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Contents

1. Higher homotopy associativity and commutativity

▶ See how multiplicative structures and classifying spaces are related.

2. Higher homotopy normality

▶ Recall classical homotopy normal maps, which are generalizations of normal

subgroups (and crossed modules).

▶ Define higher homotopy variant of homotopy normal maps, called

Nk(ℓ)-map (0 ≤ k , ℓ ≤ ∞).

3. Results

▶ The main theorem characterizes Nk(ℓ)-maps by a method of fiberwise

homotopy theory.

▶ Some computational examples on classical groups.
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Higher homotopy associativity

and commutativity



H-map

▶ A map f : G → G ′ between topological groups is said to be an H-map if

f ◦ µ ' µ ◦ (f × f ).

We can say an H-map is “a homomorphism up to homotopy”.

▶ However, H-map is far from homomorphism. There exists an H-map

f : G → G ′ not homotopy equivalent to any homomorphism f ′ : K → K ′

between topological groups as in the following diagram:

G f //

≃
��

G ′

≃
��

K
a homomorphism

// K ′

▶ This difference can be understood by considering higher homotopy.
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Classifying space and projective spaces

▶ The classifying space BG of a topological group G is constructed as the

quotient

BG =

(⨿
i≥0

∆i × G i

)/
∼

by some simplicial relation ∼.

▶ The image of ∆k × G k is written by BkG (k-th projective space). Then we

obtain the filtration

∗ = B0G ⊂ ΣG = B1G ⊂ B2G ⊂ · · · ⊂ BkG ⊂ · · · ⊂ BG .

▶ If f : G → G ′ is a homomorphism, then we have the induced maps

Bk f : BkG → BkG
′, Bf : BG → BG ′.
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Examples of classifying spaces and projective spaces

▶ When G = S0, S1 and S3, BkS
0 = RPk , BkS

1 = CPk and BkS
3 = HPk ,

respectively.

▶ When G = U(n), B U(n) ' Gn(C∞) (the Grassmannian of n-planes in C∞).

In general, Bk U(n) is not a manifold.
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A∞-map

▶ A map f : G → G ′ is said to be an A∞-map if it admits an A∞-form

{fi : I i−1 × G i → G ′}i≥1, which describes how the associativity is preserved

through f .
▶ What is an A∞-form {fi : I i−1 × G i → G ′}i≥1?

▶ f1 = f .

▶ f2 : I × G 2 → G ′ is a homotopy between f ◦ µ and µ ◦ (f × f ).

▶ f3 : [0, 1]
2 × G 3 → G ′ is depicted as follows.

f(h1h2)f(h3)

f(h1h2h3) f(h1)f(h2h3)

f(h1)f(h2)f(h3)

f3

▶ We will call a pair (f , {fi}i) an A∞-map.
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Classifying space and A∞-map

▶ Theorem (Sugawara, 1960). A map f : G → G ′ admits an A∞-form if

and only if the suspension Σf : ΣG → ΣG ′ extends to a map between the

classifying space BG → BG ′:

ΣG Σf //

inclusion
��

ΣG ′

inclusion
��

BG
∃

// BG ′

▶ By the simplicial loop group construction, an A∞-map f : G → G ′ is

homotopy equivalent to some homomorphism between topological groups in

the previous sense.
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Ak-map

▶ Stasheff (1963) considered the intermediate objects between H-map and

A∞-map: a map f : G → G ′ is said to be an Ak-map if it admits an Ak-form

{fi : I i−1 × G i → G ′}1≤i≤k .

▶ An A1-map is just a map.

▶ An A2-map is an H-map (with homotopy f ◦ µ ' µ ◦ (f × f )).

▶ Theorem (Stasheff, 1963). A map f : G → G ′ admits an Ak-form if and

only if the suspension Σf : ΣG → ΣG extends to a map from BkG to BG ′:

ΣG f //

inclusion
��

ΣG ′

inclusion
��

BkG ∃
// BG ′
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Homotopy commutativity

▶ A topological group G is said to be homotopy commutative if the Samelson

product

G ∧ G → G , (x , y) 7→ xyx−1y−1

is null-homotopic.

▶ Through the isomorphisms

[G ∧ G ,G ] ∼= [G ∧ G ,ΩBG ] ∼= [ΣG ∧ G ,BG ],

the Samelson product corresponds to the Whitehead product [ι, ι] of the

inclusion ι : ΣG → BG .

