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The exceptional group G2 has two maximal parabolic subgroups Plong, Pshort correspond-

ing to the so-called long root and short root. In this paper, the second named author in-

troduces two zeta functions associated with (G2, Plong) and (G2, Pshort), respectively, and

the first named author proves that these zetas satisfy the Riemann hypothesis.

1 Introduction

Associated with a number field F is the genuine high-rank zeta function ξF ,r(s) for every

fixed r ∈ Z>0. Being natural generalizations of (completed) Dedekind zeta functions, these

functions satisfy canonical properties for zetas as well. Namely, they admit meromorphic

continuations to the whole complex s-plane, satisfy the functional equation ξF ,r(1 − s) =
ξF ,r(s), and have only two singularities, all simple poles, at s = 0, 1. Moreover, we expect

that the Riemann hypothesis holds for all zetas ξF ,r(s), namely, all zeros of ξF ,r(s) lie on

the central line Re(s) = 1/2.

Recall that ξF ,r(s) is defined by

ξF ,r(s) := (|�F |) rs
2

∫
MF ,r

(
eh0(F ,�) − 1

)
(e−s)deg(�) dµ(�), Re(s) > 1,
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where �F denotes the discriminant of F , MF ,r denotes the moduli space of semistable

OF -lattices of rank r (here OF denotes the ring of integers), h0(F , �) and deg(�) denote the

0-th geo-arithmetic cohomology and the Arakelov degree of the lattice �, respectively,

and dµ(�) denotes a certain Tamagawa type measure on MF ,r. Defined using high-rank

lattices, these zetas then are expected to be naturally related with nonabelian aspects

of number fields. For details, see [23–25] for basic theory, and [11, 24] for the Riemann

hypothesis arguments.

On the other hand, algebraic groups associated with OF -lattices are general

linear group GL and special linear group SL. A natural question then is whether principal

lattices associated with other reductive groups G and their associated zeta functions

can be introduced and studied. In this paper, we work with the exceptional group G2. In

contrast with a geo-arithmetic method used for high-rank zetas [23, 25], the one adopted

in this paper is rather analytic [1, 2, 8].

For simplicity, take F to be the field Q of rationals. Then, via a Mellin transform,

the high-rank zeta ξQ,r(s) can be written as

ξQ,r(s) =
∫
MQ,r [1]

Ê (�, s) dµ(�), Re(s) > 1,

where MQ,r[1] denotes the moduli space of Z-lattices of rank r and volume 1, and Ê (�, s)

the completed Epstein zeta functions associated with �. Note that MQ,r[1] may be viewed

as a compact subset in SL(r, Z)\SL(r, R)/SO(r) and Epstein zeta functions may be written

as the relative Eisenstein series E SL(r)/Pr−1,1 (1; s; g) associated with the constant function 1

on the maximal parabolic subgroup Pr−1,1 corresponding to the partition r = (r − 1) + 1

of SL(r), we have

ξQ,r(s) =
∫
MQ,r [1]⊂SL(r,Z)\SL(r,R)/SO(r)

Ê (�, s) dµ(g)

=
∫

SL(r,Z)\SL(r,R)/SO(r)
1MQ,r [1](g) · Ê (1; s; g) dµ(g),

where 1MQ,r [1](g) denotes the characteristic function of the compact subset MQ,r[1].

In doing so, by integrating over intrinsically defined and hence arithmetically

meaningful compact subsets MQ,r[1] of SL(r, Z)\SL(r, R)/SO(r), instead of the ill-defined

integrations ∫
SL(r,Z)\SL(r,R)/SO(r)

Ê (1; s; g) dµ(g),
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we get well-defined genuine nonabelian zetas ξQ,r(s).

In parallel, to remedy the divergence of integration∫
SL(r,Z)\SL(r,R)/SO(r)

Ê (1; s; g) dµ(g),

in theories of automorphic forms and trace formula, Rankin, Selberg, and Arthur in-

troduced an analytic truncation for smooth functions φ(g) over SL(r, Z)\SL(r, R)/SO(r).

Simply put, Arthur’s analytic truncation is a device to get rapidly decreasing functions

from slowly increasing functions by cutting off slow growth parts near all type of cusps

uniformly. Being truncations near cusps, a rather large, or better, sufficiently regular,

new parameter T must be introduced. In particular, when applying to Eisenstein series

Ê (1; s; g) and to 1 on SL(r, R), we get the truncated function �T Ê (1; s; g) and (�T1)(g), re-

spectively. Consequently, by using basic properties on Arthur’s truncation (see Section

2), we obtain the following well-defined integrations:

∫
SL(r,Z)\SL(r,R)/SO(r)

�T Ê (1; s; g) dµ(g) =
∫

SL(r,Z)\SL(r,R)/SO(r)
(�T1)(g) · Ê (1; s; g) dµ(g)

=
∫

F(T )⊂SL(r,Z)\SL(r,R)/SO(r)
Ê (1; s; g) dµ(g),

where F(T ) is the compact subset in (a fundamental domain of) SL(r, Z)\SL(r, R)/SO(r)

whose characteristic function is given by (�T1)(g).

As such, we find an analytic way to understand our high-rank zetas, provided

that the above analytic discussion for sufficiently positive parameter T can be further

strengthened so as to work for smaller T , in particular, for T = 0 as well. In general, it

is very difficult [1–3]. Fortunately, in the case of SL, this can be achieved based on an

intrinsic geo-arithmetic result, called the Micro-Global Bridge [23, 25], an analog of the

following basic principle in Geometric Invariant Theory for instability: A point is not

GIT stable, then there is a parabolic subgroup which destroys the stability. All in all, the

upshot is that we have

1MQ,r [1] ≡ �01, or the same, MQ,r[1] = F(0).

In other words, the moduli spaces of rank r semistable lattices of volume one coincide

with the compact subsets F(0) ⊂ SL(r, Z)\SL(r, R)/SO(r). Consequently, we have

ξQ,r(s) =
(∫

G(Z)\G(R)/K
�T Ê (1; s; g) dµ(g)

) ∣∣∣∣
T=0

.
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This then leads to evaluation of the special Eisenstein periods∫
G(Z)\G(R)/K

�T Ê (1; s; g) dµ(g),

and more generally, the evaluation of Eisenstein periods∫
G(Z)\G(R)/K

�T E (φ; λ; g) dµ(g),

where K is a certain maximal compact subgroup of a reductive group G, φ is a P -level

automorphic forms with P parabolic, and E (φ; λ; g) is the relative Eisenstein series from

P to G associated with φ [12].

Unfortunately, in general, it is quite difficult to find a close formula for Eisenstein

periods. But, when φ is cuspidal, then the corresponding Eisenstein period can be calcu-

lated, thanks to the work of [8] (see also [22, 28]) an advanced version of Rankin–Selberg

and Zagier method.

Back to high-rank zeta functions, the bad news is that this powerful calculation

cannot be applied directly, since in the specific Eisenstein series, i.e., the classical Ep-

stein zeta used, the function 1 corresponding to φ in general picture, on the maximal

parabolic Pr−1,1 is only L2, far from being cuspidal. To overcome this technical difficulty,

we partially also motivated by our earlier work on the so-called abelian part of high-rank

zeta functions [20, 22] and Venkov’s trace formula for SL(3) [19], introduce Eisenstein se-

ries EG/B (1; λ; g) associated with the constant function 1 on P1,1,...,1, the Borel, into our

study, since

(1) being over the Borel, the constant function 1 is cuspidal. So the associated

Eisenstein period ω
G;T
Q (λ) can be evaluated; and

(2) E (1; s; g) used in high-rank zetas can be realized as residues of EG/B (1; λ; g)

along with suitable singular hyperplanes, a result already known to Selberg

and Langlands. See, e.g., Diehl [4].

In fact, for (1), we have

ω
G;T
Q (λ) =

∑
w∈W

(
e〈wλ−ρ,T〉∏

α∈�0
〈wλ − ρ, α∨〉

∏
α>0,wα<0

ξQ(〈λ, α∨〉)
ξQ(〈λ, α∨〉 + 1)

)
.

(See Section 2 for details and unknown notations.) And for (2), we first know that is true

for SL(3) only, with the use of classical Koecher zeta functions (see, e.g., [25] for details).

In believing (2) holds for general SL(r), we seek the help from Henry H. Kim, among others.

This proves to be quite fruitful: not only in [9], we can offer a general formula for volume
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of truncated domain F(T ) in the case of split, semisimple groups, which then offers an

alternative proof for Siegel-Langlands’ well-known formula on volume of fundamental

domains [14]; but he brings us the paper of Diehl [4], which deals with Siegel–Eisenstein

series associated with the group Sp, from which (2) is exposed by a certain extra effort

[27].

With all this, it is clear that there are various difficulties in introducing and

studying new zetas associated with reductive groups G geo-arithmetrically, starting

from principal lattices and following the outline above for high-rank zetas associated

with SL. So, we decide to adopt an analytic method by focusing on the period ωG
Q (λ)

defined by

ωG
Q (λ) :=

∑
w∈W

(
1∏

α∈�0
〈wλ − ρ, α∨〉

∏
α>0,wα<0

ξQ(〈λ, α∨〉)
ξQ(〈λ, α∨〉 + 1)

)
, Re λ ∈ C+.

Such a period, as said above, may be understood formally as the evaluation of the Eisen-

stein period ∫
G(F )\G(A)/K

�T E (1; λ; g)dµ(g)

at T = 0, even T originally is supposed to be sufficiently positive. Simply put, the period

ωG
Q (λ) essentially comes from a regularized integration process concerning constant terms

of the associated Eisenstein series EG/B (1; λ; g), as a by-product of an advanced version

of the famous Rankin–Selberg and Zagier method.

The period ωG
Q (λ) of G over Q is of rank(G) variables. To get a single variable

zeta out from it, totally rank(G) − 1 (linearly independent) singular hyperplanes need

be chosen properly. This is done for SL and Sp in [26, 27], thanks to the paper of [4].

In fact, [4] deals with Sp only. But due to the fact that positive definite matrices are

naturally associated with Z-lattices and Siegel upper spaces, SL can also be treated

successfully with extra care. Simply put, for each G = SL(r) (or = Sp(2n)), within the

framework of classical Eisenstein series, there exists only one choice of rank(G) − 1

singular hyperplanes H1 = 0, H2 = 0, . . . , Hrank(G)−1 = 0. Moreover, after taking residues

along with them, that is,

ResH1=0, H2=0,...,Hrank(G)−1=0 ωG
Q (λ),

with suitable normalizations, we can get a new zeta ξG;Q(s) for G. Examples for SL(4, 5)

and Sp(4) show that all these new zetas satisfy the functional equation ξG;Q(1 − s) =
ξG;Q(s), and numerical tests (by MS) give supportive evidence for the RH as well. For

details, see [27].
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At this point, the role played in new zetas ξG;Q(s) by maximal parabolic subgroups

has not yet emerged. It is only after the study done for G2 that we understand such a key

role. Nevertheless, what we do observe from these discussions on SL and Sp is as follows:

all singular hyperplanes are taken from only a single term appeared in the period ωG
Q (λ),

to be more precise, the term corresponding to w = Id, the Weyl element identity. In other

words, singular hyperplanes are taken from the denominator of the expression

1∏
α∈�0

〈λ − ρ, α∨〉 .

(Totally, there are rank(G) factors, among which we have carefully chosen rank(G) − 1 for

G = SL, Sp.) In particular, for the exceptional G2, being a rank two group and hence an

obvious choice for our next test, this reads as

1〈
λ − ρ, α∨

short

〉 〈
λ − ρ, α∨

long

〉
where αshort, αlong denote the short and long roots of G2, respectively. So two possibilities,

(a) Res〈λ−ρ,α∨
short〉=0 ω

G2
Q (λ), leading to ξ

G2/Plong

Q (s) after suitable normalization; and

(b) Res〈λ−ρ,α∨
long〉=0 ω

G2
Q (λ), leading to ξ

G2/Pshort
Q (s) after suitable normalization.

Here, we have used the fact that there exists a natural one-to-one and onto correspon-

dence between collection of conjugation classes of maximal parabolic groups and simple

roots. This is the essence of Definition and Proposition in Section 3, dealing with very

important cases of a general construction for zetas associated with reductive groups and

their maximal parabolic subgroups [27].

As expected, similar to high-rank zetas, these newly obtained zetas ξ
G2/P
Q (s) for

G2 over Q prove to be canonical as well. In particular, we have the following.

Theorem. Let P = Plong or Pshort and ξ
G2/P
Q (s) be the associated zeta functions. Then

(1) ξ
G2/P
Q (s) are meromorphic, and admit only finite singularities, four for each, to be more

precise;

(2) ξ
G2/P
Q (s) satisfy the standard functional equation

ξ
G2/P
Q (1 − s) = ξ

G2/P
Q (s);

(3) All zeros of ξ
G2/P
Q (s) lie on the central line Re (s) = 1/2. �

Remark. With all this said for new zetas, we now point out a difference between

high-rank zetas ξQ,r(s) and new zetas ξSL(r);Q(s) := ξ
G/P
Q (s) attached to (G, P ) = (SL(r), Pr−1,1).

