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1. Higher homotopy associativity and commutativity
» See how multiplicative structures and classifying spaces are related.
2. Higher homotopy normality
» Recall classical homotopy normal maps, which are generalizations of normal
subgroups (and crossed modules).
» Define higher homotopy variant of homotopy normal maps, called
Nk (¢)-map (0 < k, £ < 00).
3. Results
» The main theorem characterizes Ny (¢)-maps by a method of fiberwise
homotopy theory.
» Some computational examples on classical groups.
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Higher homotopy associativity

and commutativity



» A map f: G — G’ between topological groups is said to be an H-map if
fou~po(fxr).

We can say an H-map is “a homomorphism up to homotopy”.

» However, H-map is far from homomorphism. There exists an H-map
f: G — G’ not homotopy equivalent to any homomorphism f': K — K’
between topological groups as in the following diagram:

G f G'
K K’

a homomorphism
» This difference can be understood by considering higher homotopy.
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Classifying space and projective spaces

» The classifying space BG of a topological group G is constructed as the

quotient
BG = (HA"X G’)/N
i>0

by some simplicial relation ~.

» The image of A% x G* is written by B, G (k-th projective space). Then we
obtain the filtration

x=BGCYXG=BGCcBGC---CBGcC---CBG.
» If f: G — G’ is a homomorphism, then we have the induced maps

kaZ BkG — B;(G/7 Bf: BG — BG'.
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Examples of classifying spaces and projective spaces

» When G = S° St and S3, B,S° = RP¥, B,S* = CP* and B, S3 = HPX,
respectively.

» When G = U(n), BU(n) ~ G,(C*>) (the Grassmannian of n-planes in C>).
In general, B, U(n) is not a manifold.

5/33



» Amap f: G — G'issaid to be an A -map if it admits an A, -form
{f;: I'"t x G' — G'};>1, which describes how the associativity is preserved
through f.
» What is an Ay -form {f;: '™t x G' — G'};>17?
> =1
> f:/ x G> — G’ is a homotopy between f oz and po (f x f).

> £:[0,1]? x G> — G’ is depicted as follows.
Sh)f(hs) S Chs)

NE

Sihyhs) S)fhohs)

» We will call a pair (f,{f;};) an Ax-map. )
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Classifying space and A..-map

» Theorem (Sugawara, 1960). A map f: G — G’ admits an A-form if
and only if the suspension ¥ f: ¥ G — ¥ G’ extends to a map between the
classifying space BG — BG’:

y6 2Ly
inclusionl Linclusion
BG .~ BG'

» By the simplicial loop group construction, an A,,-map f: G — G’ is
homotopy equivalent to some homomorphism between topological groups in
the previous sense.
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» Stasheff (1963) considered the intermediate objects between H-map and
As-map: amap f: G — G’ is said to be an A,-map if it admits an A,-form
{f, I'~1x G — G/}lg,‘gk.

» An Ai-map is just a map.
» An Ap-map is an H-map (with homotopy f o ~ po (f x f)).

» Theorem (Stasheff, 1963). A map f: G — G’ admits an A,-form if and
only if the suspension Xf: G — ¥ G extends to a map from B,G to BG':

yG—f-5y@G
incIusionL linclusiOn
BkG ,,,,, 3) BG/
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Homotopy commutativity

» A topological group G is said to be homotopy commutative if the Samelson

product

GANG— G, (x,y) = xyx ty !

is null-homotopic.

» Through the isomorphisms
[GAG,G]|=[GAG,QBG] =[G A G,BG],

the Samelson product corresponds to the Whitehead product [¢, ¢] of the
inclusion ¢: G — BG.

» So, G is homotopy commutative if and only if [¢,¢] = 0.
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Higher homotopy commutativity

» A topological group G is said to be a C,-space in the sense of Sugawara
(defined by McGibbon 1989) if the multiplication G x G — G is an A,-map.

» Remark. This definition is similar to the fact that a group G is abelian if and
only if the multiplication G x G — G is a homomorphism.
» G is a (y-space if and only if G is homotopy commutative.

» An equivalent condition is as follows: the wedge sum of the inclusion
BkG V BkG — BG
extends over the union

|J BiG xBG— BG.
i+j=k
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Higher homotopy commutativity (continued)

» Remark. There is another notion of C,-space in the sense of Williams, which
is a bit weaker than Sugawara'’s.

» Remark. G is a C-space in the sense of Sugawara if and only if BG is an
H-space. This condition is much weaker than requiring G to be a double
loop space (equivalently, BG to be a loop space).