▶ So, G is homotopy commutative if and only if [ι, ι] = 0.
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Higher homotopy commutativity

▶ A topological group G is said to be a Ck-space in the sense of Sugawara

(defined by McGibbon 1989) if the multiplication G ×G → G is an Ak-map.

▶ Remark. This definition is similar to the fact that a group G is abelian if and

only if the multiplication G × G → G is a homomorphism.

▶ G is a C2-space if and only if G is homotopy commutative.

▶ An equivalent condition is as follows: the wedge sum of the inclusion

BkG ∨ BkG → BG

extends over the union ∪
i+j=k

BiG × BjG → BG .
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Higher homotopy commutativity (continued)

▶ Remark. There is another notion of Ck-space in the sense of Williams, which

is a bit weaker than Sugawara’s.

▶ Remark. G is a C∞-space in the sense of Sugawara if and only if BG is an

H-space. This condition is much weaker than requiring G to be a double

loop space (equivalently, BG to be a loop space).

▶ The higher homotopy commutativity of Lie groups and their p-localizations

has been extensively studied. Roughly speaking, the p-local homotopy

commutativity gets higher as p gets bigger. Let us see a typical argument to

show the non-commutativity in the next slide.
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Example of non-commutativity

Let G = SU(2) = S3 and p an odd prime. Suppose k ≥ p+1
2

and the wedge sum

of the inclusion

HPk ∨HPk → HP∞

extends to a map

f : B =
∪

i+j=k

HP i ×HP j → HP∞.

We know P1x = ax
p+1
2 with a 6= 0 for a generator x ∈ H4(HP∞;Fp). Then the

coefficient of x i × x j with i , j > 0 in f ∗P1x is nontrivial in

H∗(B ;Fp) = Fp[x × 1, 1× x ]/(x i × x j | i + j > k).

But this contradicts to the computation of P1f ∗x by the Cartan formula and

f ∗x = x × 1 + 1× x . This contradicts to P1x = ax
p+1
2 and a 6= 0. Therefore,

SU(2) is not p-locally a Ck-space. 12 / 33



Higher homotopy normality



Crossed module

▶ In the rest of this talk, let H and G be topological groups of homotopy

types of CW complexes.

▶ Recall that a normal subgroup H ⊂ G is a subgroup stable under the inner

automorphisms.

▶ Crossed module is a generalization of normal subgroup to general

homomorphisms H → G .

▶ Definition. A (topological) crossed module consists of homomorphisms

f : H → G and ρ : G → Aut(H) satisfying the conditions

▶ ρ(f (h))(x) = hxh−1 for any x , h ∈ H,

▶ f (ρ(g)(x)) = gf (x)g−1 for any x ∈ H and g ∈ G .

▶ Remark. f (ρ(g)(x)) = gf (x)g−1 ⇔ g−1f (ρ(g)(x))g = f (x).
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Homotopy quotient of crossed module

▶ Theorem (Farjoun–Segev, 2010). The Borel construction K = EH ×H G

of a crossed module f : H → G naturally inherits a group structure.

Moreover, there exists a homotopy fiber sequence

· · · → H
f−→ G → K → BH

Bf−→ BG → BK .

▶ When H ⊂ G is a closed normal subgroup, the natural homotopy

equivalence K → G/H is a homomorphism. Then we should consider that

K is “the homotopy quotient group of a homotopically normal subgroup”.

▶ My initial motivation for higher homotopy normality was to generalize this

result to higher homotopy theoretic setting. However, N∞(∞)-map turned

out to be much weaker than crossed module (this kind of phenomena will

appear later).
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Topological category Ak

▶ Let us give a naive construction of a category of topological groups and

Ak-maps between them. Our argument could work in other appropriate

higher categorical setting.

▶ Let

Ak(G ,G ′) ⊂
∏

1≤i≤k

Map(I i−1 × G i ,G ′)

be the space of Ak-maps.
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Topological category Ak (continued)

▶ We have the composition of Ak-maps as follows:

g(f(x)f(y))

g(f(x))g(f(y))

g(f(xy))
g(f(xyz))

g(f(xy)f(z))

g(f(xy))g(f(z)) g(f(x)f(y))g(f(z)) g(f(x))g(f(y))g(f(z))

g(f(x)f(yz))

g(f(x)f(y)f(z)) g(f(x))g(f(y)f(z))

g(f(x))g(f(yz))

g(f(x))

Modifying Ak(G ,G ′) and the composition like Moore path, we can make

this composition unital and associative.
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Topological category Ak (continued)

▶ Then we obtain the topological category Ak of topological groups and

Ak-maps.