Roughly speaking, starting from Eisenstein series EG/B (1; λ; g), ξQ,r(s) corresponds to
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(Res → ∫
) ordered construction, and new zeta functions ξSL(r),Q(s) correspond to (

∫ →
Res)-ordered construction. Here, “(Res → ∫

)-ordered” means that we first take the

residues then take the integration; similarly, “(
∫ → Res)-ordered” means that we first

take the integration then take the residues. We have ξQ,2(s) = ξSL(2),Q(s), since no need

taking residue. However, in general, there is a discrepancy between ξQ,r(s) and ξSL(r),Q(s),

because of the obstruction for the exchanging of
∫

and Res. For example, ξQ,3(s) has only

two singularities at s = 0, 1, but ξSL(3),Q(s) has four singularities at s = 0, 1
3 , 2

3 , 1. Simply

put, though new zetas ξ
GL(r)/Pr−1,1

Q (s) = ξSL(r),Q(s) are closely related with high-rank zetas

ξQ,r(s) but are quite different indeed [27]. Nevertheless, we expect that the distribution of

zeros for ξSL(r),Q(s) is quite regular as well as for ξQ,r(s). In fact, we have the Riemann hy-

pothesis for ξSL(2),Q(s) (since ξQ,2(s) = ξSL(2),Q(s)), for ξSL(3),Q(s), and for ξSp(4),Q(s) [11, 17, 18, 24].

All this in turn suggests that the study of new zetas ξ
G/P
F (s) is not only interesting itself

but also suggestive of the study of other zetas, including Dedekind zeta functions. �

This paper is organized as follows. In Sections 2 and 3, due to LW, we introduce

various periods associated with automorphic forms using Arthur’s analytic truncations

(Section 2), and define zeta functions associated with G2 and its maximal parabolic

subgroups (Section 3). In Sections 4–6, due to MS, we give a proof of the corresponding

Riemann hypothesis.

2 Various Periods

In this section, we introduce various periods associated with automorphic forms using

Arthur’s analytic truncation.

2.1 Automorphic forms and Eisenstein series

To facilitate our ensuing discussion, we make the following preparation. For details, see,

e.g., [15] or [21].

Let F be a number field with A = AF its ring of adeles. Fix a connected reductive

group G defined over F , denote by ZG its center. Fix a minimal parabolic subgroup P0 of

G. Then P0 = M0U0, where as usual we fix once and for all the Levi M0 and the unipotent

radical U0. A parabolic subgroup P of G is called standard if P ⊃ P0. For such groups,

write P = MU with M0 ⊂ M the standard Levi and U the unipotent radical. Denote by

Rat(M) the group of rational characters of M, i.e, the morphism M → Gm where Gm
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denotes the multiplicative group. Set

a∗
M,C := Rat(M) ⊗Z C, aM,C := HomZ(Rat(M), C),

and

a∗
M := Re a∗

M := Rat(M) ⊗Z R, aM := Re aM := HomZ(Rat(M), R).

For any χ ∈ Rat(M), we obtain a (real) character |χ | : M(A) → R∗ defined by m = (mv) �→
m|χ | := ∏

v∈S |mv|χv
v with | · |v the v-absolute values. Set then M(A)1 := ∩χ∈Rat(M)Ker|χ |,

which is a normal subgroup of M(A). Set XM be the group of complex characters

which are trivial on M(A)1. Denote by HM := logM : M(A) → aM,C the map such that

∀χ ∈ Rat(M) ⊂ a∗
M,C, 〈χ , logM(m)〉 := log(m|χ |). Clearly,

M(A)1 = Ker(logM); logM(M(A)/M(A)1) � Re aM.

Hence, in particular, there is a natural isomorphism κ : a∗
M,C � XM. Set

ReXM := κ
(
Re a∗

M

)
, ImXM := κ

(
i · Re a∗

M

)
.

Moreover, define our working space XG
M to be the subgroup of XM consisting of complex

characters of M(A)/M(A)1 which are trivial on ZG(A).

Fix a maximal compact subgroup K such that for all standard parabolic sub-

groups P = MU as above, P (A) ∩ K = (M(A) ∩ K)(U (A) ∩ K). Hence, we get the Lang-

lands decomposition G(A) = M(A) · U (A) · K. Denote by mP : G(A) → M(A)/M(A)1 the map

g = m · n · k �→ M(A)1 · m, where g ∈ G(A), m ∈ M(A), n ∈ U (A) and k ∈ K.

Fix Haar measures on M0(A), U0(A), K, respectively such that

(1) the induced measure on M(F ) is the counting measure and the volume of the

induced measure on M(F )\M(A)1 is 1. (Recall that it is a fundamental fact

that M(F )\M(A)1 is of finite volume.)

(2) the induced measure on U0(F ) is the counting measure and the volume of

U0(F )\U0(A) is 1. (Recall that being unipotent radical, U0(F )\U0(A) is compact.)

(3) the volume of K is 1.

Such measures also induce Haar measures via logM to the spaces aM0 , a∗
M0

, etc.

Furthermore, if we denote by ρ0 the half of the sum of the positive roots of the maximal
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split torus T0 of the central ZM0 of M0, then

f �→
∫

M0(A)·U0(A)·K
f (mnk) dk dn m−2ρ0dm

defined for continuous functions with compact supports on G(A) defines a Haar measure

dg on G(A). This in turn gives measures on M(A), U (A), and hence on aM, a∗
M, P (A), etc,

for all parabolic subgroups P . In particular, one checks that the following compatibility

condition holds

∫
M0(A)·U0(A)·K

f (mnk) dk dn m−2ρ0dm =
∫

M(A)·U (A)·K
f (mnk) dk dn m−2ρP dm

for all continuous functions f with compact supports on G(A), where ρP denotes one half

of the sum of all positive roots of the maximal split torus TP of the central ZM of M. For

later use, denote also by �P the set of positive roots determined by (P , TP ) and �0 = �P0 .

Fix an isomorphism T0 � GR
m. Embed R∗

+ by the map t �→ (1; t ). Then we obtain

a natural injection (R∗
+)R ↪→ T0(A) which splits. Denote by AM0(A) the unique connected

subgroup of T0(A) which projects onto (R∗
+)R. More generally, for a standard parabolic

subgroup P = MU , set AM(A) := AM0(A) ∩ ZM(A), where as used above Z∗ denotes the center

of the group ∗. Clearly, M(A) = AM(A) · M(A)1. For later use, set also AG
M(A) := {a ∈ AM(A) :

logG a = 0}. Then AM(A) = AG(A) ⊕ AG
M(A).

Note that K and U (F )\U (A) are all compact, and M(F )\M(A)1 is of finite volume.

With the Langlands decomposition G(A) = U (A)M(A)K in mind, the reduction theory for

G(F )\G(A) or, more generally, for P (F )\G(A) is reduced to that for AM(A) since ZG (F ) ∩
ZG(A)\ZG(A) ∩ G(A)1 is compact as well. As such, for t0 ∈ M0(A) set

AM0(A)(t0) := {
a ∈ AM0(A) : aα > tα

0 , ∀α ∈ �0
}
.

Then, for a fixed compact subset ω ⊂ P0(A), we have the corresponding Siegel set

S(ω; t0) := {
p · a · k : p ∈ ω, a ∈ AM0(A)(t0), k ∈ K

}
.

In particular, the classical reduction theory may be restated as, for big enough ω and

small enough t0, i.e, tα
0 is very close to 0 for all α ∈ �0, G(A) = G(F ) · S(ω; t0). More
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generally, set

AP
M0(A)(t0) := {

a ∈ AM0(A) : aα > tα
0 , ∀α ∈ �P

0

}
,

and

SP (ω; t0) := {
p · a · k : p ∈ ω, a ∈ AP

M0(A)(t0), k ∈ K
}
.

Then, similarly as above, for big enough ω and small enough t0, G(A) = P (F ) · SP (ω; t0).

(Here, �P
0 denotes the set of positive roots for (P0 ∩ M, T0).)

Fix an embedding iG : G ↪→ SLn sending g to (gij). Introducing a height function

on G(A) by setting ‖g‖ := ∏
v∈S sup{|gij|v : ∀i, j}. It is well known that up to O(1), height

functions are unique. This implies that the following growth conditions do not depend

on the height function we choose.

A function f : G(A) → C is said to have moderate growth if there exist c, r ∈ R

such that | f (g)| ≤ c · ‖g‖r for all g ∈ G(A). Similarly, for a standard parabolic subgroup

P = MU , a function f : U (A)M(F )\G(A) → C is said to have moderate growth if there exist

c, r ∈ R, λ ∈ ReXM0 such that for any a ∈ AM(A), k ∈ K, m ∈ M(A)1 ∩ SP (ω; t0),

| f (amk)| ≤ c · ‖a‖r · mP0 (m)λ.

By contrast, a function f : S(ω; t0) → C is said to be rapidly decreasing if there

exists r > 0 and for all λ ∈ ReXM0 there exists c > 0 such that for a ∈ AM(A), g ∈ G(A)1 ∩
S(ω; t0), |φ(ag)| ≤ c · ‖a‖ · mP0 (g)λ. And a function f : G(F )\G(A) → C is said to be rapidly

decreasing if f |S(ω;t0) is so.

Also a function f : G(A) → C is said to be smooth if for any g = gf · g∞ ∈ G(A f ) ×
G(A∞), there exist open neighborhoods V∗ of g∗ in G(A) and a C ∞-function f ′ : V∞ → C

such that f (g′
f · g′

∞) = f ′(g′
∞) for all g′

f ∈ Vf and g′
∞ ∈ V∞.

By definition, a function φ : U (A)M(F )\G(A) → C is called automorphic if

(i) φ has moderate growth;

(ii) φ is smooth;

(iii) φ is K-finite, i.e, the C-span of all φ(k1 · ∗ · k2) parametrized by (k1, k2) ∈ K × K

is finite dimensional; and

(iv) φ is z-finite, i.e, the C-span of all δ(X)φ parametrized by all X ∈ z is finite

dimensional. Here, z denotes the center of the universal enveloping algebra
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u := U(LieG(A∞)) of the Lie algebra of G(A∞) and δ(X) denotes the derivative

of φ along X.

Set A(U (A)M(F )\G(A)) be the space of automorphic forms on U (A)M(F )\G(A).

For a measurable locally L1-function f : U (F )\G(A) → C, define its constant term

along with the standard parabolic subgroup P = U M to be fP : U (A)\G(A) → C given by

g �→ ∫
U (F )\G(A) f (ng)dn. Then an automorphic form φ ∈ A(U (A)M(F )\G(A)) is called a cusp

form if for any standard parabolic subgroup P ′ properly contained in P , φP ′ ≡ 0. Denote

by A0(U (A)M(F )\G(A)) the space of cusp forms on U (A)M(F )\G(A). One checks easily that

(i) all cusp forms are rapidly decreasing, and hence

(ii) there is a natural pairing

〈·, ·〉 : A0(U (A)M(F )\G(A)) × A(U (A)M(F )\G(A)) → C

defined by 〈ψ , φ〉 := ∫
ZM(A)U (A)M(F )\G(A) ψ (g)φ̄(g) dg.

For an automorphic form φ ∈ A(U (A)M(F )\G(A)), define the associated Eisenstein

series E (φ, λ) : G(F )\G(A) → C by

E (φ, λ)(g) :=
∑

δ∈P (F )\G(F )

φ(δg) · mP (δg)λ+ρP .

Then one checks that there is an open cone C ⊂ ReXG
M such that if Reλ ∈ C, E (φ, λ)(g)

converges uniformly for g in a compact subset of G(A) and λ in an open neighborhood

of 0 in XG
M. For example, if φ is cuspidal, we may even take C to be the cone {λ ∈ ReXG

M :

〈λ, α∨〉 > 0, ∀α ∈ �G
P }. As a direct consequence, then E (φ, λ) ∈ A(G(F )\G(A)). That is, it is

an automorphic form.

We end this discussion by introducing intertwining operators. For w ∈ W the

Weyl group of G, fix once and for all representative w ∈ G(F ) of w. Set M′ := wMw−1 and

denote the associated parabolic subgroup by P ′ = U ′M′. As usual, define the associated

intertwining operator M(w, λ) by

(M(w, λ)φ)(g) := mP ′ (g)wλ+ρP ′

×
∫

U ′(F )∩wU (F )w−1\U ′(A)
φ(w−1n′g) · mP (w−1n′g)λ+ρP dn′, ∀g ∈ G(A).
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2.2 Arthur’s analytic truncation

Let P be a (standard) parabolic subgroup of G. Write TP for the maximal split torus in the

center of MP and T ′
P for the maximal quotient split torus of MP . Set ãP := X∗(TP ) ⊗ R and

denote its real dimension by d(P ), where X∗(T ) is the lattice of 1-parameter subgroups

in the torus T . Then it is known that ãP = X∗(T ′
P ) ⊗ R as well. The two descriptions of ãP

show that if Q ⊂ P is a parabolic subgroup, then there is a canonical injection ãP ↪→ ãQ

and a natural surjection ãQ � ãP . We thus obtain a canonical decomposition ãQ = ãP
Q ⊕ ãP

for a certain subspace ãP
Q of ãQ. In particular, ãG is a summand of ã = ãP for all P . Set

aP := ãP /ãG and aP
Q := ãP

Q/ãG . Then we have

aQ = aP
Q ⊕ aP

and aP is canonically identified as a subspace of aQ. Set a0 := aP0 and aP
0 = aP

P0
, then we

also have a0 = aP
0 ⊕ aP for all P .

Dually we have spaces a∗
0, a∗

P , (aP
0 )∗, (where for a real space V , write V∗ its dual

space over R), and hence the decompositions a∗
0 = (aQ

0 )∗ ⊕ (aP
Q)∗ ⊕ a∗

P .

So, a∗
P = X(MP ) ⊗ R with X(MP ) the group HomF (MP , GL(1)), i.e., a collection of

characters on MP . It is known that a∗
P = X(AP ) ⊗ R, where AP denotes the split com-

ponent of the center of MP . Clearly, if Q ⊂ P , then MQ ⊂ MP while AP ⊂ AQ. Thus, via

restriction, the above two expressions of a∗
P also naturally induce an injection a∗

P ↪→ a∗
Q

and a surjection a∗
Q � a∗

P , compatible with the decomposition a∗
Q = (aP

Q)∗ ⊕ a∗
P .

