Renormalization of the stochastic nonlinear heat and wave equations driven by subordinate cylindrical Brownian noises

Hirotatsu Nagoji (Kyoto University)

We consider the following stochastic nonlinear heat and wave equations on two-dimensional torus $\mathbb{T}^2 = (\mathbb{R}/2\pi\mathbb{Z})^2$:

$$\mathcal{L}u = \pm u^k + \partial_t W_L \tag{1}$$

where $k \geq 2$, $\mathcal{L} = \partial_t - \Delta$ or $\partial_t^2 - \Delta$ and W_L denotes a "subordinate cylindrical Brownian motion" which we define as follows: Let W be a cylindrical Brownian motion on $L^2(\mathbb{T}^2)$, formally expressed by Fourier expansion

$$W(t) = \sum_{l \in \mathbb{Z}^2} \beta^l(t) e^{\sqrt{-1}l \cdot x}$$

with independent and identically distributed sequence of standard Brownian motions $\{\beta^l\}_{l\in\mathbb{Z}^2}$, and let L be \mathbb{R}_+ -valued stochastic process with nondecreasing and càdlàg sample paths. We also assume that L is independent of $\{\beta^l\}_{l\in\mathbb{Z}^2}$. Then, we define W_L by

$$W_L(t) \coloneqq W(L(t)).$$

The main reason of considering such a time-change is that if L is Lévy process, W_L also becomes a Lévy process and some important Lévy processes are constructed by this "subordination" procedure.

If L(t) = t, $\partial_t W_L$ is nothing but a space-time white noise. Stochastic heat equation (1) with an additive space-time white noise is studied in [1]. Stochastic wave equation (1) is also considered in [2] by a similar approach. We generalize these settings and study both heat and wave equations driven by subordinate cylindrical Brownian noise.

It is expected that a solution u of (1) is a distribution-valued stochastic process and the nonlinear term u^k does not make sense. We overcome this difficulty by "renormalization" similarly to [1].

- 1. Let $\{P_N\}_{N\in\mathbb{N}}$ be mollifier and consider the equation with regularized noise $P_N\partial_t W_L$ instead of $\partial_t W_L$.
- 2. Then, we replace the nonlinear term u_N^k by

$$u_N^{\diamond k} \coloneqq H_k(u_N; c_N)$$

with suitable sequence c_N where $H_k(x; c)$ is kth Hermite polynomial. (For example, $H_2(x, c) = x^2 - c$, $H_3(x, c) = x^3 - 3cx$.)

Thanks to this renormalization procedure, we can get a nontrivial limit $u \coloneqq \lim u_N$ and we define by u the solution of renormalized equation:

$$\mathcal{L}u = \pm u^{\diamond k} + \partial_t W_L \tag{2}$$

In our setting, we have to choose c_N to be a *L*-measurable \mathbb{R}_+ -valued stochastic process which diverges in some sense, while in [1] and [2], c_N can be chosen as a diverging constant. Indeed, we define it by conditional expectation:

$$c_N \coloneqq \mathbb{E}\left[\Psi_N(t)^2 \middle| \mathcal{F}^L \right]$$

where \mathcal{F}^L is σ -algebra generated by L and Ψ_N is the solution of

$$\mathcal{L}\Psi_N = P_N \partial_t W_L \ . \tag{3}$$

To solve (2), we define the shifted solution $v_N \coloneqq u_N - \Psi_N$ and expand $u_N^{\diamond k}$ as

$$u_N^{\diamond k} = \sum_{l=0}^k \binom{k}{l} v_N^{k-l} \Psi_N^{\diamond l}$$

where $\Psi_N^{\diamond k} \coloneqq H_k(\Psi_N; c_N)$. We have the following theorem on the convergence of $\Psi_N^{\diamond k}$.

Theorem 1. Let $k \in \mathbb{N}$ and let Ψ_N be the solution of (3) with initial condition 0.

- 1. Let $\mathcal{L} = \partial_t \Delta$. Then, $\Psi_N^{\diamond k}$ converges in $L^{\frac{2}{k}}([0,T]; B^{-\epsilon}_{\infty,\infty}(\mathbb{T}^2))$ as $N \to \infty$ almost surely for any $\epsilon > 0, T > 0$.
- 2. Let $\mathcal{L} = \partial_t^2 \Delta$. Then, $\Psi_N^{\diamond k}$ converges in $C([0,T]; B_{\infty,\infty}^{-\epsilon}(\mathbb{T}^2))$ as $N \to \infty$ almost surely for any $\epsilon > 0, T > 0$.

In the case of heat equation, we cannot expect the temporal continuity of Ψ since we are dealing with the equation driven by jump-type noise. So we discuss on L^p -space with respect to time variable t. Note that in the case of $k \geq 3$, we have to consider L^p -space for $0 since <math>\frac{2}{k} < 1$. We also note that it is well-known that if L(t) = t, $\Psi_N^{\diamond k}$ converges to some $\Psi^{\diamond k}$ in $C([0,T]; B_{\infty,\infty}^{-\epsilon})$ i.e. $\Psi^{\diamond k}$ has time-continuity. In the case of wave equation, however, we can get the continuity in time, although the noise is jump-type.

By applying Theorem 1, we can show local-in-time well-posedness of singular SPDE (2).

- **Theorem 2.** 1. Let $\mathcal{L} = \partial_t \Delta$ and k = 2. Then, the renormalized heat equation (2) is locally well-posed.
 - 2. Let $\mathcal{L} = \partial_t^2 \Delta$. Then, for any integer $k \ge 2$, the renormalized wave equation (2) is locally well-posed.

In the case of heat equation, we have not been able to deal with the case $k \ge 3$ due to the lack of time-integrability of $\Psi^{\diamond k}$ (See Theorem 1). On the other hand, in the case of wave equation, we could show local well-posedness for all $k \ge 2$. Indeed, the same fixed-point argument as in [2] is applicable to our situation in view of the time-continuity of $\Psi^{\diamond k}$.

References

- G. Da Prato and A. Debussche. Strong solutions to the stochastic quantization equations. The Ann. Probab. 2003, Vol. 31, No. 4, 1900-1916.
- [2] M. Gubinelli, H. Koch, and T. Oh. Renormalization of the two-dimensional stochastic nonlinear wave equations. Trans. Amer. Math. Soc. 2018, Vol. 370, No. 10, 7335-7359.