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The discretization of the stochastic differential equations (SDE) has been studied by many researchers for many
years. Consider a standard SDE and its discretization:

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏(𝑋𝑠)d𝑠 +

∫ 𝑡

0
𝜎(𝑋𝑠)d𝑊𝑠 , 𝑡 ∈ [0, 𝑇],

𝑋̂𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏( 𝑋̂ [𝑛𝑠]

𝑛
)d𝑠 +

∫ 𝑡

0
𝜎( 𝑋̂ [𝑛𝑠]

𝑛
)d𝑊𝑠 , 𝑡 ∈ [0, 𝑇],

where 𝑏 and𝜎 are continuously differentiable functions whose derivatives being bounded and uniformly continuous.
In the 1990s, the limit distribution of the scaled error𝑈 (𝑛) = 𝑛−1/2 (𝑋 − 𝑋̂) was studied by Jacod, Kurtz and Protter;
see Kurtz and Protter [3] or Jacod and Protter [2]. They proved that (𝑊,𝑈 (𝑛) ) converges in law to (𝑊,𝑈) as 𝑛
tends to infinity, where𝑈 is the solution of the following SDE:

𝑈𝑡 =
∫ 𝑡

0
𝑈𝑠 (𝑏′(𝑋𝑠)d𝑠 + 𝜎′(𝑋𝑠)d𝑊𝑠) −

1
√

2

∫ 𝑡

0
𝜎′(𝑋𝑠)𝜎(𝑋𝑠)d𝑊̂𝑠

with 𝑊̂ being a standard Brownian motion independent of𝑊 .
The aim of our study is to extend their result to stochastic Volterra equations (SVE) which are represented by

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝑏(𝑋𝑠)d𝑠 +

∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝜎(𝑋𝑠)d𝑊𝑠 , 𝑡 ∈ [0, 𝑇], (1)

where 𝐾 (𝑡) = 𝑡𝐻−1/2

Γ(𝐻+1/2) , 𝐻 ∈ (0, 1/2). Likewise in the case of SDEs, let 𝑋̂ be the solution of the discretized SVE
of (1), that is,

𝑋̂𝑡 = 𝑋0 +
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝑏( 𝑋̂ [𝑛𝑠]

𝑛
)d𝑠 +

∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝜎( 𝑋̂ [𝑛𝑠]

𝑛
)d𝑊𝑠 , 𝑡 ∈ [0, 𝑇] .

We denote by 𝐶0
0 the set of the continuous functions on [0, 𝑇] vanishing at 𝑡 = 0 and by𝐶0,𝜆

0 the set of the 𝜆-Hölder
continuous functions with the same property. Then the following theorem is proved, which is our main result.

Theorem 1. Let 𝜖 ∈ (0, 𝐻). Then the process 𝑈 (𝑛) = 𝑛𝐻 (𝑋 − 𝑋̂) stably converges in law in 𝐶0,𝐻−𝜖
0 to a process

𝑈 which is the unique continuous solution of the SVE

𝑈𝑡 =
∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝑈𝑠 (𝑏′(𝑋𝑠)d𝑠 + 𝜎′(𝑋𝑠)d𝑊𝑠) −

1√
Γ(2𝐻 + 2) sin 𝜋𝐻

∫ 𝑡

0
𝐾 (𝑡 − 𝑠)𝜎′(𝑋𝑠)𝜎(𝑋𝑠)d𝑊̂𝑠 , (2)

where 𝑊̂ is a standard Brownian motion independent of𝑊 .

To prove Theorem 1, we start with the following decomposition:

𝑈 (𝑛)
𝑡 ≈

∫ 𝑡

0
𝐾 (𝑡−𝑠)𝑈 (𝑛)

𝑠 (𝑏′( 𝑋̂ [𝑛𝑠]
𝑛
)d𝑠+𝜎′( 𝑋̂ [𝑛𝑠]

𝑛
)d𝑊𝑠)+

∫ 𝑡

0
𝐾 (𝑡−𝑠)𝑏′( 𝑋̂ [𝑛𝑠]

𝑛
)d⟨𝑉 (𝑛) ,𝑊⟩𝑠+

∫ 𝑡

0
𝐾 (𝑡−𝑠)d𝑉̃ (𝑛)

𝑠 , (3)

where𝑈 (𝑛) , 𝑉 (𝑛) , and 𝑉̃ (𝑛) are defined as

𝑈 (𝑛) = 𝑛𝐻 (𝑋 − 𝑋̂), 𝑉 (𝑛) = 𝑛𝐻
∫ ·

0
( 𝑋̂𝑠 − 𝑋̂ [𝑛𝑠]

𝑛
)d𝑊𝑠 , 𝑉̃ (𝑛) =

∫ ·

0
𝜎′( 𝑋̂ [𝑛𝑠]

𝑛
)d𝑉 (𝑛)

𝑠 .

