of the semi-colon notation, the commutation relationrir�̄ta�r�̄rita =
Ωi�̄ta becomes ta;�̄i � ta;i�̄ = Ωi�̄ta, which is usually called the Ricci identity.
Taking @̄ in the direction of X, we have

@̄ta;i = ta;i�̄dz̄�(2.1.8)

= (ta;�̄i �Ωi�̄ta)dz̄� (by Ricci identity)

= �Ωi�̄tadz̄� (by holomorphicity of ta)

= ��ita (by Proposition 2.1),

where �i denotes �@=@si 2 A0,1(X, End(Es)). Combining (2.1.7) and (2.1.8), we
have

I2 = �
Z

X
hGE0 (�ita), �jtbi!

n

n!
.(2.1.9)

Next we deal with the first integral I1 in (2.1.3). By the Ricci identity and holo-
morphicity of ta, we have, as in (2.1.8),

ta;īj = ta;̄ji �Ωījta = �Ωījta.(2.1.10)
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As in (2.1.4), we have, for s 2 S,

Ωīj = HEs
E�

s (Ωīj) + GEs
E�

s �Ωīj,(2.1.11)

where HEs
E�

s , GEs
E�

s denote the harmonic projection operator and the Green’s
operator on End(Es) respectively. Since HEs
E�

s (Ωīj) 2 H0(X, End(Es)) and Es is
simple, we have

HEs
E�

s (Ωīj) = Ψ(s)īj � IdEs(2.1.12)

for some Ψ(s)īj 2 A1,1(SnZ). For fixed s 2 SnZ, we have, by (2.1.12),

Ψ(s)īj =
1

r � Vol(X,!)

Z
X
hHEs
E�

s (Ωīj), IdEsi
!n

n!

=
1

r � Vol(X,!)

Z
X
hΩīj, IdEsi

!n

n!

(since HEs
E�

s is self-adjoint and IdEs is harmonic),

which implies Ψ is as given in (1.1.2). To deal with the last term in (2.1.11), we
recall that from the computations in [ST, p. 106, equation (11)], one has

�Ωīj = g�̄�[Ωi�̄ , Ω�j̄] 2 End(Es),(2.1.13)

which is a consequence of the Ricci identity, the Bianchi identity and the Hermitian-
Einstein condition on (Es, hs). On the other hand,

g�̄�[Ωi�̄ , Ω�j̄] = g�̄�[Ωi�̄ , Ωj�̄](2.1.14)

= Λ[�i, �̄j] (by Proposition 2.1).

Thus

I1 = �
Z

X
h�Ωījta, tbi!

n

n!
(by (2.1.3), (2.1.10))(2.1.15)

=
Z

X
h(HEs
E�

s (Ωīj) + GEs
E�

s �(Ωīj))ta, tbi!
n

n!
(by (2.1.11))

= Ψ(s)ījH(ta, tb) +
Z

X
hGEs
E�

s (Λ[�i, �̄j])ta, tbi!
n

n!

(by (2.1.12), (2.1.13), (2.1.14)).

Then (1.1.1) follows immediately from (2.1.3), (2.1.9) and (2.1.15), and we have
finished the proof of Theorem 1.
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3. Family of Hermitian line bundles with fixed positive first Chern form.

(3.1) Throughout x3, we will follow the notation in (1.2). Let (L ! X�S, h) =
f(Ls, hs)gs2S be a holomorphic family of Hermitian line bundles as in Theorem 2.
Recall that X is endowed with a Kähler metric g of semi-positive Ricci curvature,
and whose Kähler form ! satisfies (1.2.1). To prove Theorem 2, we shall need
the following lemmas:

LEMMA 3.1. Let (X, g) be a compact Kähler manifold of semi-positive Ricci
curvature, and let � 2 A0,1(X) be a harmonic (0,1)-form. Then

r� = 0 and r� = 0.(3.1.1)

Here r� (resp. r�) denotes the tensor with components ��̄;� (resp. ��̄;�̄).

Proof. Since � 2 A0,1(X), we have r� = @�. Then the first equality of (3.1.1)
follows from the fact that the @̄-Laplacian and @-Laplacian are equal on a Kähler
manifold. The second equality of (3.1.1) follows from the semi-positivity of the
Ricci curvature and the Bochner formula (see e.g. [S1, equation (1.3.3)]).

