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We consider the following stochastic nonlinear heat and wave equations on two-dimensional
torus T2 = (R/2πZ)2:

Lu = ±uk + ∂tWL (1)

where k ≥ 2, L = ∂t −∆ or ∂2
t −∆ and WL denotes a “subordinate cylindrical Brownian motion”

which we define as follows: Let W be a cylindrical Brownian motion on L2(T2), formally expressed
by Fourier expansion

W (t) =
∑
l∈Z2

βl(t)e
√
−1l·x

with independent and identically distributed sequence of standard Brownian motions {βl}l∈Z2 , and
let L be R+-valued stochastic process with nondecreasing and càdlàg sample paths. We also assume
that L is independent of {βl}l∈Z2 .Then, we define WL by

WL(t) := W (L(t)).

The main reason of considering such a time-change is that if L is Lévy process, WL also becomes a
Lévy process and some important Lévy processes are constructed by this “subordination” procedure.

If L(t) = t, ∂tWL is nothing but a space-time white noise. Stochastic heat equation (1) with
an additive space-time white noise is studied in [1]. Stochastic wave equation (1) is also considered
in [2] by a similar approach. We generalize these settings and study both heat and wave equations
driven by subordinate cylindrical Brownian noise.

It is expected that a solution u of (1) is a distribution-valued stochastic process and the nonlinear
term uk does not make sense. We overcome this difficulty by “renormalization” similarly to [1].

1. Let {PN}N∈N be mollifier and consider the equation with regularized noise PN∂tWL instead
of ∂tWL.

2. Then, we replace the nonlinear term ukN by

u3k
N := Hk(uN ; cN )

with suitable sequence cN whereHk(x; c) is kth Hermite polynomial. (For example, H2(x, c) =
x2 − c,H3(x, c) = x3 − 3cx.)

Thanks to this renormalization procedure, we can get a nontrivial limit u := limuN and we define
by u the solution of renormalized equation:

Lu = ±u3k + ∂tWL (2)

In our setting, we have to choose cN to be a L-measurable R+-valued stochastic process which
diverges in some sense, while in [1] and [2], cN can be chosen as a diverging constant. Indeed, we
define it by conditional expectation:

cN := E
[
ΨN (t)2

∣∣FL
]

1



where FL is σ-algebra generated by L and ΨN is the solution of

LΨN = PN∂tWL . (3)

To solve (2), we define the shifted solution vN := uN −ΨN and expand u3k
N as

u3k
N =

k∑
l=0

(
k

l

)
vk−l
N Ψ3l

N

where Ψ3k
N := Hk(ΨN ; cN ). We have the following theorem on the convergence of Ψ3k

N .

Theorem 1. Let k ∈ N and let ΨN be the solution of (3) with initial condition 0.

1. Let L = ∂t −∆. Then, Ψ3k
N converges in L

2
k ([0, T ];B−ϵ

∞,∞(T2)) as N → ∞ almost surely for
any ϵ > 0, T > 0.

2. Let L = ∂2
t −∆. Then, Ψ3k

N converges in C([0, T ];B−ϵ
∞,∞(T2)) as N → ∞ almost surely for

any ϵ > 0, T > 0.

In the case of heat equation, we cannot expect the temporal continuity of Ψ since we are dealing
with the equation driven by jump-type noise. So we discuss on Lp-space with respect to time
variable t. Note that in the case of k ≥ 3, we have to consider Lp-space for 0 < p < 1 since 2

k < 1.
We also note that it is well-known that if L(t) = t, Ψ3k

N converges to some Ψ3k in C([0, T ];B−ϵ
∞,∞)

i.e. Ψ3k has time-continuity. In the case of wave equation, however, we can get the continuity in
time, although the noise is jump-type.

By applying Theorem 1, we can show local-in-time well-posedness of singular SPDE (2).

Theorem 2. 1. Let L = ∂t −∆ and k = 2. Then, the renormalized heat equation (2) is locally
well-posed.

2. Let L = ∂2
t −∆. Then, for any integer k ≥ 2, the renormalized wave equation (2) is locally

well-posed.

In the case of heat equation, we have not been able to deal with the case k ≥ 3 due to the lack
of time-integrability of Ψ3k (See Theorem 1). On the other hand, in the case of wave equation, we
could show local well-posedness for all k ≥ 2. Indeed, the same fixed-point argument as in [2] is
applicable to our situation in view of the time-continuity of Ψ3k.
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