As usual, let �0 and �̂0 be the subsets of simple roots and simple weights in a∗
0

respectively. Write �∨
0 (resp. �̂∨

0 ) for the basis of a0 dual to �̂0 (resp. �0). Being the dual of

the collection of simple weights (resp. of simple roots), �∨
0 (resp. �̂∨

0 ) is the set of coroots

(resp. coweights).

For every P , let �P ⊂ a∗
0 be the set of nontrivial restrictions of elements of �0 to

aP . Denote the dual basis of �P by �̂∨
P . For each α ∈ �P , let α∨ be the projection of β∨

to aP , where β is the root in �0 whose restriction to aP is α. Set �∨
P := {α∨ : α ∈ �P }, and

define the dual basis of �∨
P by �̂P .

More generally, if Q ⊂ P , write �P
Q to denote the subset α ∈ �Q appearing in

the action of TQ in the unipotent radical of Q ∩ MP . (Indeed, MP ∩ Q is a parabolic

subgroup of MP with nilpotent radical N P
Q := NQ ∩ MP . Thus, �P

Q is simply the set of

roots of the parabolic subgroup (MP ∩ Q, AQ). And one checks that the map P �→ �P
Q

gives a natural bijection between parabolic subgroups P containing Q and subsets of
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�Q.) Then aP is the subspace of aQ annihilated by �P
Q. Denote by (�̂∨)P

Q the dual of �P
Q.

Let (�P
Q)∨ := {α∨ : α ∈ �P

Q} and denote by �̂P
Q the dual of (�P

Q)∨.

Moreover, we extend the linear functionals in �P
Q and �̂P

Q to elements of the dual

space a∗
0 by means of the canonical projection from a0 to aP

Q given by the decomposition

a0 = a
Q
0 ⊕ aP

Q ⊕ aP . Let τ̂ P
Q be the characteristic function of the positive cone

{
H ∈ a0 : 〈� , H〉 > 0, ∀� ∈ �̂P

Q

} = a
Q
0 ⊕ {

H ∈ aP
Q : 〈� , H〉 > 0 for all � ∈ �̂P

Q

} ⊕ aP .

Denote τ̂ G
P simply by τ̂P .

Recall that an element T ∈ a0 is called sufficiently regular, if α(T ) � 0 for any α ∈
�0. Fix then a suitably regular point T ∈ a0. If φ is a continuous function on G(F )\G(A)1,

define Arthur’s analytic truncation (�Tφ)(x) to be the function

(�Tφ)(x) :=
∑

P

(−1)dim(A/Z )
∑

δ∈P (F )\G(F )

φP (δx) · τ̂P (H (δx) − T ),

where

φP (x) :=
∫

N(F )\N(A)
φ(nx) dn

denotes the constant term of φ along P , and the sum is over all (standard) parabolic

subgroups.

Note that all parabolic subgroups of G can be obtained from standard parabolic

subgroups by taking conjugations with elements from P (F )\G(F ). So we have

(a) (�Tφ)(x) =
∑

P

(−1)dim(A/Z )φP (x) · τ̂P (H (x) − T ), where the sum is over all, both

standard and nonstandard, parabolic subgroups;

(b) If φ is a cusp form, then �Tφ = φ.

Fundamental properties of Arthur’s analytic truncation may be summarized as

follows.

Theorem 1 (Arthur [1, 2]). For sufficiently regular T in a0,

(1) Let φ : G(F )\G(A) → C be a locally L1 function. Then

�T�Tφ(g) = �Tφ(g)
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for almost all g. If φ is also locally bounded, then the above is true for all g;

(2) Let φ1, φ2 be two locally L1 functions on G(F )\G(A). Suppose that φ1 is of moderate

growth and φ2 is rapidly decreasing. Then

∫
ZG(A)G(F )\G(A)

�Tφ1(g) · φ2(g) dg =
∫

ZG(A)G(F )\G(A)
φ1(g) · �Tφ2(g) dg;

(3) Let K f be an open compact subgroup of G(A f ), and r, r′ be two positive real numbers.

Then there exists a finite subset {Xi : i = 1, 2, . . . , N} ⊂ U , the universal enveloping algebra

of g∞, such that the following is satisfied: Let φ be a smooth function on G(F )\G(A), right

invariant under K f , and let a ∈ AG(A), g ∈ G(A)1 ∩ S. Then

|�Tφ(ag)| ≤ ‖g‖−r
N∑

i=1

sup{|δ(Xi)φ(ag′)| ‖g′‖−r′
: g′ ∈ G(A)1},

where S is a Siegel domain with respect to G(F )\G(A). �

2.3 Arthur’s periods

Fix a sufficiently regular T ∈ a0 and let φ be an automorphic form of G. Then, �Tφ is

rapidly decreasing, and hence integrable. In particular, the integration

A(φ; T ) :=
∫

G(F )\G(A)
�Tφ(g) dg

makes sense. We claim that A(φ; T ) can be written as an integration of the original

automorphic form φ over a certain compact subset.

To start with, note that for Arthur’s analytic truncation �T , we have �T ◦ �T = �T .

Hence,

A(φ; T ) =
∫

ZG(A)G(F )\G(A)
�Tφ dµ(g)

=
∫

ZG(A)G(F )\G(A)
�T (�Tφ)(g) dµ(g).
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Moreover, by the self-adjoint property, for the constant function 1 on G(A),

∫
ZG(A)G(F )\G(A)

1(g) · �T(
�Tφ

)
(g) dµ(g)

=
∫

ZG(A)G(F )\G(A)
(�T1)(g) · (�Tφ)(g) dµ(g)

=
∫

ZG(A)G(F )\G(A)
�T (�T1)(g) · φ(g) dµ(g),

since �Tφ and �T1 are rapidly decreasing. Therefore, using �T ◦ �T = �T again, we

arrive at

A(φ; T ) =
∫

ZG(A)G(F )\G(A)
�T1(g) · φ(g) dµ(g). (∗)

To go further, let us give a much more detailed study of Arthur’s analytic trun-

cation for the constant function 1. Introduce the truncated subset �(T ) of the space

ZG(A)G(F )\G(A) by

�(T ) := {
g ∈ ZG(A)G(F )\G(A) : �T1(g) = 1

}
.

Proposition 1 (Arthur [3]). For sufficiently regular T ∈ a0, �T1 is the characteristic

function of a compact subset of ZG(A)G(F )\G(A). In particular, �(T ) is compact. �

Consequently,
∫

ZG(A)G(F )\G(A) �
Tφ(g) dµ(g) =

∫
ZG(A)G(F )\G(A)

�T1(g) · φ(g) dµ(g) =
∫

�(T )
φ(g) dµ(g).

That is to say, we have obtained the following.

Proposition 2. For a sufficiently regular T ∈ a0 and an automorphic form φ on G(F )\G(A),

∫
�(T )

φ(g) dµ(g) =
∫

ZG(A)G(F )\G(A)
�Tφ(g) dµ(g).

�

It is because of this result that we call
∫

G(F )\G(A)1 �Tφ(g) dµ(g) the Arthur period for φ.
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2.4 Eisenstein periods

Let P be a (standard) parabolic subgroup of G with Levi decomposition P = MU and φ ∈
A(U (A)M(F )\G(A)) an M-level automorphic form. Then the associated Eisenstein series

E (φ; λ)(g) := ∑
δ∈P (F )\G(F ) φ(δg) · mP (δg)λ+ρP ∈ A(G(F )\G(A) is a G-level automorphic form.

Thus, for a sufficiently positive T ∈ a0, we obtain a well-defined Arthur period∫
ZG(A)G(F )\G(A)

∧T E (φ; λ)(g) dµ(g).

Due to the obvious importance, we call such an Arthur period an Eisenstein period.

In general, Eisenstein periods are quite difficult to be evaluated. However, if φ is

cuspidal, we have the following result of [8], an advanced version of the Rankin–Selberg

and Zagier method.

Theorem 2 [8]. Fix a sufficiently positive T ∈ a
+
0 . Let P = MU be a parabolic subgroup

and φ a P -level cusp form. Then the Eisenstein period
∫

G(F )\G(A) �
T E (λ, φ)(g) dg is equal to

(1) 0 if P �= P0 is not minimal; and

(2) Vol({∑α∈�0
aαα∨ : aα ∈ [0, 1)}) × ∑

w∈W
e〈wλ−ρ,T〉∏

α∈�0
〈wλ−ρ,α∨〉 · ∫

M0(F )\M0(A)1×K (M(w, λ)φ)(mk) dm dk,

if P = P0 = M0U0 is minimal. �

2.5 Periods for G over F

Now, we focus on the expression

∑
w∈W

e〈wλ−ρ,T〉∏
α∈�0

〈wλ − ρ, α∨〉 ×
∫

M0(F )\M0(A)1×K
(M(w, λ)φ)(mk) dm dk, (∗)

for a cusp form φ at the level of the Borel. Motivated by our study of high-rank zetas

[23, 25–27], we make the following two simplifications:

(1) Take T = 0. Recall that in the discussion so far, T is assumed to be sufficiently

positive. However, (∗) makes sense even when T = 0; and

(2) Take φ ≡ 1, the constant function one on the Borel. Recall that in general

for a standard P = MU , the constant function 1 is only L2 on M. But for the

Borel, 1 is cuspidal.

With all these preparations, we are ready to introduce our first main definition.
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Definition 1. The period ωG
F (λ) of G over F is defined by

ωG
F (λ) :=

∑
w∈W

(
1∏

α∈�0
〈wλ − ρ, α∨〉 × M(w, λ)

)
,

where M(w, λ) denotes the quantity

mP ′ (e)wλ+ρP ′ ·
∫

U ′(F )∩wU (F )w−1\U ′(A)
mP (w−1n′)λ+ρP dn′

where M′ := wMw−1 and P ′ = U ′M′ denote the associated parabolic subgroup. �

In particular, for G = G2, by the Gindikin–Karpelevich formula [13], we have

M(w, λ) =
∏

α>0, wα<0

ξ (〈λ, α∨〉)
ξ (〈λ, α∨〉 + 1)

.

Here, ξ (s) := π− s
2 �( s

2 )ζ (s) with ζ (s) the Riemann zeta function [5]. Consequently,

ω
G2
Q (λ) :=

∑
w∈W

(
1∏

α∈�0
〈wλ − ρ, α∨〉 ×

∏
α>0, wα<0

ξ (〈λ, α∨〉)
ξ (〈λ, α∨〉 + 1)

)
. (∗∗)

3 Zetas for G2

In this section, we introduce zeta functions associated with (G2, Pshort) and (G2, Plong)

using the period of G2 introduced in Section 2.

3.1 Period for G2 over Q

Let G be the exceptional group G2. It is simply connected and adjoint. Fix a maximal split

torus T in G and a Borel subgroup B containing T . Then we obtain two simple roots, the

short root α and the long root β. So, �0 = {α, β} and all positive roots are given by

�+ = {α, β, α + β, 2α + β, 3α + β, 3α + 2β}.
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Denote by Plong = Pβ = P1 and Pshort = Pα = P2 the maximal standard parabolic sub-

groups attached to �0\{β} and �0\{α}, respectively (see, e.g., [7]).

Choose a parametrization t : Q∗ × Q∗ → T , (a, b) �→ t (a, b) defined by α(t (a, b)) =
ab−1, β(t (a, b)) = a−1b2. Then the actions of remaining positive roots are given by

(α + β)(t (a, b)) = b, (2α + β)(t (a, b)) = a,

(3α + β)(t (a, b)) = a2b−1, (3α + 2β)(t (a, b)) = ab,

and the corresponding coroots are given by

α∨(x) = t (x, x−1), β∨(x) = t (1, x), (α + β)∨(x) = t (x, x2),

(2α + β)∨(x) = t (x2, x), (3α + β)∨(x) = t (x, 1), (3α + 2β)∨(x) = t (x, x).

Let X(T ) be the character group of T and a∗
C = X(T ) ⊗ C its complexification. We

introduce coordinates in a∗
C with respect to the basis 2α + β, α + β. Thus, point (z1, z2) ∈

C2 corresponds to the character λ = z1(2α + β) + z2(α + β). (The coordinate is chosen to

make λ(t (a, b)) = |a|z1 |b|z2 take the simplest form.) As such, then ρ := ρB := 5α + 3β and

C+ of the positive Weyl chamber in a∗
C is given by

C+ :={λ ∈ a∗
C | Re〈λ, γ ∨〉 > 0, ∀γ > 0}

={z1(2α + β) + z2(α + β) | Rez1 > Rez2 > 0}.

For a positive root γ , denote by wγ the reflection defined by γ , i.e., the reflection

on the space a∗
C which reflects γ to −γ . And denote by σ (ω) the rotation through ω with

center at the origin. Then it is well known that the Weyl group of G2 is given by

W =
{

e, wα, wβ , w3α+β , w2α+β , w3α+2β , wα+β , σ
(π

3

)
, σ

(
2π

3

)
, σ (π ), σ

(
4π

3

)
, σ

(
5π

3

)}
.
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Moreover, by a direct calculation, we have the following table on wλ and {γ > 0 | wγ < 0}:

wλ; λ = (z1, z2) | {γ > 0 | wγ < 0}
e (z1, z2) | −

wα (z2, z1) | α

wβ (z1 + z2, −z2) | β

w3α+β (−z1, z1 + z2) | α, 3α + β, 2α + β

w2α+β (−z1 − z2, z2) | α, 3α + β, 2α + β, 3α + 2β, α + β

w3α+2β (− − z2, −z1) | 3α + β, 2α + β, 3α + 2β, α + β, β

wα+β (z1, − − z1 − z2) | 3α + 2β, α + β, β

σ
(

π
3

)
(−z2, z1 + z2) | α + β, β

σ
(

2π
3

)
(−z1 − z2, z1) | 2α + β, 3α + 2β, α + β, β

σ (π ) (−z1, −z2) | α, 3α + β, 2α + β, 3α + 2β, α + β, β

σ
(

4π
3

)
(z2, −z1 − z2) | α, 3α + β, 2α + β, 3α + 2β

σ
(

5π
3

)
(z1 + z2, −z1) | α, 3α + β.