LEMMA 3.2. Let f(Ls, hs)gs2S be as in Theorem 2. For fixed s 2 S, let t 2
H0(X,Ls) and let � 2 A0,1(X) be a harmonic (0,1)-form on X. Then with k 2 R

+

as in (1.2.1), we have

�(�t) = k�t.(3.1.2)

Proof. By (1.2.1), the curvature form Ω of (Ls, hs) satisfies Ω��̄ = kg��̄ ,
where g denotes the Kähler metric on X. Also, since both � and t are @̄-closed,
@̄(�t) = @̄� ^ t � � ^ @̄t = 0. In terms of local coordinates (z�) for X, we write
� = ��̄dz�. Then

�(�t) = (@̄@̄� + @̄�@̄)(�t)

= @̄@̄�(�t) (since @̄(�t) = 0)

= @̄(� g�̄�r�(��̄ t))

= �@̄(g�̄�(��̄;�t + ��̄ t;�))

= �@̄(g�̄���̄ t;�) (since ��̄;� = 0 by Lemma 3.1)

= �(g�̄���̄;
̄ t;� + g�̄���̄ t;�
̄)dz
 (since g�̄�;
̄ = 0)

= �g�̄���̄ t;�
̄dz
 (since ��̄;
̄ = 0 by Lemma 3.1)

= �g�̄���̄(�Ω�
̄t)dz


(by Ricci identity and holomorphicity of t as in (2.1.10))

= kg�̄���̄g�
̄ t dz
 (by (1.2.1))

= k�t.

This finishes the proof of Lemma 3.2.
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Now we give the proof of Theorem 2 as follows:

Proof of Theorem 2. Let (L ! X � S, h) = f(Ls, hs)gs2S and Ω be as in
Theorem 2. On X, we denote by g the Kähler metric of semi-positive Ricci
curvature. For each s 2 S, it follows from (1.2.1) that the curvature form Ωs( =
ΩjLs

) of (Ls, hs) satisfies ΛΩ = k�IdLs , where k 2 R
+ is as in (1.2.1). In particular,

each (Ls, hs) is Hermitian-Einstein. By Theorem 1, the curvature Θ of the L2-
metric H on ��L with respect to fhsg and g is given by (1.1.1) and (1.1.2). Note
that Ls 
 L�s = OX . For s 2 S and u, v 2 TsS, let �u, �v 2 A0,1(X, End(Ls)) =
A0,1(X) be the associated harmonic forms as in (1.1). By Lemma 3.1, �u, �v are
parallel tensors and thus the pointwise inner product h�u, �vi is also parallel, which
implies that h�u, �vi is a constant function on X. In terms of local coordinates
(z�) for X, we write �u = (�u)�̄d�̄, etc. Then

Λ[�u, �̄v ] = g�̄�(�u)�̄(�v)�̄ = h�u, �vi.

Hence, Λ[�u, �̄v ] is also a constant function on X, and by definition of the Green’s
operator,

GLs
L�

s (Λ[�u, �̄v ]) = 0.(3.1.3)

Let t, t0 2 H0(X,Ls). By Lemma 3.2, �(�ut) = k�ut, and thus by definition of the
Green’s operator, we must have GLs(�ut) = (1=k)�ut. Also, we have seen earlier
that h�u, �vi is pointwise constant on X. Hence,

Z
X
hGLs(�ut), �v t0i!

n

n!
=

Z
X

�
1
k
�ut, �v t0

�
!n

n!
(3.1.4)

=
1
k

Z
X
h�u, �viht, t0i!

n

n!

=
1
k
h�u, �viH(t, t0).

Combining (1.1.1), (3.1.3), (3.1.4) and with Ψ as defined in (1.1.2), we have

Θtt̄0uv̄ = Ψuv̄ � H(t, t0) + 0� 1
k
h�u, �viH(t, t0)

= (Ψuv̄ � 1
k
h�u, �vi) � H(t, t0)

= Ξuv̄ � H(t, t0),

where Ξ 2 A1,1(S) is easily seen to be given as in (1.2.3). Thus we have completed
the proof of Theorem 2.

