Construction of a canonical *p*-energy on the Sierpiński carpet

Ryosuke Shimizu (Kyoto University)*

This talk will present the main results of [6], where a scaling limit \mathcal{E}_p of discrete *p*-energies on a series of finite graphs approximating the planar Sierpiński carpet (SC: see Figure 1) and an associated (1, p)-"Sobolev" space \mathcal{F}_p are established for $p > \dim_{ARC}(SC)$. Here $\dim_{ARC}(SC)$ is the *Ahlfors regular conformal dimension* of the SC, which is well-studied in "quasiconformal geometry" (cf. [2]). Its definition is not important to follow our results.

To give concrete descriptions, we recall the definition of the SC. Let $S = \{1, ..., 8\}$ and let $\{F_i\}_{i \in S}$ be a family of 3^{-1} -similitudes on \mathbb{R}^2 illustrated in Figure 1 (each p_i in Figure 1 is the fixed point of F_i). Then the SC is a unique non-empty compact subset K of \mathbb{R}^2 such that $\bigcup_{i \in S} F_i(K) = K$. We always consider the Sierpiński carpet as a metric measure space (K, d, μ) , where d is the Euclidean metric and μ is the normalized log 8/log 3-dimensional Hausdorff measure $(\alpha := \log 8/\log 3 \text{ is the Hausdorff dimension of } (K, d))$. Let $\{G_n\}_{n \ge 1}$ be a series of finite graphs approximating SC whose vertex set is $W_n := \{w_1 \cdots w_n \mid w_i \in S \text{ for each } i \in \{1, \ldots, n\}\}$ and edge set is defined by $E_n := \{(v, w) \mid v, w \in W_n \text{ and } K_v \cap K_w \neq \emptyset\}$, where $F_w := F_{w_1} \circ \cdots \circ F_{w_n}$ and $K_w := F_w(K)$ for $w = w_1 \cdots w_n \in W_n$. Then discrete p-energy $\mathcal{E}_p^{G_n}$ on G_n is defined by

$$\mathcal{E}_{p}^{G_{n}}(f) = \frac{1}{2} \sum_{(v,w)\in E_{n}} |M_{n}f(v) - M_{n}f(w)|^{p},$$

where $M_n f(w) \coloneqq \frac{1}{\mu(K_w)} \int_{K_w} f \, d\mu$ for $f \in L^p(K, \mu)$. Our *p*-energy \mathcal{E}_p is obtained as a scaling limit of $\mathcal{E}_p^{G_n}$. An appropriate scaling constant is determined by behaviors of $\mathcal{R}_p^{(n)}$ given by

$$\mathcal{R}_p^{(n)} \coloneqq \left(\inf \left\{ \mathcal{E}_p^{G_n}(M_n f) \mid M_n f \equiv 0 \text{ on the "left" of } G_n \text{ and } M_n f \equiv 1 \text{ on the "right" of } G_n \right\} \right)^{-1}.$$

By using *p*-combinatorial modulus, which is a fundamental tool in "quasiconformal geometry", Bourdon and Kleiner [3] proved that there exists $\rho_p > 0$ such that $\mathcal{R}_p^{(n)} \simeq \rho_p^n$ for any $n \in \mathbb{N}$. An important fact is that $p > \dim_{ARC}(K, d)$ if and only if $\rho_p > 1$ by the result of Kigami [4].

Our first main result provides (1, p)-"Sobolev" space \mathcal{F}_p on the SC:

Theorem 1. Assume that $p > \dim_{ARC}(K, d)$. A norm space $(\mathcal{F}_p, \|\cdot\|_{\mathcal{F}_p})$, which is defined by

$$\mathcal{F}_p \coloneqq \Big\{ f \in L^p(K,\mu) \ \Big| \ \sup_{n \ge 1} \rho_p^n \, \mathcal{E}_p^{G_n}(M_n f) < \infty \Big\},$$

and $||f||_{\mathcal{F}_p} \coloneqq ||f||_{L^p} + \left(\sup_{n\geq 1}\rho_p^n \mathcal{E}_p^{G_n}(M_nf)\right)^{1/p}$, is a reflexive and separable Banach space. Moreover, \mathcal{F}_p is continuously embedded in the Hölder space $C^{0,(\beta_p-\alpha)/p}$ on K, where $\beta_p \coloneqq \log(8\rho_p)/\log 3$. Furthermore, \mathcal{F}_p is dense in C(K) with respect to the sup norm.