Also, by definition, we see that

〈λ, α∨〉 = z1 − z2, 〈λ, β∨〉 = z2, 〈λ, (3α + β)∨〉 = z1,

〈λ, (2α + β)∨〉 = 2z1 + z2, 〈λ, (3α + 2β)∨〉 = z1 + z2, 〈λ, (α + β)∨〉 = z1 + 2z2,

for λ = (z1, z2), since

λ(t (x, x−1)) = xz1 x−z2 = xz1−z2 , λ(t (1, x)) = 1z1 xz2 = xz2 ,

λ(t (x, 1)) = xz11z2 = xz1 , λ(t (x2, x)) = x2z1 xz2 = x2z1+z2 ,

λ(t (x, x)) = xz1 xz2 = xz1+z2 , λ(t (x, x2)) = xz1 x2z2 = xz1+2z2 .

Hence, by tedious elementary calculations, which we decide to omit, we have the

following:
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(a) for 〈wλ, α∨〉 − 1 and 〈wλ, β∨〉 − 1,

| wλ; λ = (z1, z2) | 〈wλ, α∨〉 − 1 | 〈wλ, β∨〉 − 1

e | (z1, z2) | z1 − z2 − 1 | z2 − 1

wα | (z2, z1) | z2 − z1 − 1 | z1 − 1

wβ | (z1 + z2, −z2) | z1 + 2z2 − 1 | −z2 − 1

w3α+β | (−z1, z1 + z2) | −2z1 − z2 − 1 | z1 + z2 − 1

w2α+β | (−z1 − z2, z2) | −z1 − 2z2 − 1 | z2 − 1

w3α+2β | (− − z2, −z1) | z1 − z2 − 1 | −z1 − 1

wα+β | (z1, − − z1 − z2) | 2z1 + z2 − 1 | −z1 − z2 − 1

σ
(

π
3

) | (−z2, z1 + z2) | −z1 − 2z2 − 1 | z1 + z2 − 1

σ
(

2π
3

) | (−z1 − z2, z1) | −2z1 − z2 − 1 | z1 − 1

σ (π ) | (−z1, −z2) | −z1 + z2 − 1 | −z2 − 1

σ
(

4π
3

) | (z2, −z1 − z2) | z1 + 2z2 − 1 | −z1 − z2 − 1

σ
(

5π
3

) | (z1 + z2, −z1) | 2z1 + z2 − 1 | −z1 − 1,

and

(b) for
∏

γ>0,wγ<0

ξ (〈λ, γ ∨〉)
ξ (〈λ, γ ∨〉 + 1)

,

∏
γ>0,wγ<0

ξ (〈λ,γ ∨〉)
ξ (〈λ,γ ∨〉+1)

e 1

wα
ξ (z1−z2)

ξ (z1−z2+1)

wβ
ξ (z2)

ξ (z2+1)

w3α+β
ξ (z1−z2)

ξ (z1−z2+1)
ξ (z1)

ξ (z1+1)
ξ (2z1+z2)

ξ (2z1+z2+1)

w2α+β
ξ (z1−z2)

ξ (z1−z2+1)
ξ (z1)

ξ (z1+1)
ξ (2z1+z2)

ξ (2z1+z2+1)
ξ (z1+z2)

ξ (z1+z2+1)
ξ (z1+2z2)

ξ (z1+2z2+1)

w3α+2β
ξ (z1)

ξ (z1+1)
ξ (2z1+z2)

ξ (2z1+z2+1)
ξ (z1+z2)

ξ (z1+z2+1)
ξ (z1+2z2)

ξ (z1+2z2+1)
ξ (z2)

ξ (z2+1)

wα+β
ξ (z1+z2)

ξ (z1+z2+1)
ξ (z1+2z2)

ξ (z1+2z2+1)
ξ (z2)

ξ (z2+1)

σ
(

π
3

)
ξ (z1+2z2)

ξ (z1+2z2+1)
ξ (z2)

ξ (z2+1)

σ
(

2π
3

)
ξ (2z1+z2)

ξ (2z1+z2+1)
ξ (z1+z2)

ξ (z1+z2+1)
ξ (z1+2z2)

ξ (z1+2z2+1)
ξ (z2)

ξ (z2+1)

σ (π ) ξ (z1−z2)
ξ (z1−z2+1)

ξ (z1)
ξ (z1+1)

ξ (2z1+z2)
ξ (2z1+z2+1)

ξ (z1+z2)
ξ (z1+z2+1)

ξ (z1+2z2)
ξ (z1+2z2+1)

ξ (z2)
ξ (z2+1)

σ
(

4π
3

)
ξ (z1−z2)

ξ (z1−z2+1)
ξ (z1)

ξ (z1+1)
ξ (2z1+z2)

ξ (2z1+z2+1)
ξ (z1+z2)

ξ (z1+z2+1)

σ
(

5π
3

)
ξ (z1−z2)

ξ (z1−z2+1)
ξ (z1)

ξ (z1+1) .
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Or put them in a better form, we have

1
〈wλ,α∨〉−1

1
〈wλ,β∨〉−1 · ∏

γ>0,wγ<0
ξ (〈λ,γ ∨〉)

ξ (〈λ,γ ∨〉+1)

e 1
z1−z2−1

1
z2−1

wα
1

z2−z1−1
1

z1−1 · ξ (z1−z2)
ξ (z1−z2+1)

wβ
1

z1+2z2−1
1

−z2−1 · ξ (z2)
ξ (z2+1)

w3α+β
1

−2z1−z2−1
1

z1+z2−1 · ξ (z1−z2)
ξ (z1−z2+1)

ξ (z1)
ξ (z1+1)

ξ (2z1+z2)
ξ (2z1+z2+1)

w2α+β
1

−z1−2z2−1
1

z2−1 · ξ (z1−z2)
ξ (z1−z2+1)

ξ (z1)
ξ (z1+1)

ξ (2z1+z2)
ξ (2z1+z2+1)

ξ (z1+z2)
ξ (z1+z2+1)

ξ (z1+2z2)
ξ (z1+2z2+1)

w3α+2β
1

z1−z2−1
1

−z1−1 · ξ (z1)
ξ (z1+1)

ξ (2z1+z2)
ξ (2z1+z2+1)

ξ (z1+z2)
ξ (z1+z2+1)

ξ (z1+2z2)
ξ (z1+2z2+1)

ξ (z2)
ξ (z2+1)

wα+β
1

2z1+z2−1
1

−z1−z2−1 · ξ (z1+z2)
ξ (z1+z2+1)

ξ (z1+2z2)
ξ (z1+2z2+1)

ξ (z2)
ξ (z2+1)

σ
(

π
3

)
1

−z1−2z2−1
1

z1+z2−1 · ξ (z1+2z2)
ξ (z1+2z2+1)

ξ (z2)
ξ (z2+1)

σ
(

2π
3

)
1

−2z1−z2−1
1

z1−1 · ξ (2z1+z2)
ξ (2z1+z2+1)

ξ (z1+z2)
ξ (z1+z2+1)

ξ (z1+2z2)
ξ (z1+2z2+1)

ξ (z2)
ξ (z2+1)

σ (π ) 1
−z1+z2−1

1
−z2−1 · ξ (z1−z2)

ξ (z1−z2+1)
ξ (z1)

ξ (z1+1)
ξ (2z1+z2)

ξ (2z1+z2+1)
ξ (z1+z2)

ξ (z1+z2+1)
ξ (z1+2z2)

ξ (z1+2z2+1)
ξ (z2)

ξ (z2+1)

σ
(

4π
3

)
1

z1+2z2−1
1

−z1−z2−1 · ξ (z1−z2)
ξ (z1−z2+1)

ξ (z1)
ξ (z1+1)

ξ (2z1+z2)
ξ (2z1+z2+1)

ξ (z1+z2)
ξ (z1+z2+1)

σ
(

5π
3

)
1

2z1+z2−1
1

−z1−1 · ξ (z1−z2)
ξ (z1−z2+1)

ξ (z1)
ξ (z1+1) .

By taking summation for all terms appeared, we then obtain the period ω
G2
Q (z1, z2) for G2

over Q.

3.2 Zetas for G2 over Q

Motivated by our study of high-rank zeta functions in [23, 25], and a new type

of zetas for SL(n) and Sp(2n) in [26, 27], as described in the introduction, we

can obtain two zeta functions for G2 over Q from the period ω
G2
Q (z1, z2), by tak-

ing residues along singular hyperplanes corresponding to (two) maximal parabolic

subgroups.

3.2.1 The zeta for G2/Plong

Recall that Plong corresponds to {α} = �0\{β}. Consequently, from the period ω
G2
Q (z1, z2)

of G2 over Q, in order to introduce a zeta function ξ
G2/Plong

Q (s) for G2/Plong, we first

take the residue along with the singular hyperplane z1 − z2 = 1 of ω
G2
Q (z1, z2), cor-

responding to 〈λ − ρ, α∨〉 = 0, and set z2 = s (then z1 = 1 + s and z2 − z1 = −1, 2z1 +
z2 = 3s + 2, z1 + z2 = 2s + 1, z1 + 2z2 = 3s + 1, z1 − 1 = s, z2 + 1 = s + 1). In such a way,

we get the following (single variable) period ω
G2/P long
Q (s) associated with G2/Plong
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over Q:

ω
G2/Plong

Q (s) : = 1

s − 1
+ 1

−2

1

s
· 1

ξ (2)
+ 0 + 1

−3s − 3

1

2s
· 1

ξ (2)

ξ (s + 1)

ξ (s + 2)

ξ (3s + 2)

ξ (3s + 3)

+ 1

−3s − 2

1

s − 1
· 1

ξ (2)

ξ (s + 1)

ξ (s + 2)

ξ (3s + 2)

ξ (3s + 3)

ξ (2s + 1)

ξ (2s + 2)

ξ (3s + 1)

ξ (3s + 2)

+ 1

−s − 2
· ξ (s + 1)

ξ (s + 2)

ξ (3s + 2)

ξ (3s + 3)

ξ (2s + 1)

ξ (2s + 2)

ξ (3s + 1)

ξ (3s + 2)

ξ (s)

ξ (s + 1)
+ 0 + 0 + 0

+ 1

−2

1

−s − 1
· 1

ξ (2)

ξ (s + 1)

ξ (s + 2)

ξ (3s + 2)

ξ (3s + 3)

ξ (2s + 1)

ξ (2s + 2)

ξ (3s + 1)

ξ (3s + 2)

ξ (s)

ξ (s + 1)

+ 1

3s

1

−2s − 2
· 1

ξ (2)

ξ (s + 1)

ξ (s + 2)

ξ (3s + 2)

ξ (3s + 3)

ξ (2s + 1)

ξ (2s + 2)

+ 1

3s + 1

1

−s − 2
· 1

ξ (2)

ξ (s + 1)

ξ (s + 2)
.

Multiplying with ξ (2) · ξ (s + 2)ξ (2s + 2)ξ (3s + 3), we then get

ξ
G2/Plong

Q,o (s) = 1

s − 1
ξ (2) · ξ (s + 2)ξ (2s + 2)ξ (3s + 3)

− 1

s + 2
ξ (2) · ξ (s)ξ (2s + 1)ξ (3s + 1)

− 1

2s
· ξ (s + 2)ξ (2s + 2)ξ (3s + 3)

+ 1

2(s + 1)
· ξ (s)ξ (2s + 1)ξ (3s + 1)

− 1

3s + 3

1

2s
· ξ (s + 1)ξ (2s + 2)ξ (3s + 2)

− 1

3s

1

2s + 2
· ξ (s + 1)ξ (2s + 1)ξ (3s + 2)

− 1

3s + 2

1

s − 1
· ξ (s + 1)ξ (2s + 1)ξ (3s + 1)

− 1

3s + 1

1

s + 2
· ξ (s + 1)ξ (2s + 2)ξ (3s + 3).

One checks easily the functional equation ξ
G2/Plong

Q,o (−1 − s) = ξ
G2/Plong

Q,o (s). Define the first

zeta function ξ
G2/Plong

Q (s) by normalizing ξ
G2/Plong

Q,o (s) with a shift

ξ
G2/Plong

Q (s) := ξ
G2/Plong

Q,o (s − 1).
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Then we have the following

Definition & Proposition 1. The zeta function ξ
G2/Plong

Q (s) for (G2, Plong) over Q given by

ξ
G2/Plong

Q (s) := 1

s − 2
ξ (2) · ξ (s + 1)ξ (2s)ξ (3s)

− 1

s + 1
ξ (2) · ξ (s − 1)ξ (2s − 1)ξ (3s − 2)

− 1

2s − 2
· ξ (s + 1)ξ (2s)ξ (3s)

+ 1

2s
· ξ (s − 1)ξ (2s − 1)ξ (3s − 2)

− 1

(3s)(2s − 2)
· ξ (s)ξ (2s)ξ (3s − 1)

− 1

(3s − 1)(s − 2)
· ξ (s)ξ (2s − 1)ξ (3s − 2)

− 1

(3s − 3)(2s)
· ξ (s)ξ (2s − 1)ξ (3s − 1)

− 1

(3s − 2)(s + 1)
· ξ (s)ξ (2s)ξ (3s),

satisfies the standard functional equation

ξ
G2/Plong

Q (1 − s) = ξ
G2/Plong

Q (s).