(3.2) In this section, we are going to deduce Theorem 3 from Theorem 2.
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First we recall the following well-known lemma, whose proof will be skipped
here:

LEMMA 3.3. Let fLsgs2S be a smooth family of holomorphic line bundles over
a compact Kähler manifold X and parametrized by a smooth manifold S. Let � be
a real d-closed (1,1)-form on X representing c1(Ls) 2 H2(X,Z) for each s 2 S
(c1(Ls) does not vary with s since H2(X,Z) is discrete). Then there exists a smooth
family of Hermitian metrics fhsgs2S on fLsgs2S such that

c1(Ls, hs) = � for each s 2 S.(3.2.1)

Now we give the proof of Theorem 3 as follows:

Proof of Theorem 3. First we prove (i). Let fLsgs2S be a holomorphic family
of ample line bundles over a compact Kähler manifold X with c1(X) � 0 and
parametrized by S as in (i). As mentioned in (i), c1(Ls) 2 H2(X,Z) does not vary
with s. Since each Ls is ample, c1(Ls) is a Kähler class. By a theorem of Yau [Y],
for any d-closed (1,1)-form � representing c1(X), there exists in any Kähler class
a Kähler metric whose Ricci form is 2��. Since c1(X) � 0, the above theorem
implies that there exists a Kähler metric of semi-positive Ricci curvature and
such that the cohomology class [!] of its Kähler form ! satisfies [!] = c1(Ls).
By Lemma 3.3, there exists a smooth family of Hermitian metrics fhsgs2S on
fLsgs2S such that c1(Ls, hs) = ! for each s 2 S. Then we endow ��L with the
L2-metric H associated to the Hermitian metrics fhsgs2S and the Kähler metric
!. By Theorem 2, the curvature Θ of H satisfies (1.2.2). Then with respect to
any Kähler metric on S, the trace ΛΘ of Θ satisfies ΛΘ = �(s) � Id��L for some
smooth function � on S (see Remark 1.2.1). Then it is known that this implies
H is conformally equivalent to a Hermitian-Einstein metric on ��L (see e.g. [S2,
p.16]). By a result of Kobayashi [Ko1] and Lübke [Lü], this implies that ��L is
poly-stable with respect to the Kähler form ! on S. This finishes the proof of (i).
To prove (ii), we first observe that by construction, the Poincaré line bundle P
forms a holomorphic family of line bundles over X with zero first Chern class.
Then for an ample line bundle L on X, P 
 p�L forms a holomorphic family of
ample line bundles over X with first Chern class equal to c1(L), and parametrized
by Pic0(X). Then (ii) follows immediately from (i). Thus we have completed the
proof of Theorem 3.

4. A Theorem of Kempf. In this section, we give an alternative proof of
Theorem 4 of Kempf [Ke2] using Theorem 2 as follows:

Proof of Theorem 4. Observe that the volume forms of any two flat Kähler
metrics over A are constant multiples of each other. Thus we just need to prove
Theorem 4 for one fixed flat Kähler form on A. As in Theorem 3(ii), W(L) is
the direct image sheaf associated to P 
 p�L which forms a family of ample
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line bundles fLsgs2Â with first Chern class equal to c1(L) and parametrized by
Â = Pic0(A). For the line bundle P 
 p�L over the abelian variety A� Â, denote
by h the Hermitian metric (unique up to a constant multiple) whose curvature
form Ω is invariant under translations of A � Â as in Theorem 4. Let hs = hjLs

for s 2 Â. The ampleness of L and the translation-invariance of Ω implies that
for each s 2 Â, c1(Ls, hs) is equal to a fixed positive-definite translation-invariant
(1,1)-form ! on A. As a translation-invariant Kähler form on A, ! is necessarily
flat. Then by Theorem 2, the curvature Θ of the L2-metric H on W(L) with respect
to the Hermitian metric h on P 
 p�L and the Kähler form ! on A is given as
in (1.2.2). Let Ξ 2 A1,1(Â) and �u, �v 2 A0,1(A) be as in (1.2.3). Then it follows
from the translation-invariance of Ω and (2.1.1) that �u, �v remain unchanged
under translations of u, v 2 TÂ induced by those of Â. Thus by (1.2.3), Ξ is also
invariant under translations of Â. Now with respect to any translation-invariant
Kähler metric on Â, the contraction ΛΞ is also translation-invariant and is thus
equal to a constant c on Â. Then by (1.2.2), ΛΘ = c � IdW(L), which implies H
is a Hermitian-Einstein metric on W(L), which is unique up to a multiplicative
constant since Kempf [Ke2] proved the stability of W(L) with respect to any
polarization on Â. This finishes the proof of Theorem 4.
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[NS] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann

surface, Ann. of Math. 82 (1965), 540–564.
[O] M. Overhaus, On the moduli space of Hermitian-Einstein bundles, Ph.D. thesis, Bochum, 1992.
[ST] G. Schumacher and M. Toma, On the Petersson-Weil metric for the moduli space of Hermitian-

Einstein bundles and its curvature, Math. Ann. 293 (1992), 101–107.
[S1] Y.-T. Siu, Complex analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential

Geom. 17 (1982), 55–138.
[S2] , Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics,
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