▶ In particular, the space of self Ak -maps Ak(G ,G ) is a topological monoid.

▶ We have a continuous functor Bk : Ak → Spaces∗.

▶ Theorem (T. 2016). The following composite is a weak homotopy

equivalence:

Ak(G ,G ′)
Bk−→ Map∗(BkG ,BkG

′)
inclusion−−−−→ Map∗(BkG ,BG ′).
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Nk(ℓ)-map

▶ Let conjH : H → Aℓ(H ,H) denote the conjugation conjH(h)(x) = hxh−1.

▶ Definition (T. 2023). A homomorphism f : H → G is an Nk(ℓ)-map if an

Ak-map ρ : G → Aℓ(H ,H) is given and the following conditions hold:

▶ ρ ◦ f is homotopic to conjH as an Aℓ-map,

▶ the map ∗ → Aℓ(H,G ), ∗ 7→ f is Ak -equivariant with respect to the action

of G ,

▶ the higher homotopies appearing in the first and second conditions coincide

on H.

▶ This is a higher homotopy analogue of crossed module.
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N1(1)-map and James’ homotopy normal map

▶ Definition (McCarty 1964). A homomorphism f : H → G is homotopy

normal (an N1(1)-map) if there exists a map γ̃ : G ∧ H → H making the

diagram

H ∧ H
γH //

f ∧id
��

H

f
��

G ∧ H

∃γ̃
;;

γ
// G

commute up to homotopy and the homotopies comapatible with the

stationary homotopy of the outer square.

▶ Homotopy normal map in the sense of James (1967) only requires the

commutativity of the lower triangle.
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Immediate consequences

▶ If f : H → G is an Nk(ℓ)-map and k ≥ k ′ and ℓ ≥ ℓ′, then f is an

Nk ′(ℓ′)-map.

▶ If f : H → G is a crossed module, then f is an N∞(∞)-map.

▶ The homomorphism f : H → ∗ is an Nk(ℓ)-map if and only if

conjH : H → Aℓ(H ,H) is homotopic to the constant map as an Ak-map.

▶ The latter condition is equivalent to being a C (k , ℓ)-space introduced by

Kishimoto and Kono (2010).

▶ C (∞,∞)-space and Sugawara C∞-space are known to be equivalent. Then

we conclude that H → ∗ is an N∞(∞)-map if and only if BH is an H-space.

▶ This is analogous to the fact that H → ∗ is a crossed module if and only if

H is commutative.
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Results



Equivariant and fiberwise homotopy theory

▶ The Borel construction defines the correspondence

a G -space X 7→ a fiberwise space EG ×G X → BG .

This provides an “equivalence” between the G -equivariant homotopy theory

and the fiberwise homotopy theory over BG in an appropriate sense.

▶ EG denotes the universal G -bundle over BG . The restriction to BkG will be

denoted by EkG .

▶ The idea of the main theorem is based on this kind of equivalence.
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Main theorem

▶ Theorem (T. 2023). Let f : H → G be a homomorphism and

F : EkH ×H H → EkG ×G G denote the induced map of f . Then f is an

Nk(ℓ)-map if and only if there exists a fiberwise Aℓ-space E → BkG and F

factors as

EkH ×H H
ϕ−→ E ψ−→ EkG ×G G

up to homotopy over Bk f : BkH → BkG such that the following conditions

hold:

▶ ϕ covers Bk f and ψ covers the identity on BkG ,

▶ ϕ and ψ are fiberwise Aℓ-maps,

▶ ϕ is a weak homotopy equivalence on each fiber,

▶ the restriction of ψ ◦ ϕ to the fiber over the basepoint is homotopic to f as

an Aℓ-map.
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Remark on main theorem

▶ Roughly, this theorem states that f : H → G is an Nk(ℓ)-map if and only if

the following “unusual” factorization of F : EkH ×H H → EkG ×G G exists:

H

��

H f //

��

G

��
EkH ×H H //

��

E //

��

EkG ×G G

��
BkH Bk f

/ / BkG BkG
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Remark on main theorem (continued)

▶ The “usual” factorization is as follows. The middle column is induced from

the conjugation action of H on G through f .