All poles of ξ
G2/Plong

Q (s) are two simple poles s = −1, 2 and two double poles s = 0, 1. �

3.2.2 The zeta for G2/Pshort

In parallel, recall that Pshort corresponds to {β} = �0\{α}. Consequently, from the period

ω
G2
Q (z1, z2) of G2 over Q, in order to introduce a zeta function ξ

G2/Pshort
Q (s) for G2/Pshort, take

the residue along z2 = 1, corresponding to 〈λ − ρ, β∨〉 = 0, and set z1 = s. Then we get,

accordingly, for the period ω
G2/Pshort
Q the following contributions:

ξ
G2/Pshort
Q,o (s) := Res〈λ+ρ0,β∨〉=0ω

G2/P2
Q (z1, z2) := 1

s − 2
+ 0 + 1

s + 1

1

−2
· 1

ξ (2)
+ 0

+ 1

−s − 3
· ξ (s − 1)

ξ (s)

ξ (s)

ξ (s + 1)

ξ (2s + 1)

ξ (2s + 2)

ξ (s + 1)

ξ (s + 2)

ξ (s + 2)

ξ (s + 3)

+ 1

s − 2

1

−s − 1
· ξ (s)

ξ (s + 1)

ξ (2s + 1)

ξ (2s + 2)

ξ (s + 1)

ξ (s + 2)

ξ (s + 2)

ξ (s + 3)

1

ξ (2)



24 M. Suzuki and L. Weng

+ 1

2s

1

−s − 2
· ξ (s + 1)

ξ (s + 2)

ξ (s + 2)

ξ (s + 3)

1

ξ (2)

+ 1

−s − 3

1

s
· ξ (s + 2)

ξ (s + 3)

1

ξ (2)

+ 1

−s

1

−2
· ξ (s − 1)

ξ (s)

ξ (s)

ξ (s + 1)

ξ (2s + 1)

ξ (2s + 2)

ξ (s + 1)

ξ (s + 2)

ξ (s + 2)

ξ (s + 3)

1

ξ (2)
+ 0 + 0.

Multiplying with ξ (2) · ξ (s + 3)ξ (2s + 2), and shifting from s to s − 1, we then arrive at the

second zeta function ξ
G2/Pshort
Q (s) for (G2, Pshort) over Q.

Definition & Proposition 2. The zeta function ξ
G2/Pshort
Q (s) for (G2, Pshort) over Q given by

ξ
G2/Pshort
Q (s) = 1

s − 3
ξ (2) · ξ (s + 2)ξ (2s)

− 1

s + 2
ξ (2) · ξ (s − 2)ξ (2s − 1)

+ 1

2s − 2
· ξ (s − 2)ξ (2s − 1)

− 1

2s
· ξ (s + 2)ξ (2s)

− 1

s(s − 3)
· ξ (s − 1)ξ (2s − 1)

− 1

(s − 1)(s + 2)
· ξ (s + 1)ξ (2s)

− 1

(2s − 2)(s + 1)
· ξ (s)ξ (2s)

− 1

(2s)(s − 2)
· ξ (s)ξ (2s − 1),

satisfies the standard functional equation

ξ
G2/Pshort
Q (1 − s) = ξ

G2/Pshort
Q (s).

All poles of ξ
G2/Pshort
Q (s) are four simple poles s = −2, 0, 1, 3. �

We expect that ξ
G2/Plong

Q (s) and ξ
G2/Pshort
Q (s) satisfy the RH. For this, we have the

following.

Theorem 3 (Riemann HypothesisG2/P
Q ).

All zeros of ξ
G2/Plong

Q (s) and ξ
G2/Pshort
Q (s) lie on thecentral line Re(s) = 1/2.

�
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Remark . Zetas ξ
G2/P
Q (s) are special cases of a more general construction. In [26, 27],

we are able to define zeta functions ξ
G/P
Q (s) associated with classical semisimple groups

G and their maximal parabolic subgroups P . In particular, the conjectural standard

functional equation and the RH have been checked for G = SL(2), SL(3), Sp(4) ([26, 27] for

the FE, [11, 17, 18] for the RH). Also, numerical calculations made by MS give supportive

evidences for the RH when G = SL(4) or SL(5). �

4 Proof of the RH for G2: Preliminaries

To prove the RH for G2, we prepare several auxiliary entire functions. First, we define

Z1(s) := 12s3(s − 1)3 · (s + 1)(3s − 1)(2s − 1)(3s − 2)(s − 2) · ξ
G2/P1
Q (s)

and

Z2(s) := 4s2(s − 1)2 · (s + 2)(s + 1)(2s − 1)(s − 2)(s − 3) · ξ
G2/P2
Q (s).

(Here, we use the notation Plong = Pβ = P1 and Pshort = Pα = P2.) Then Z1(s) and Z2(s) are

entire functions by the results of Section 3. We have

Z1(s) = (s − 1)χ (2s)[(s − 1)(3s − 2)(As − A+ 1)χ (s + 1)χ (3s)

− (s + 1)(s − 2)χ (s)χ (3s − 1) − 2(s − 1)(s − 2)χ (s)χ (3s)]

− s χ (2s − 1)[s(3s − 1)(As − 1)χ (s − 1)χ (3s − 2)

+ (s + 1)(s − 2)χ (s)χ (3s − 1) + 2s(s + 1)χ (s)χ (3s − 2)],

and

Z2(s) = (s − 2)χ (2s)[(As + 3)(s − 1)2χ (s + 2)

− 2(s − 1)(s − 3)χ (s + 1) − (s + 2)(s − 3)χ (s)]

− (s + 1)χ (2s − 1)[(As − A− 3)s2χ (s − 2)

+ 2s(s + 2) χ (s − 1) + (s + 2)(s − 3)χ (s)],

where

A = 2ξ (2) − 1 = π/3 − 1 > 0,

χ (s) = s(s − 1)ξ (s) = s(s − 1)π−s/2�(s/2)ζ (s).

We find that
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• Z1(s) has real zeros at s = 0, 1/3, 2/3, 1 and s = 1/2, because all poles of

ξ
G2/P1
Q (s) are two simple poles s = −1, 2 and two double poles s = 0, 1.

• Z2(s) has real zeros at s = −1, 0, 1, 2 and s = 1/2, because all poles of ξ
G2/P2
Q (s)

are four simple poles s = −2, 0, 1, 3.

Hence, the following two theorems are equivalent to the RH of ξ
G2/P1
Q (s) and ξ

G2/P2
Q (s),

respectively.

Theorem 4. All zeros of Z1(s) lie on the line Re(s) = 1/2 except for four simple zeros

s = 0, 1/3, 2/3, 1. �

Theorem 5. All zeros of Z2(s) lie on the line Re(s) = 1/2 except for four simple zeros

s = −1, 0, 1, 2. �

Now we define

f̃1(s) = (s − 1)(3s − 2)(As − A+ 1)χ (s + 1)χ (3s)

− (s + 1)(s − 2)χ (s)χ (3s − 1) − 2(s − 1)(s − 2)χ (s)χ (3s),

f̃2(s) = (As + 3)(s − 1)2χ (s + 2) − 2(s − 1)(s − 3)χ (s + 1) − (s + 2)(s − 3)χ (s).

and

f1(s) = (s − 1) f̃1(s), f2(s) = (s − 2) f̃2(s). (1)

Then

Z1(s) = χ (2s) f1(s) − χ (2s − 1) f1(1 − s),

Z2(s) = χ (2s) f2(s) − χ (2s − 1) f2(1 − s).

The proofs of Theorem 4 and Theorem 5 are divided into two steps. First, we

prove that all zeros of fi(s) lie in a vertical strip σ0 < Re(s) < 0 except for finitely many

exceptional zeros (Section 5). Then we obtain a nice product formula of fi(s) by a variant

of Lemma 3 in [17] (Lemma 2 in Section 5; it will be proved in Section 7). Second, by using

the product formula of fi(s), we prove that all zeros of Zi(s) lie on the line Re(s) = 1/2

except for two simple zeros (Section 6). In this process, we use the result of Lagarias [10]
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concerning the explicit upper bound for the difference of the imaginary parts of the zeros

of the Riemann zeta function. See also [18].

Before the proof, we recall the following result.

Lemma 1 [11]. Let ξ (s) be the completed Riemann zeta function and χ (s) = s(s − 1)ξ (s).

Then we have ∣∣∣∣χ (2s − 1)

χ (2s)

∣∣∣∣ < 1 for Re(s) >
1

2
. (2)

�

5 Proof of the RH for G2: First Step

The aim of this section is to prove the following proposition.

Proposition 3. Let f1(s) and f2(s) be functions defined in (1). Then fi(s) (i = 1, 2) has the

product formula

fi(s) = Ci smi eB ′
i s

(
1 − s

β0,i

) (
1 − s

ρ0,i

)(
1 − s

ρ0,i

)
· �i(s) (B ′

i ≥ 0),

where C1 = f ′
1(0), C2 = f2(0), β0,1 = 1, β0,2 = 2, m1 = 1, m2 = 0, ρ0,i (i = 1, 2) are a complex

zero of fi(s) with �(ρ0,i) > 1/2 and

�i(s) =
∏

βi<1/2
0�=βi∈R

(
1 − s

βi

) ∏
βi<1/2
γi>0

[(
1 − s

ρi

) (
1 − s

ρi

)]
(ρi = βi + √−1 γi).

Here βi are at most finitely many real zeros of fi(s) and ρi = βi + iγi are other complex

zeros of fi(s). The product �i(s) converges absolutely on any compact subset of C if we

take the product with the bracket. �

To prove the proposition, we prepare the following lemma.

Lemma 2. Let F (s) be an entire function of genus zero or one. Suppose that

(i) F (s) is real on the real axis,

(ii) there exists σ0 > 0 such that all zeros of F (s) lie in the vertical strip

σ0 < Re(s) < 1/2

except for finitely many zeros,
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(iii) the zeros of F (s) are finitely many in the right-half plane Re(s) ≥ 1/2,

(iv) there exists C > 0 such that

N(T ) ≤ C T log T as T → ∞, (3)

where N(T ) is the number of zeros of F (s) satisfying 0 ≤ �(ρ) < T , and

(v) F (1 − σ )/F (σ ) > 0 for large σ > 0 and

F (1 − σ )/F (σ ) → 0 as σ → ∞. (4)

Then F (s) has the product formula

F (s) = C smeB ′s
∏

0�=ρ∈R

(
1 − s

ρ

) ∏
�(ρ)>0

[(
1 − s

ρ

) (
1 − s

ρ̄

)]

with

B ′ ≥ 0,

The product in the right-hand side converges absolutely on every compact set if we take

the product with the bracket. �

The most important part of this lemma is nonnegativity of B ′. We will prove

Lemma 2 in Section 7.

If fi(s) satisfies all conditions in Lemma 2, then we obtain Proposition 3 by

applying Lemma 2 to fi(s). Condition (i) is trivial for fi(s). Under condition (ii), (iv) is easily

proved by a standard argument by using well-known estimate |χ (s)| ≤ exp(C |s| log |s|) and

Jensen’s formula (see Section 4.1 of [17], for example). On the other hand, we have

f1(0) = 0, f1(s) = f ′
1(0) s + O(s2), f ′

1(0) � −2.176 �= 0,

f2(0) � −6.283 �= 0.

Hence, it remains to prove (ii), (iii), and (v) for fi(s).
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5.1 Proof of (v)

5.1.1 Case of f1(s)

First, we see that f1(1 − σ )/ f1(σ ) is positive for sufficiently large σ > 0. Using the func-

tional equation of χ (s), we have

f1(1 − σ ) = σ 2(3σ − 1)(Aσ − 1)χ (σ − 1)χ (3σ − 2)

+ σ (σ − 2)(σ + 1)χ (σ )χ (3σ − 1) + 2σ 2(σ + 1)χ (σ )χ (3σ − 2),

f1(σ ) = (σ − 1)2(3σ − 2)(Aσ − A+ 1)χ (σ + 1)χ (3σ )

− (σ + 1)(σ − 2)(σ − 1)χ (σ )χ (3σ − 1) − 2(σ − 1)2(σ − 2)χ (σ )χ (3σ ).

Clearly, the numerator is positive for large σ > 0. The denominator is also positive for

large σ > 0, since A > 0 and

|χ (σ )/χ (σ + 1)| < 1 (σ > 0), |χ (3σ − 1)/χ (3σ )| < 1 (σ > 1/3) (5)

by replacing 2s − 1 by σ or 3σ − 1 in (2). Now we prove (4). We have

f1(1 − σ )

f1(σ )
= σ 2(3σ − 1)(Aσ − 1)

(σ − 1)2(3σ − 2)(Aσ − A+ 1)
· χ (σ − 1)χ (3σ − 2)

χ (σ + 1)χ (3σ )
· 1 + g(σ )

1 − h(σ )

= (1 + O(σ−1)) · χ (σ − 1)χ (3σ − 2)

χ (σ + 1)χ (3σ )
· 1 + g(σ )

1 − h(σ )
,

where

g(σ ) = (σ − 2)(σ + 1)

σ (3σ − 1)(Aσ − 1)
· χ (σ )χ (3σ − 1)

χ (σ − 1)χ (3σ − 2)
+ 2(σ + 1)

(3σ − 1)(Aσ − 1)
· χ (σ )

χ (σ − 1)
,

and

h(σ ) = (σ + 1)(σ − 2)

(σ − 1)(3σ − 2)(Aσ − A+ 1)
· χ (σ )χ (3σ − 1)

χ (σ + 1)χ (3σ )
+ 2(σ − 2)

(3σ − 2)(Aσ − A+ 1)
· χ (σ )

χ (σ + 1)
.