Remark that the difference between both sides of (3) converges to zero in 𝐶0,𝐻−𝜖
0 for any 𝜖 ∈ (0, 𝐻) as 𝑛 goes to

infinity. We have the limits of the quadratic variation and covariation of 𝑉 (𝑛) and𝑊 .

1



Lemma 2. For all 𝑡 ∈ [0, 𝑇],

⟨𝑉 (𝑛) , 𝑉 (𝑛)⟩𝑡
𝑛→∞−−−−→
in 𝐿1

1
Γ(2𝐻 + 2) sin 𝜋𝐻

∫ 𝑡

0
𝜎(𝑋𝑠)2d𝑠,

⟨𝑉 (𝑛) ,𝑊⟩𝑡
𝑛→∞−−−−→
in 𝐿1

0.

Then Lemma 2 and the results of Jacod [1] lead us to specify the limit distribution of 𝑉 (𝑛) in Lemma 3.

Lemma 3. The process 𝑉 (𝑛) stably converges in law in 𝐶0
0 to a continuous process 𝑉 of the following form:

𝑉 =
1√

Γ(2𝐻 + 2) sin 𝜋𝐻

∫ ·

0
𝜎(𝑋𝑠)d𝑊̂𝑠 ,

where 𝑊̂ is a standard Brownian motion independent of𝑊 , namely, ⟨𝑊, 𝑊̂⟩ = 0.

The convergence of 𝑉̃ (𝑛) will be considered in Lemma 4. Some outcomes of Kurtz and Protter [4], the general
results for the convergence of stochastic integrals in the Skorokhod topology, are used here.

Lemma 4. The process 𝑉̃ (𝑛) stably converges in law in 𝐶0
0 to the process

𝑉̃ =
∫ ·

0
𝜎′(𝑋𝑠)d𝑉𝑠 .

Regarding the stochastic integral of the fractional kernel 𝐾 with respect to the process 𝑉̃ (𝑛) as a Riemann-
Liouville fractional derivative, we can use the continuity of the derivative from 𝐶0,𝜆

0 into 𝐶0,𝜆−(𝐻−1/2)
0 for 𝜆 >

1/2 − 𝐻 as in Lemma 7; see Samko, Kilbas, and Marichev [5]. We additionally construct a useful criterion of
tightness in 𝐶0,𝜆

0 as in Theorem 8. The weak convergence in 𝐶0
0 of 𝑉 (𝑛) is obtained in Lemma 3, and then, Lemma

4 and Corollary 9 imply that the last term of (3) converges in law in the appropriate space. Moreover, we can show
that the second integral of (3) tends weakly to zero in 𝐶0,𝐻−𝜖 . As a consequence, the tightness of 𝑈 (𝑛) in 𝐶0,𝐻−𝜖

0
is obtained, and thus, together with the uniqueness of the solution𝑈 of (2), the desired weak convergence is shown.

Definition 5. Let 𝑓 ∈ 𝐶0,𝜆
0 and 𝛼 = 1/2 − 𝐻. We define the integral operator J 𝛼 as

(J 𝛼 𝑓 ) (𝑡) := 𝐾 (𝑡) 𝑓 (𝑡) −
∫ 𝑡

0
( 𝑓 (𝑡) − 𝑓 (𝑠))𝐾 ′(𝑡 − 𝑠)d𝑠.

Proposition 6. Let𝑌 be a process such that the stochastic integral
∫ 𝑡

0 𝐾 (𝑡 − 𝑠)d𝑌𝑠 is well defined. Then the integral
is almost surely represented by J 𝛼 as ∫ 𝑡

0
𝐾 (𝑡 − 𝑠)d𝑌𝑠 = (J 𝛼𝑌 ) (𝑡).

Lemma 7 (Samko, Kilbas, and Marichev [5]). The operator J 𝛼 is bounded (continuous) from 𝐶0,𝜆
0 into 𝐶0,𝜆−𝛼

0 .

Theorem 8. Let {𝑌 (𝑛) }𝑛∈N be a sequence of𝐶0,𝛼
0 -valued random variables. If E[∥𝑌 (𝑛) ∥𝐶0,𝛼

0
] is bounded uniformly

in 𝑛, the sequence {𝑌 (𝑛) }𝑛∈N is tight in 𝐶0,𝛽
0 for 0 < 𝛽 < 𝛼.

Corollary 9. Let 𝑌 (𝑛) be a stochastic process which converges to a process 𝑌 weakly in 𝐶0
0 as 𝑛 goes to infinity.

If 𝑌 (𝑛) satisfies E[∥𝑌 (𝑛) ∥𝐶0,𝛼
0

] ≤ 𝐶 for some 𝐶 uniformly in 𝑛, it converges to 𝑉 weakly in 𝐶0,𝛽
0 for any positive

𝛽 < 𝛼.
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