H f //

��

G

��

G

��
EkH ×H H //

��

EkH ×H G //

��

EkG ×G G

��
BkH BkH Bk f

// BkG

▶ This factorization is possible for any homomorphism f .
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H-structure on Borel construction

▶ Theorem (T. 2023). Let f : H → G be a homomorphism. Then the Borel

construction X = EH ×H G is an H-space if f is an Nk(k)-map and

catX ≤ k (the naturality of the H-structure is unknown).

▶ Example. Let H = K (Q, 2n − 1) and G = K (Q, 4n − 1). Consider the

homomorphism f : H → G with classifying map Bf : K (Q, 2n) → K (Q, 4n)

corresponding to u2 ∈ H4n(K (Q, 2n);Q). Then the Borel construction is

EH ×H G ' hofib(Bf ) ' S2n
(0).

Since S2n
(0) does not admit an H-structure and cat S2n

(0) = 1, f is not an

N1(1)-map (a map is not necessarily homotopy normal even if its target is

an ∞-loop space!).
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Preceding results on examples

▶ There have been many results on homotopy normality of Lie groups.

▶ (James 1967)

The inclusion U(m) → U(n) is not (2-locally) homotopy normal in the sense

of James for 1 ≤ m < n. Similar results hold for O(m) → O(n)

(2 ≤ m < n) and Sp(m) → Sp(n) for 1 ≤ m < n.

▶ Other results include: McCarty (1964), James (1971), Kachi (1982),

Furukawa (1985), Furukawa (1987), Furukawa (1995), Kudou–Yagita

(1998), Kudou–Yagita (2003), Kono–Nishimura (2003), Nishimura (2006),

Kishimoto–T. (2018).

▶ These results suggest that H → G tends to fail to be p-locally homotopy

normal for small prime p.
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Higher homotopy normality of SU(m) → SU(n)

▶ Applying the fiberwise projective space functor, the main theorem provides

an obstruction theory for Nk(ℓ)-map.

▶ By a typical argument using Steenrod operations as mentioned before for

commutativity, we obtain the following result.
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▶ Theorem (T. 2023).

▶ If p ≥ kn + ℓm, then the inclusion SU(m) → SU(n) is a p-local Nk(ℓ)-map.

▶ If max{kn − 2, (k − 1)n + 2} < p ≤ kn + 2(ℓ− 1), then the inclusion

SU(2) → SU(n) is not a p-local Nk(ℓ)-map for n ≥ 3.

▶ If max{kn −m, (k − 1)n + 2} < p ≤ kn + (ℓ− 2)m, then the inclusion

SU(m) → SU(n) is not a p-local Nk(ℓ)-map for 2 ≤ m < n.

▶ This result is not very sharp. For example, the normality is not determined

when kn + (ℓ− 2)m < p < kn + ℓm.

▶ A similar result is obtained for SO(2m + 1) → SO(2n + 1).
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3-local normality of SU(2) → SU(3)

k 1 2 3 4 5

Nk(1) 7 7 7 7 7

Nk(2) 7 7 7 7 7

Nk(3) 7 7 7 7 7

Nk(4) 7 7 7 7 7

Nk(5) 7 7 7 7 7
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5-local normality of SU(2) → SU(3)

k 1 2 3 4 5

Nk(1) 3 ? ? ? ?

Nk(2) 7 7 7 7 7

Nk(3) 7 7 7 7 7

Nk(4) 7 7 7 7 7

Nk(5) 7 7 7 7 7
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7-local normality of SU(2) → SU(3)

k 1 2 3 4 5

Nk(1) 3 ? ? ? ?

Nk(2) 3 7 7 7 7

Nk(3) 7 7 7 7 7

Nk(4) 7 7 7 7 7

Nk(5) 7 7 7 7 7
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11-local normality of SU(2) → SU(3)

k 1 2 3 4 5

Nk(1) 3 3 3 ? ?

Nk(2) 3 3 7 7 7

Nk(3) 3 ? 7 7 7

Nk(4) 3 7 7 7 7

Nk(5) 7 7 7 7 7
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Summary

▶ Nk(ℓ)-map is a higher homotopical analogue of crossed module and normal

subgroup.

▶ Nk(ℓ)-map is characterized by fiberwise Aℓ-maps over k-th projective spaces.

▶ The Borel construction EH ×H G of an Nk(k)-map f : H → G is an H-space

if catEH ×H G ≤ k holds.

▶ Fiberwise projective space provides a method to detect obstructions to being

Nk(ℓ)-maps.

Thank you!
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