We have

χ (σ − 1)χ (3σ − 2)

χ (σ + 1)χ (3σ )
= (1 + O(σ−1))

ξ (σ − 1)ξ (3σ − 2)

ξ (σ + 1)ξ (3σ )

= (1 + O(σ−1)) · π2 · �((σ − 1)/2)�((3σ − 2)/2)

�((σ + 1)/2)�(3σ/2)

ζ (σ − 1)ζ (3σ − 2)

ζ (σ + 1)ζ (3σ )

= (1 + O(σ−1)) · �((σ − 1)/2)

�((σ + 1)/2)(3σ − 2)
· O(1)
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for large σ > 0. Using the Stirling formula

�(z) =
√

2π

z

( z

e

)z
(1 + Oε(|z|−1)) (|z| ≥ 1, |arg z| < π − ε),

we obtain

χ (σ − 1)χ (3σ − 2)

χ (σ + 1)χ (3σ )
= O(σ−2) as σ → +∞. (6)

On the other hand, by using the Stirling formula again, we have

g(σ ) = O(1) + O(σ−1/2) = O(1) as σ → +∞. (7)

For h(σ ), by using (5), we have

h(σ ) = O(σ−1) as σ → +∞. (8)

From (6), (7), and (8), we obtain

f1(1 − σ )

f1(σ )
= O(σ−2) as σ → +∞.

This shows condition (v) for f1(s). �

5.1.2 Case of f2(s)

First, we see that f2(1 − σ )/ f2(σ ) is positive for sufficiently large σ > 0. Using the func-

tional equation of χ (s), we have

f2(1 − σ ) = σ 2(σ + 1)(Aσ − A− 3)χ (σ − 2)

+ 2σ (σ + 1)(σ + 2)χ (σ − 1) + (σ − 3)(σ + 1)(σ + 2)χ (σ ),

f2(σ ) = (σ − 1)2(σ − 2)(Aσ + 3)χ (σ + 2)

− 2(σ − 1)(σ − 2)(σ − 3)χ (σ + 1) − (σ + 2)(σ − 2)(σ − 3)χ (σ ).

Clearly, the numerator is positive for large σ > 0. The denominator is also positive for

large σ > 0, since A > 0 and

|χ (σ + 1)/χ (σ + 2)| < 1 (σ > −1), |χ (σ )/χ (σ + 2)| < 1 (σ > 0) (9)

by (2) and χ (σ )/χ (σ + 2) = (χ (σ + 1)/χ (σ + 2)) · (χ (σ )/χ (σ + 1)). We have
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f2(1 − σ )

f2(σ )
= σ 2(σ + 1)(Aσ − A− 3)

(σ − 1)2(σ − 2)(Aσ + 3)
· χ (σ − 2)

χ (σ + 2)
· 1 + g(σ )

1 − h(σ )

= (1 + O(σ−1)) · χ (σ − 2)

χ (σ + 2)
· 1 + g(σ )

1 − h(σ )
,

where

g(σ ) = 2(σ + 2)

σ (Aσ − A− 3)
· χ (σ − 1)

χ (σ − 2)
+ (σ + 2)(σ − 3)

σ 2(Aσ − A− 3)
· χ (σ )

χ (σ − 2)
,

and

h(σ ) = 2(σ − 3)

(σ − 1)(Aσ + 3)
· χ (σ + 1)

χ (σ + 2)
+ (σ + 2)(σ − 3)

(σ − 1)2(Aσ + 3)
· χ (σ )

χ (σ + 2)
.

Using the Stirling formula, we obtain

χ (σ − 2)

χ (σ + 2)
= O(σ−2) as σ → +∞. (10)

and

g(σ ) = O(σ−1/2) + O(1) = O(1) as σ → +∞. (11)

Using (9), we have

h(σ ) = O(σ−1) as σ → +∞. (12)

From (10), (11), and (12), we obtain

f2(1 − σ )

f2(σ )
= O(σ−2) as σ → +∞.

This shows condition (v) for f2(s). �

5.2 Proof of (ii) and (iii)

Lemma 3. The entire function f1(s) has no zero in certain left-half plane Re(s) < σ1. �

Proof. Assume σ = Re(s) < 0. We have

f1(s) = −(s + 1)(s − 1)(s − 2)χ (s)χ (3s − 1)[1 + R1(s) − R2(s)],
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where

R1(s) = 2
s − 1

s + 1
· χ (3s)

χ (3s − 1)

R2(s) = (s − 1)(3s − 2)(As − A+ 1)

(s + 1)(s − 2)
· χ (s + 1)χ (3s)

χ (s)χ (3s − 1)
.

Clearly, the factor (s + 1)(s − 1)(s − 2)χ (s)χ (3s − 1) has no zero in the left-half plane Re(s) <

−1. Using the functional equation, we have

R1(s) = 2
s − 1

s + 1

χ (1 − 3s)

χ (2 − 3s)
= 6s(s − 1)

(3s − 2)(s + 1)

ξ (1 − 3s)

ξ (2 − 3s)

= 6
√

πs(s − 1)

(3s − 2)(s + 1)

�((1 − 3s)/2)

�((2 − 3s)/2)

ζ (1 − 3s)

ζ (2 − 3s)
.

Therefore,

|R1(s)| ≤ 2
√

π

∣∣∣∣∣ s(s − 1)(
s − 2

3

)
(s + 1)

∣∣∣∣∣
∣∣∣∣ �((1 − 3s)/2)

�((2 − 3s)/2)

∣∣∣∣ ζ (1 − 3σ )ζ (2 − 3σ ).

If σ = Re(s) < 0, |arg((1 − 3s)/2)| < π/2 and |arg(2 − 3s)/2| < π/2. Hence, we can apply the

Stirling formula for Re(s) < 0, and then

∣∣∣∣ �((1 − 3s)/2)

�((2 − 3s)/2)

∣∣∣∣ =
√

2

3
|s|−1/2(1 + O(|s|−1)) (Re(s) < 0).

On the other hand,

ζ (1 − 3σ )ζ (2 − 3σ ) → 1 (σ → −∞).

Therefore,

|R1(s)| ≤
√

8π

3
· |s|−1/2 · (1 + O(|s|−1)), (13)

if σ = Re(s) < 0, and |s|, |σ | are both large.
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However, using the functional equation, we have

R2(s) = (s − 1)(3s − 2)(As − A+ 1)

(s + 1)(s − 2)
· χ (−s)χ (1 − 3s)

χ (1 − s)χ (2 − 3s)

= 3s(As − A+ 1)

(s − 2)
· ξ (−s)ξ (1 − 3s)

ξ (1 − s)ξ (2 − 3s)

= 3πs(As − A+ 1)

(s − 2)
· �(−s/2)�((1 − 3s)/2)

�((1 − s)/2)�((2 − 3s)/2)
· ζ (−s)ζ (1 − 3s)

ζ (1 − s)ζ (2 − 3s)
.

Therefore,

|R2(s)| ≤ 3π A

∣∣∣∣s(s − 1 + A−1)

(s − 2)

∣∣∣∣ ∣∣∣∣ �(−s/2)

�((1 − s)/2)

∣∣∣∣ ∣∣∣∣�((1 − 3s)/2)

�((2 − 3s)/2)

∣∣∣∣
× ζ (−σ )ζ (1 − σ )ζ (1 − 3σ )ζ (2 − 3σ ).

If σ = Re(s) < 0, each argument of −s/2, (1 − s)/2, (1 − 3s)/2, and (2 − 3s)/2 is less than

π/2. Hence, we can apply the Stirling formula for Re(s) < 0, and then

∣∣∣∣ �(−s/2)

�((1 − s)/2)

∣∣∣∣ =
√

2 |s|−1/2(1 + O(|s|−1)) (Re(s) < 0).

∣∣∣∣ �((1 − 3s)/2)

�((2 − 3s)/2)

∣∣∣∣ =
√

2

3
|s|−1/2(1 + O(|s|−1)) (Re(s) < 0).

We have

ζ (−σ )ζ (1 − σ )ζ (1 − 3σ )ζ (2 − 3σ ) → 1 (σ → −∞).

Therefore,

|R2(s)| ≤ 2
√

3π A · (1 + O(|s|−1)), (14)

if σ = Re(s) < 0, and |s|, −σ are both large. Here,

2
√

3π A = 0.51364 . . .

Hence, (13) and (14) imply Lemma 3. �
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Lemma 4. The entire function f2(s) has no zero in certain left-half plane Re(s) < σ2. �

Proof. Assume σ = Re(s) < 0. We have

f2(s) = −(s + 2)(s − 2)(s − 3)χ (s)[1 + R1(s) − R2(s)],

where

R1(s) = 2
(s − 1)

(s + 2)
· χ (s + 1)

χ (s)
, R2(s) = (As + 3)(s − 1)2

(s + 2)(s − 3)
· χ (s + 2)

χ (s)
.

Clearly, the factor (s + 2)(s − 2)(s − 3)χ (s) has no zero in the left-half plane Re(s) < −2.

Using the functional equation, we have

R1(s) = 2
(s − 1)

(s + 2)
· χ (−s)

χ (1 − s)
= 2

s + 1

s + 2

ξ (−s)

ξ (1 − s)
= 2

√
π

s + 1

s + 2

�(−s/2)

�((1 − s)/2)

ζ (−s)

ζ (1 − s)
.

Therefore,

|R1(s)| ≤ 2
√

π

∣∣∣∣s + 1

s + 2

∣∣∣∣ ∣∣∣∣ �(−s/2)

�((1 − s)/2)

∣∣∣∣ ζ (−σ )ζ (1 − σ ).

If σ = Re(s) < 0, |arg(−s/2)| < π/2 and |arg(1 − s)/2| < π/2. Hence, we can apply the Stir-

ling formula for Re(s) < 0, and then

∣∣∣∣ �(−s/2)

�((1 − s)/2)

∣∣∣∣ =
√

2|s|−1/2(1 + O(|s|−1)) (Re(s) < 0).

On the other hand, ζ (−σ )ζ (1 − σ ) → 1 as σ → −∞. Therefore,

|R1(s)| ≤
√

8π · |s|−1/2 · (1 + O(|s|−1)), (15)

if σ = Re(s) < 0, and |s|, |σ | are both large. However, using the functional equation, we

have

R2(s) = (As + 3)(s − 1)2

(s + 2)(s − 3)
· χ (−1 − s)

χ (1 − s)
= (As + 3)(s − 1)(s + 1)

s(s − 3)
· ξ (−1 − s)

ξ (1 − s)

= π
(As + 3)(s − 1)(s + 1)

s(s − 3)
· �((−1 − s)/2)

�((1 − s)/2)
· ζ (−1 − s)

ζ (1 − s)
.

Therefore,

|R2(s)| ≤ π A

∣∣∣∣ (s + 3A−1)(s − 1)(s + 1)

s(s − 3)

∣∣∣∣ ∣∣∣∣�((−1 − s)/2)

�((1 − s)/2)

∣∣∣∣ ζ (−1 − σ )ζ (1 − σ ).
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If σ = Re(s) < 0, both arguments of (−1 − s)/2, (1 − s)/2 are less than π/2. Hence, we can

apply the Stirling formula for Re(s) < 0, and then

∣∣∣∣�((−1 − s)/2)

�((1 − s)/2)

∣∣∣∣ = 2 |s|−1(1 + O(|s|−1)) (Re(s) < 0).

We have ζ (−1 − σ )ζ (1 − σ ) → 1 as σ → −∞. Therefore,

|R2(s)| ≤ 2π A · (1 + O(|s|−1)), (16)

if σ = Re(s) < 0, and |s|, |σ | are both large. Here,

2π A = 0.29655 . . .

Hence, (15) and (16) imply Lemma 4. �

Lemma 5. The entire function f1(s) has only finitely many zeros in the right-half plane

Re(s) > 1/3. In particular, the number of zeros of f1(s) in Re(s) ≥ 1/2 is finite. �

Proof. We have

f1(s) = (s − 1)2(3s − 2)(As − A+ 1)χ (s + 1)χ (3s)[1 − Q1(s) − Q2(s)], (17)

where

Q1(s) = (s + 1)(s − 2)

(s − 1)(3s − 2)(As − A+ 1)
· χ (s)χ (3s − 1)

χ (s + 1)χ (3s)
,

Q2(s) = 2(s − 2)

(3s − 2)(As − A+ 1)
· χ (s)

χ (s + 1)
.

The factor (s − 1)2(3s − 2)(As − A+ 1)χ (s + 1)χ (3s) has no zero in Re(s) > 1/3 except for

s = 2/3 and s = 1. Replacing 2s − 1 by 3s − 1 or s in (2), we obtain

∣∣∣∣χ (3s − 1)

χ (3s)

∣∣∣∣ < 1
(

Re(s) >
1

3

)
,

∣∣∣∣ χ (s)

χ (s + 1)

∣∣∣∣ < 1 (Re(s) > 0). (18)
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Let D1 be the region

D1 :=
{

s ∈ C

∣∣∣∣ Re(s) ≥ 1

3
,

∣∣∣∣ (s + 1)(s − 2)

(s − 1)(3s − 2)(As − A+ 1)

∣∣∣∣ +
∣∣∣∣ 2(s − 2)

(3s − 2)(As − A+ 1)

∣∣∣∣ ≥ 1
}

.