» The higher homotopy commutativity of Lie groups and their p-localizations
has been extensively studied. Roughly speaking, the p-local homotopy
commutativity gets higher as p gets bigger. Let us see a typical argument to
show the non-commutativity in the next slide.
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Example of non-commutativity

Let G = SU(2) = S® and p an odd prime. Suppose k > 2t and the wedge sum
of the inclusion
HP* v HP* — HP*>

extends to a map

f: B= | HP x HP/ — HP>.

i+j=k
We know Plx = ax"s with a # 0 for a generator x € H*(HP>;F,). Then the
coefficient of x' x x/ with i, j > 0 in f*Px is nontrivial in
H*(B;F,) = F,[x x 1,1 x x]/(x" x x| i +j > k).

But this contradicts to the computation of P'f*x by the Cartan formula and
f*x = x x 1 +1 x x. This contradicts to P'x = ax’> and a # 0. Therefore,
SU(2) is not p-locally a Cy-space. 12/33



Higher homotopy normality



Crossed module

>

>

In the rest of this talk, let H and G be topological groups of homotopy
types of CW complexes.

Recall that a normal subgroup H C G is a subgroup stable under the inner
automorphisms.

Crossed module is a generalization of normal subgroup to general
homomorphisms H — G.
Definition. A (topological) crossed module consists of homomorphisms
f: H— G and p: G — Aut(H) satisfying the conditions
p(f(h))(x) = hxh=! for any x, h € H,
> f( (g)(x)) = gf(x)g~! forany x € H and g € G.
Remark. f(p(g)(x)) = gf(x)g™" < g7 f(p(8)(x))g = f(x).
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Homotopy quotient of crossed module

» Theorem (Farjoun—-Segev, 2010). The Borel construction K = EH xy G
of a crossed module f: H — G naturally inherits a group structure.
Moreover, there exists a homotopy fiber sequence

o HY 65 kK= BHEL BG — BK.

» When H C G is a closed normal subgroup, the natural homotopy
equivalence K — G/H is a homomorphism. Then we should consider that
K is “the homotopy quotient group of a homotopically normal subgroup”.

» My initial motivation for higher homotopy normality was to generalize this
result to higher homotopy theoretic setting. However, N (co0)-map turned
out to be much weaker than crossed module (this kind of phenomena will

appear later).
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Topological category Ay

» Let us give a naive construction of a category of topological groups and
Ax-maps between them. Our argument could work in other appropriate
higher categorical setting.

> Let

AlG,G) c ] Map(l™* x G, G)
1<i<k

be the space of A,-maps.
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Topological category A, (continued)

» We have the composition of A,-maps as follows:

g(f(x))gw))g(f(xy))g(f&)) g ))2(2)  g(fx)g(f)g(fz))

g(f(x))
() gz gfx)fof2)  g(fix)g(fy)f2)

g(fxy)) g(foz)  g(f)fz)  g(f)g(f2))

Modifying Ax(G, G’) and the composition like Moore path, we can make
this composition unital and associative.
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Topological category A, (continued)

» Then we obtain the topological category Ay of topological groups and
Agx-maps.
» In particular, the space of self Ax-maps Ax(G, G) is a topological monoid.
» We have a continuous functor By : A, — Spaces,.

» Theorem (T. 2016). The following composite is a weak homotopy
equivalence:

A(G, G') 25 Map, (B« G, B, G') 2% Map, (B, G, BG).
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Ni(€)-map

» Let conjy: H — Ai(H, H) denote the conjugation conj,(h)(x) = hxh™*,
» Definition (T. 2023). A homomorphism f: H — G is an N, (/)-map if an
Ai-map p: G — A,(H, H) is given and the following conditions hold:
» pof is homotopic to conjy as an Agi-map,

» the map x — Ay(H, G), * — f is Ax-equivariant with respect to the action
of G,

» the higher homotopies appearing in the first and second conditions coincide
on H.

» This is a higher homotopy analogue of crossed module.
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N;(1)-map and James’ homotopy normal map

» Definition (McCarty 1964). A homomorphism f: H — G is homotopy
normal (an Ny(1)-map) if there exists a map 7: G A H — H making the
diagram

HAH-"~H

35 7
fAid f

GAH—=G

commute up to homotopy and the homotopies comapatible with the
stationary homotopy of the outer square.
» Homotopy normal map in the sense of James (1967) only requires the

commutativity of the lower triangle.
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Immediate consequences

» If f: H— G is an Ni({)-map and k > k" and ¢ > ¢, then f is an
Ny (¢')-map.
» If f: H— G is a crossed module, then f is an N (c0)-map.
» The homomorphism f: H — x is an Ni(¢)-map if and only if
conjy: H — Ay(H, H) is homotopic to the constant map as an A,-map.
» The latter condition is equivalent to being a C(k,/)-space introduced by
Kishimoto and Kono (2010).
» C(00,00)-space and Sugawara C.-space are known to be equivalent. Then
we conclude that H — x is an N (co)-map if and only if BH is an H-space.
» This is analogous to the fact that H — * is a crossed module if and only if
H is commutative.
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Results




Equivariant and fiberwise homotopy theory

» The Borel construction defines the correspondence

a G-space X +— a fiberwise space EG x¢ X — BG.