Ryosuke Shimizu was supported in part by JSPS KAKENHI Grant Number JP20J2020

^{*}Email: r.shimizu@acs.i.kyoto-u.ac.jp

This Hölder embedding result is powerful and relies on the assumption: $p > \dim_{ARC}(K, d)$. Indeed, we can regard this embedding result as a generalization of the classical Sobolev embedding of $W^{1,p}(\mathbb{R}^N)$ for p > N.

Our second main result provides a "canonical" *p*-energy \mathcal{E}_p on the SC:

Theorem 2. Assume that $p > \dim_{ARC}(K, d)$. Then there exists a functional $\mathcal{E}_p : \mathcal{F}_p \to [0, \infty)$ such that $\mathcal{E}_p(\cdot)^{1/p}$ is a semi-norm, a norm $\|\cdot\|_{\mathcal{E}_p} := \|\cdot\|_{L^p} + \mathcal{E}_p(\cdot)^{1/p}$ is equivalent to $\|\cdot\|_{\mathcal{F}_p}$, and the Banach space $(\mathcal{F}_p, \|\cdot\|_{\mathcal{E}_p})$ is uniformly convex. Furthermore, $(\mathcal{E}_p, \mathcal{F}_p)$ satisfies the following conditions:

- (a) $\mathbb{1}_{K} \in \mathcal{F}_{p}$, and, for $f \in \mathcal{F}_{p}$, $\mathcal{E}_{p}(f) = 0$ if and only if f is constant. Furthermore, $\mathcal{E}_{p}(f + a\mathbb{1}_{K}) = \mathcal{E}_{p}(f)$ for any $f \in \mathcal{F}_{p}$ and $a \in \mathbb{R}$;
- (b) (Markov property) for every $f \in \mathcal{F}_p$ and $\varphi \colon \mathbb{R} \to \mathbb{R}$ with $\operatorname{Lip}(\varphi) \leq 1$, it follows that $\varphi \circ f \in \mathcal{F}_p$ and $\mathcal{E}_p(\varphi \circ f) \leq \mathcal{E}_p(f)$;
- (c) (Symmetry) for every $f \in \mathcal{F}_p$ and isometry $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ with T(K) = K, it follows that $f \circ T \in \mathcal{F}_p$ and $\mathcal{E}_p(f \circ T) = \mathcal{E}_p(f)$;
- (d) (Self-similarity) *it holds that* $\mathcal{F}_p = \{f \in C(K) \mid f \circ F_i \in \mathcal{F}_p \text{ for all } i \in S\}$ and $\mathcal{E}_p(f) = \rho_p \sum_{i \in S} \mathcal{E}_p(f \circ F_i) \text{ for every } f \in \mathcal{F}_p.$

I will also give an associated energy measure $\mu^p_{\langle f \rangle}(dx)$ on the SC, which plays the roles of the measure $|\nabla f|^p dx$ on \mathbb{R}^N .

Figure 1: The planar Sierpiński carpet

References

- M. T. Barlow and R. F. Bass, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 3, 225–257.
- [2] M. Bonk and B. Kleiner, Geom. Topol. 9 (2005), 219–246.
- [3] M. Bourdon and B. Kleiner, Groups Geom. Dyn. 7 (2013), no. 1, 39–107.
- [4] J. Kigami, Lecture Notes in Mathematics, vol. 2265, Springer, Cham, [2020] ©2020.
- [5] S. Kusuoka and X.-Y. Zhou, Probab. Theory Related Fields 93 (1992), no. 2, 169–196.
- [6] R. Shimizu, preprint (2021).arXiv:2110.13902