Then f1(s) �= 0 if s �∈ D1 and Re(s) ≥ 1/3, because of (17) and (18). The region D1 is bounded,

since ∣∣∣∣ (s + 1)(s − 2)

(s − 1)(3s − 2)(As − A+ 1)

∣∣∣∣ +
∣∣∣∣ 2(s − 2)

(3s − 2)(As − A+ 1)

∣∣∣∣ < 1

for large |s|. Hence, the number of zeros of f1(s) in Re(s) ≥ 1/3 is finite. �

Lemma 6. The entire function f2(s) has only finitely many zeros in the right-half plane

Re(s) > 0. In particular, the number of zeros of f2(s) in Re(s) ≥ 1/2 is finite. �

Proof. We have

f2(s) = (As + 3)(s − 1)2(s − 2)χ (s + 2)[1 − Q1(s) − Q2(s)], (19)

where

Q1(s) = 2(s − 3)

(As + 3)(s − 1)
· χ (s + 1)

χ (s + 2)

Q2(s) = (s + 2)(s − 3)

(As + 3)(s − 1)2
· χ (s)

χ (s + 2)
.

The factor (As + 3)(s − 1)2(s − 2)χ (s + 2) has no zero in Re(s) > 0 except for s = 1 and s = 2.

Replacing 2s − 1 by s + 1 or s in (2), we obtain

∣∣∣∣χ (s + 1)

χ (s + 2)

∣∣∣∣ < 1
(
Re(s) > −1

)
,∣∣∣∣ χ (s)

χ (s + 2)

∣∣∣∣ =
∣∣∣∣χ (s + 1)

χ (s + 2)

∣∣∣∣ ∣∣∣∣ χ (s)

χ (s + 1)

∣∣∣∣ < 1 (Re(s) > 0).
(20)

Let D2 be the region

D2 :=
{

s ∈ C

∣∣∣∣ Re(s) ≥ 0,

∣∣∣∣ 2(s − 3)

(As + 3)(s − 1)

∣∣∣∣ +
∣∣∣∣ (s + 2)(s − 3)

(As + 3)(s − 1)2

∣∣∣∣ ≥ 1
}

.
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Then f2(s) �= 0 if s �∈ D2 and Re(s) ≥ 0, because of (19) and (20). Clearly, the region D2 is

bounded, the number of zeros of f2(s) in Re(s) ≥ 0 is finite. �

5.3 Proof of Proposition 3

By the results in Sections 5.1 and 5.2, we can apply Lemma 2 to fi(s) (i = 1, 2). Hence, the

proof of Proposition 3 is completed by the following lemmas.

Lemma 7. The number of zeros of f1(s) in Re(s) ≥ 1/2 is just three. One of them is the

real zero s = 1, and another two zeros are nonreal zeros and conjugate each other. The

values of complex zeros are about s � 0.927 ± i · 2.09. �

Lemma 8. The number of zeros of f2(s) in Re(s) ≥ 1/2 is just three. One of them is the

real zero s = 2, and another two zeros are nonreal zeros and conjugate each other. The

values of complex zeros are s � 1.17 ± i · 3.43. �

Proof of Lemma 7 and Lemma 8. The domain Di ∩ {Re(s) ≤ 1/2} is contained in the

rectangle R = [1/2, 5] × [−10, 10], where Di is the region in the proof of Lemma 7 or

Lemma 8. Because of the argument principle, the number of zeros of f (s) in R is given by

1

2πi

∫
∂ R

f ′
i

fi
(s)ds.

In particular, the value of this integral is an integer. Therefore, we can check that the

value of this integral is just three by a computational way (for example, Mathematica,

Maple, PARI/GP). Hence, we conclude that fi(s) has just three zeros in the rectangle R.

One of them is trivial real zero of f1(s) (resp. f2(s)) at s = 1 (resp. s = 2). By suitable

computational way, we find an approximate value of the above two complex zeros of f1(s)

(resp. f2(s)) are s � 0.927 ± i · 2.09 (resp. s � 1.17 ± i · 3.43). �

6 Proof of the RH for G2: Second Step

6.1 Proof of Theorem 4 and Theorem 5

We have the following three assertions for Z1(s).

Proposition 4. Z1(s) has no zero in the right-half plane Re(s) ≥ 20. �
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Proposition 5. Z1(s) has no zero in the region 1/2 < σ < 20, |t | ≥ 25. �

Proposition 6. Z1(s) has only one simple zero s = 2/3, 1 in the region 1/2 < σ < 20,

|t | ≤ 25. �

Then, as a consequence of these results and the functional equation of Z1(s), all

zeros of Z1(s) lie on the line Re(s) = 1/2 except for simple zeros s = 0, 1/3, 1/2, 2/3, 1.

While we have the following three assertions for Z2(s).

Proposition 7. Z2(s) has no zero in the right-half plane Re(s) ≥ 20. �

Proposition 8. Z2(s) has no zero in the region 1/2 < σ < 20, |t | ≥ 36. �

Proposition 9. Z2(s) has only one simple zero s = 1, 2 in the region 1/2 < σ < 20, |t | ≤ 36.

�

Then, as a consequence of these results and the functional equation of Z2(s), all

zeros of Z2(s) lie on the line Re(s) = 1/2 except for simple zeros s = −1, 0, 1/2, 1, 2. �

Hence, it remains to prove the above six propositions. We carry out their proof

below. The hardest part is the proof of Propositions 5 and 8. To prove Propositions 5 and

8, we use the results in the first step and a result of Lagarias [10].

6.2 Proof of Proposition 4

We have

Z1(s) = (s − 1)2(3s − 2)(As − A+ 1)χ (s + 1)χ (3s)χ (2s)

× (1 − R1(s) − R2(s) − R3(s) + R4(s) + R5(s)),
(21)
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where

R1(s) = (s + 1)(s − 2)

(s − 1)(3s − 2)(As − A+ 1)

χ (s)

χ (s + 1)

χ (3s − 1)

χ (3s)
,

R2(s) = 2(s − 1)(s − 2)

(s − 1)(3s − 2)(As − A+ 1)

χ (s)

χ (s + 1)
,

R3(s) = s2(3s − 1)(As − 1)

(s − 1)2(3s − 2)(As − A+ 1)

χ (s − 1)

χ (s + 1)

χ (3s − 2)

χ (3s)

χ (2s − 1)

χ (2s)
,

R4(s) = s(s + 1)(s − 2)

(s − 1)2(3s − 2)(As − A+ 1)

χ (s)

χ (s + 1)

χ (3s − 1)

χ (3s)

χ (2s − 1)

χ (2s)
,

R5(s) = 2s2(s + 1)

(s − 1)2(3s − 2)(As − A+ 1)

χ (s)

χ (s + 1)

χ (3s − 2)

χ (3s)

χ (2s − 1)

χ (2s)
.

Replacing 2s − 1 by s or 3s − 1 in (2), we have∣∣∣∣ χ (s)

χ (s + 1)

∣∣∣∣ < 1 (Re(s) > 0),

∣∣∣∣χ (3s − 1)

χ (3s)

∣∣∣∣ < 1
(

Re(s) >
1

3

)
.

Moreover, replacing 2s − 1 by s − 1 or 3s − 2 in (2), we have∣∣∣∣χ (s − 1)

χ (s + 1)

∣∣∣∣ =
∣∣∣∣ χ (s)

χ (s + 1)

∣∣∣∣ ∣∣∣∣χ (s − 1)

χ (s)

∣∣∣∣ < 1 (Re(s) > 1),∣∣∣∣χ (3s − 2)

χ (3s)

∣∣∣∣ =
∣∣∣∣χ (3s − 1)

χ (3s)

∣∣∣∣ ∣∣∣∣χ (3s − 2)

χ (3s − 1)

∣∣∣∣ < 1
(

Re(s) >
2

3

)
.

Hence, |Ri(s)| ≤ Ci|s|−1 (i = 1, 2, 4, 5) for Re(s) > 1. Applying the Stirling formula to R3(s),

we obtain |R3(s)| = (|s|−5/2) for Re(s) > 1 as |s| → ∞ in the right-half plane.

Therefore, Z1(s) �= 0 for some right-half plane Re(s) ≥ σ3. Using the monotone

decreasing property of ζ (σ ) as σ → +∞ and the effective version of Stirling’s formula

[16]

�(s) =
(

2π

s

) 1
2 (s

e

)s
{

1 + �

(
1

8|s|
)}

(Re(s) > 1),

where the notation f = �(g) means | f | ≤ g,

we have

|R1(s)| ≤ 0.1, |R2(s)| ≤ 0.3, |R3(s)| ≤ 0.05 |R4(s)| ≤ 0.1, |R5(s)| ≤ 0.1

for Re(s) ≥ 20 (in fact, these bounds already hold for Re(s) ≥ 10). These estimates imply

Z1(s) �= 0 for Re(s) ≥ 20 by (21), since (s − 1)2(3s − 2)(As − A+ 1)χ (s + 1)χ (3s)χ (2s) has no

zero in the right-half plane Re(s) ≥ 20. �
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6.3 Proof of Proposition 7

We have

Z2(s) = (s − 1)2(s − 2)(As + 3)χ (s + 2)χ (2s)

× (1 − R1(s) − R2(s) + R3(s) − R4(s) − R5(s)),
(22)

where

R1(s) = 2(s − 3)

(s − 1)(As + 3)

χ (s + 1)

χ (s + 2)
,

R2(s) = (s + 2)(s − 3)

(s − 1)2(As + 3)

χ (s)

χ (s + 2)
,

R3(s) = s2(s + 1)(As − 3 − A)

(s − 1)2(s − 2)(As + 3)

χ (s − 2)

χ (s + 2)

χ (2s − 1)

χ (2s)
,

R4(s) = 2s(s + 1)(s + 2)

(s − 1)2(s − 2)(As + 3)

χ (s − 1)

χ (s + 2)

χ (2s − 1)

χ (2s)
,

R5(s) = (s − 3)(s + 1)(s + 2)

(s − 1)2(s − 2)(As + 3)

χ (s)

χ (s + 2)

χ (2s − 1)

χ (2s)
.

Replacing 2s − 1 by s − a (a = −1, 0, 1, 2) in (2), we have

∣∣∣∣χ (s + 1)

χ (s + 2)

∣∣∣∣ < 1, (Re(s) > −1),∣∣∣∣ χ (s)

χ (s + 2)

∣∣∣∣ =
∣∣∣∣χ (s + 1)

χ (s + 2)

∣∣∣∣ ∣∣∣∣ χ (s)

χ (s + 1)

∣∣∣∣ < 1, (Re(s) > 0),∣∣∣∣χ (s − 1)

χ (s + 2)

∣∣∣∣ =
∣∣∣∣χ (s + 1)

χ (s + 2)

∣∣∣∣ ∣∣∣∣ χ (s)

χ (s + 1)

∣∣∣∣ ∣∣∣∣χ (s − 1)

χ (s)

∣∣∣∣ < 1, (Re(s) > 1),∣∣∣∣χ (s − 2)

χ (s + 2)

∣∣∣∣ =
∣∣∣∣χ (s + 1)

χ (s + 2)

∣∣∣∣ ∣∣∣∣ χ (s)

χ (s + 1)

∣∣∣∣ ∣∣∣∣χ (s − 1)

χ (s)

∣∣∣∣ ∣∣∣∣χ (s − 2)

χ (s − 1)

∣∣∣∣ < 1, (Re(s) > 2).

Hence, |Ri(s)| ≤ Ci|s|−1 (i = 1, 2, 4, 5) for Re(s) > 2. Applying the Stirling formula to R3(s),

we obtain |R3(s)| = (|s|−5/2) for Re(s) � 0. Therefore, Z2(s) �= 0 for some right-half plane

Re(s) ≥ σ4. Using the monotone decreasing property of ζ (σ ) as σ → +∞ and the effective

version of Stirling’s formula, we have

|R1(s)| ≤ 0.3, |R2(s)| ≤ 0.13, |R3(s)| ≤ 0.15, |R4(s)| ≤ 0.2, |R5(s)| ≤ 0.1

for Re(s) ≥ 20. These estimates imply Z2(s) �= 0 for Re(s) ≥ 20 by (22), since (s − 1)2(s −
2)(As + 3)χ (s + 2)χ (2s) has no zero in the right-half plane Re(s) ≥ 20. �
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6.4 Proof of Proposition 5

Let ρ0 = β0 + iγ0 (γ0 > 0) be the complex zero of f1(s) in Lemma 7. By Proposition 3, f1(s)

has the factorization

f1(s) = f ′
1(0) eB ′

1s s(1 − s)
(

1 − s

ρ0

) (
1 − s

ρ0

)
· �1(s) (B ′

1 ≥ 0),

where

�1(s) =
∏

0�=β∈R

(
1 − s

β

) ∏
ρ=β+iγ

β<1/2, γ>0

[(
1 − s

ρ

)(
1 − s

ρ

)]
.

Note that all zeros of �1(s) lie in σ0 < Re(s) < 1/2 for some σ0. We have

Z1(s) = g1(s) ·
(

1 − g1(1 − s)

g1(s)

)
(g1(s) = f1(s) · χ (2s)). (23)

and ∣∣∣∣g1(1 − s)

g1(s)

∣∣∣∣ = eB ′
1(1−2σ ) ·

∣∣∣∣�1(1 − s)

�1(s)

∣∣∣∣ ·
∣∣∣∣s − 1 + ρ0

s − ρ0
· s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣χ (2s − 1)

χ (2s)

∣∣∣∣ . (24)

Because B ′
1 ≥ 0, we have

eB ′
1(1−2σ ) ≤ 1 (Re(s) > 1/2). (25)

For the ratio �1(1 − s)/�1(s) in (24), we have

∣∣∣∣�1(1 − s)

�1(s)

∣∣∣∣ =
∏

ρ=β+iγ
β<1/2, γ>0

(∣∣∣∣1 − s − ρ

s − ρ

∣∣∣∣ ·
∣∣∣∣1 − s − ρ

s − ρ

∣∣∣∣) < 1 (Re(s) > 1/2), (26)

by term-by-term argument as in [11] by using β < 1/2 and

∣∣∣∣1 − s − ρ

s − ρ

∣∣∣∣2 = 1 − (2σ − 1)(1 − 2β)

(σ − β)2 + (t − γ )2
,

where ρ = β + iγ is a zero of f1(s). It remains to give an estimate for

r1(s) :=
∣∣∣∣s − 1 + ρ0

s − ρ0
· s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣χ (2s − 1)

χ (2s)

∣∣∣∣ . (27)
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To estimate r1(s), we use the following lemma essentially.