This provides an “equivalence” between the G-equivariant homotopy theory
and the fiberwise homotopy theory over BG in an appropriate sense.

» EG denotes the universal G-bundle over BG. The restriction to B, G will be
denoted by E,G.

» The idea of the main theorem is based on this kind of equivalence.
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» Theorem (T. 2023). Let f: H— G be a homomorphism and
F: ExkH xy H— ExG xX¢ G denote the induced map of f. Then f is an
Ni(€)-map if and only if there exists a fiberwise A,-space & — BxG and F
factors as
EHxyH% &S EGxs6

up to homotopy over Bif: BxH — B\ G such that the following conditions
hold:

» ¢ covers Bif and 1 covers the identity on B, G,

» ¢ and 1 are fiberwise Ag;-maps,

> ¢ is a weak homotopy equivalence on each fiber,

» the restriction of ¥ o ¢ to the fiber over the basepoint is homotopic to f as

an Ag-map.
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Remark on main theorem

» Roughly, this theorem states that f: H — G is an N(¢)-map if and only if
the following “unusual” factorization of F: ExH xy H — E, G X G exists:

H=————=H f G
EkH XHH & EkG ><GG
ByH o BG B G
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Remark on main theorem (continued)

» The “usual’ factorization is as follows. The middle column is induced from
the conjugation action of H on G through f.

H f G=——=G

| | |

EkH XHH—>EkH XH G—>EkG XGG

| | |

BkH= BkH BkG

By f

» This factorization is possible for any homomorphism f.
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H-structure on Borel construction

» Theorem (T. 2023). Let f: H— G be a homomorphism. Then the Borel
construction X = EH xy G is an H-space if f is an Nj(k)-map and
cat X < k (the naturality of the H-structure is unknown).

» Example. Let H = K(Q,2n— 1) and G = K(Q,4n — 1). Consider the
homomorphism f: H — G with classifying map Bf: K(Q,2n) — K(Q, 4n)
corresponding to u? € H*'(K(Q,2n); Q). Then the Borel construction is

EH xp G = hofib(Bf) ~ S21.

Since 5(20’3 does not admit an H-structure and cat 5(20'3 =1, fis not an
N;(1)-map (a map is not necessarily homotopy normal even if its target is
an oo-loop space!).
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Preceding results on examples

» There have been many results on homotopy normality of Lie groups.
» (James 1967)

The inclusion U(m) — U(n) is not (2-locally) homotopy normal in the sense
of James for 1 < m < n. Similar results hold for O(m) — O(n)
(2 < m < n) and Sp(m) — Sp(n) for 1 < m < n.

» Other results include: McCarty (1964), James (1971), Kachi (1982),
Furukawa (1985), Furukawa (1987), Furukawa (1995), Kudou—Yagita
(1998), Kudou—Yagita (2003), Kono—Nishimura (2003), Nishimura (2006),
Kishimoto—T. (2018).

» These results suggest that H — G tends to fail to be p-locally homotopy
normal for small prime p.
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Higher homotopy normality of SU(m) — SU(n)

» Applying the fiberwise projective space functor, the main theorem provides
an obstruction theory for Nj(¢)-map.

» By a typical argument using Steenrod operations as mentioned before for
commutativity, we obtain the following result.
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» Theorem (T. 2023).
» If p > kn+ ¢m, then the inclusion SU(m) — SU(n) is a p-local Ny (¢)-map.
» If max{kn—2,(k —1)n+2} < p < kn+ 2(¢ — 1), then the inclusion
SU(2) — SU(n) is not a p-local Ni(¢)-map for n > 3.
» If max{kn—m,(k —1)n+2} < p < kn+ (£ — 2)m, then the inclusion
SU(m) — SU(n) is not a p-local Ni(¢)-map for 2 < m < n.
» This result is not very sharp. For example, the normality is not determined
when kn+ (¢ —2)m < p < kn+ {m.

» A similar result is obtained for SO(2m + 1) — SO(2n + 1).
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» Ni(¢)-map is a higher homotopical analogue of crossed module and normal
subgroup.

» N, (¢)-map is characterized by fiberwise A,-maps over k-th projective spaces.

» The Borel construction EH X G of an Ni(k)-map f: H — G is an H-space
if cat EH xy G < k holds.

» Fiberwise projective space provides a method to detect obstructions to being
Ny (€)-maps.

Thank you!

33/33



	Higher homotopy associativity and commutativity
	Higher homotopy normality
	Results