Lemma 9 [10]. For any real value of t there exist at least three distinct zeros ρ = β + iγ

of ξ (s) such that 0 < β ≤ 1/2 and

|t − γ | ≤ 22. (28)

�

Proof. Suppose |t | ≥ 25. Then there exist at least three distinct zeros ρ = β + iγ of ξ (s)

satisfying 0 < β ≤ 1/2 and |t − γ | < 15.1 by applying Lemma 5 in [17] to t + 10.1 and

t − 10.1 (Lemma 5 in [17] is essentially Lemma 3.5 of [10]). For |t | < 25, estimate (28) also

holds for three distinct zeros because ξ (s) has zeros at s = ±14.13, ±21.02, ±25.01. �

Using Lemma 9, we show the following.

Lemma 10. Let ρ0 = β0 + iγ0 � 0.927 + i · 2.09 be the complex zero of f1(s) in Lemma 7.

Let s = σ + it with 1/2 < σ ≤ 20 and t ≥ 25. Then there exist at least two distinct zeros

ρ = β + iγ of ξ (s) such that 0 < β ≤ 1/2, |t − γ | ≤ 22,

∣∣∣∣s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣2s − 1 − (1 − ρ)

2s − ρ

∣∣∣∣ < 1, (29)

and

∣∣∣∣s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣2s − 1 − (1 − ρ)

2s − ρ

∣∣∣∣ < 1. (30)

�

Proof. By squaring (29) and (30), we have

(σ + β0 − 1)2 + (t ± γ0)2

(σ − β0)2 + (t ± γ0)2
· (2σ + β − 2)2 + (t − γ )2

(2σ − β)2 + (t − γ )2
< 1. (31)

To prove Lemma 10, it is sufficient that (31) holds for 0 < β ≤ 1/2, |t − γ | < 22, 1/2 < σ ≤
20, and t ≥ 25, because of Lemma 9. To establish (31) in that conditions it suffices to

show that

(σ + β0 − 1)2 + (t ± γ0)2

(σ − β0)2 + (t ± γ0)2
·
(
2σ − 3

2

)2 + 222(
2σ − 1

2

)2 + 222
< 1,
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by a similar reason in the later half of Section 4.3 in [17]. This inequality is equivalent to

(2σ − 1)(8(t ± γ0)2 − P (σ )) > 0, (32)

where P (σ ) = 8(4β0 − 3)σ 2 − 8(4β0 − 3)σ − 8β2
0 + 3890β0 − 1945. Using the value β0 �

0.927, we see that P (σ ) < 3807 for 1/2 < σ < 20. On the other hand, using the value

γ0 � 2.09, we see that 8(t ± γ0)2 > 3872 for t ≥ 25 since |t ± γ0| = t ± γ0 > 22 for t ≥ 25.

Hence, (32) holds, and it implies (31). �

Lemma 10 and Z1(s) = Z1(s) imply

|r1(s)| < 1 for 1/2 < σ ≤ 20, |t | ≥ 25 (33)

by taking two distinct zeros of ξ (s) in that region, since other terms in r1(s) are estimated

as

∣∣∣∣2s − 1 − (1 − ρ)

2s − ρ

∣∣∣∣ < 1 (Re(s) > 1/2),

where ρ is a zero of ξ (s). Estimates (25), (26), and (33) show that

∣∣∣∣g1(1 − s)

g1(s)

∣∣∣∣ < 1 for 1/2 < σ ≤ 20, |t | ≥ 25.

By (23), this estimate implies Proposition 5, because g1(s) has no zero in the region

1/2 < σ ≤ 20, |t | ≥ 25. �

6.5 Proof of Proposition 8

Let ρ0 = β0 + iγ0 (γ0 > 0) be the complex zero of f2(s) in Lemma 8. By Proposition 3, f2(s)

has the factorization

f2(s) = f2(0) eB ′
2s

(
1 − s

2

) (
1 − s

ρ0

) (
1 − s

ρ0

)
· �2(s) (B ′

2 ≥ 0),

where

�2(s) =
∏

0�=β∈R

(
1 − s

β

) ∏
ρ=β+iγ

β<1/2, γ>0

[(
1 − s

ρ

)(
1 − s

ρ

)]
.
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Here, all zeros of �2(s) lie in σ0 < Re(s) < 1/2 for some σ0. We have

Z2(s) = g2(s) ·
(

1 − g2(1 − s)

g2(s)

)
(g2(s) = f2(s) · χ (2s)). (34)

and

∣∣∣∣g2(1 − s)

g2(s)

∣∣∣∣ = eB ′
2(1−2σ ) ·

∣∣∣∣�2(1 − s)

�2(s)

∣∣∣∣ ·
∣∣∣∣ s

1 − s

s − 1 + ρ0

s − ρ0
· s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣χ (2s − 1)

χ (2s)

∣∣∣∣ .
For eB ′

2(1−2σ ) and �2(1 − s)/�2(s), we have

eB ′
2(1−2σ ),

∣∣∣∣�2(1 − s)

�2(s)

∣∣∣∣ < 1 (Re(s) > 1/2) (35)

by a similar argument as in f1(s). It remains to give an estimate for

r2(s) :=
∣∣∣∣ s

1 − s

s − 1 + ρ0

s − ρ0
· s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣χ (2s − 1)

χ (2s)

∣∣∣∣ . (36)

Using Lemma 9, we show the following.

Lemma 11. Let ρ0 = β0 + iγ0 � 1.17 + i · 3.43 be the complex zero of f2(s) in Lemma 8.

Let s = σ + it with 1/2 < σ ≤ 20 and t ≥ 36. Then there exist at least three distinct zeros

ρ = β + iγ of ξ (s) such that 0 < β ≤ 1/2, |t − γ | ≤ 22,

∣∣∣∣s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣2s − 1 − (1 − ρ)

2s − ρ

∣∣∣∣ < 1, (37)

∣∣∣∣s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣2s − 1 − (1 − ρ)

2s − ρ

∣∣∣∣ < 1, (38)

and

∣∣∣∣ s

s − 1

∣∣∣∣ ·
∣∣∣∣2s − 1 − (1 − ρ)

2s − ρ

∣∣∣∣ < 1. (39)

�
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Proof. By squaring (37) and (38), we have

(σ + β0 − 1)2 + (t ± γ0)2

(σ − β0)2 + (t ± γ0)2
· (2σ + β − 2)2 + (t − γ )2

(2σ − β)2 + (t − γ )2
< 1. (40)

To prove Lemma 11, it is sufficient that (40) holds for 0 < β ≤ 1/2, |t − γ | < 22, 1/2 < σ ≤
20, and t ≥ 25, because of Lemma 9. To establish (40) in that conditions it suffices to

show that

(σ + β0 − 1)2 + (t ± γ0)2

(σ − β0)2 + (t ± γ0)2
·
(
2σ − 3

2

)2 + 222(
2σ − 1

2

)2 + 222
< 1.

This inequality is equivalent to

(2σ − 1)(8(t ± γ0)2 − P (σ )) > 0, (41)

where P (σ ) = 8(4β0 − 3)σ 2 − 8(4β0 − 3)σ − 8β2
0 + 3890β0 − 1945. Using the value β0 � 1.17,

we see that P (σ ) < 7777 for 1/2 < σ < 20. However, using the value γ0 � 3.43, we see that

8(t ± γ0)2 > 8192 for t ≥ 36 since |t ± γ0| = t ± γ0 > 32 for t ≥ 36. Hence, (41) holds, and

it implies (40).

Similarly, to establish (39), it is sufficient to show

(2σ − 1)(8t2 − p(σ )) > 0,

where p(σ ) = 8σ 2 − 8σ + 1937. Because p(σ ) < 4977 for 1/2 < σ < 20 and 8t2 ≥ 5000 for

t ≥ 25, we obtain (39). �

Lemma 11 and Z2(s) = Z2(s) imply

|r2(s)| < 1 for 1/2 < σ ≤ 20, |t | ≥ 25 (42)

by taking three distinct zeros of ξ (s) in that region. Estimates (35) and (42) show that

∣∣∣g2(1 − s)

g2(s)

∣∣∣ < 1 (43)

for 1/2 < σ ≤ 20, |t | ≥ 36. By (34), this estimate implies Proposition 8, because g2(s) has

no zero in the region 1/2 < σ ≤ 20, |t | ≥ 36. �
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6.6 Proof of Propositions 6 and 9

Because the region 1/2 < σ ≤ 20, |t | ≤ 25 or 36 is finite, we can check the assertions of

Proposition 6 and Proposition 9 by using the help of computer as in the proof of Lemma

7 and Lemma 8. �

7 Proof of Lemma 2

We prove the lemma only if F (s) has genus one, since if F (s) has genus zero, it is easily

proved by a way similar to the case of genus one. The genus one assumption is known to

be equivalent to the Hadamard product factorization

F (s) = eA+Bssm
∏
ρ

(
1 − s

ρ

)
exp(s/ρ) (m ∈ Z≥0), (44)

means the continuation of what you wrote up to C. That is also equivalent to
∑

ρ |ρ|−2 <

∞. Assumption (i) implies the symmetry of the set of zeros under the conjugation ρ �→ ρ.

It follows that the set of zeros ρ = β + iγ , counted with multiplicity, is partitioned into

blocks B(ρ) comprising {ρ, ρ} if γ > 0 and {ρ} if β �= 0 and γ = 0. Each block is labeled

with the unique zero in it having γ ≥ 0. Using assumption (ii), we show

F (s) = smeA+B ′s
∏
B(ρ)

⎛⎝ ∏
ρ∈B(ρ)

(
1 − s

ρ

)⎞⎠ , (45)

where the outer product on the right-hand side converges absolutely and uniformly on

any compact subsets of C. This assertion holds because the block convergence factors

exp(c(B(ρ))s) are given by c(B(ρ)) = 2β|ρ|−2 for γ > 0. Assumption (ii) implies |β − 1/2| < σ0.

Hence,

∑
B(ρ)

|c(B(ρ))| ≤
∑

0�=ρ: real

|ρ|−1 + (2σ0 + 1)
∑

ρ

|ρ|−2 < ∞.

Thus, the convergence factors exp(c(B(ρ))s) can be pulled out of the product. Hence, we

have (45) with

B ′ = B +
∑
B(ρ)

c(B(ρ)). (46)
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Using assumptions (iii), (iv), and (v), we show

B ′ ≥ 0. (47)

By (4) in assumption (v), we have

R � log
(

F (1 − σ )

F (σ )

)
→ −∞ as σ → +∞. (48)

Using (45), we have

F (1 − σ )

F (σ )
= eB ′(1−2σ )

(
σ − 1

σ

)m ∏
ρ=β∈R

σ − 1 + β

σ − β

∏
ρ=β+iγ

γ>0

(σ − 1 + β)2 + γ 2

(σ − β)2 + γ 2
.

Thus,

log
(

F (1 − σ )

F (σ )

)
= B ′(1 − 2σ ) + m log

(
1 − 1

σ

)
+

∑
ρ=β∈R

log
(

1 − 1 − 2β

σ − β

)

+
∑

ρ=β+iγ
γ>0

log
(

1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)
.

(49)

Note that

log
(

1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)
< 0 for σ > 1/2 (50)

if β < 1/2, and

log
(

1 − 1

σ

)
, log

(
1 − 1 − 2β

σ − β

)
, log

(
1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)
→ 0 as σ → +∞

for any fixed ρ = β + iγ . By assumption (iii), (50) holds except for finitely many zeros.

Hence, if we suppose B ′ < 0, (48) and (49) imply

∣∣∣∣∣∣∣
∑

ρ=β+iγ
γ>0

log
(

1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)∣∣∣∣∣∣∣ ≥ 2|B ′|σ (51)
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for large σ > 1/2, because the number of real zeros is also finite by assumptions (ii) and

(iii). However, for large σ > 1/2, we have

∣∣∣∣∣∣∣
∑

ρ=β+iγ
γ>0

log
(

1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
∑

ρ=β+iγ
γ>0

log
(

1 − (1 − 2σ0)(2σ − 1)

(σ − 1/2)2 + γ 2

)∣∣∣∣∣∣∣
� (2σ − 1)

∑
ρ=β+iγ

γ>0

1

(σ − 1/2)2 + γ 2
.

The sum in the right-hand side can be written as the Stieltjes integral

∫ ∞

γ0

d N(t )

(σ − 1/2)2 + t2
.

Using (3) in assumption (iv), we have

∫ ∞

γ0

d N(t )

(σ − 1/2)2 + t2
�

∫ ∞

γ0

(log t ) dt

(σ − 1/2)2 + t2
� log(σ + γ0)

σ − 1/2
.

Hence, we obtain

∣∣∣∣∣∣∣
∑

ρ=β+iγ
γ>0

log
(

1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)∣∣∣∣∣∣∣ � log(σ + γ0) (52)

for large σ > 1/2. This contradicts (51). Thus (47) holds. �
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