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Fig. 1. Sierpiński gaskets (2-d., harm., 3-d.) Fig. 2. Sierpiński carpets SCℓ (ℓ = 3, 5, 7)

This is a continuation of the speaker’s talk from 24 December 2020 on [4], which con-
cerns the following set Gβ(D) defined for β ∈ (1,∞) and a metric measure Dirichlet
(MMD) space D = (K, d,m, E ,F), i.e., a strongly local regular symmetric Dirich-
let space (K,m, E ,F) over a locally compact separable metric space (K, d) such that
Bd(x, r) := {y ∈ K | d(x, y) < r} has compact closure in K for any (x, r) ∈ K×(0,∞):

Gβ(D) :=

{
(θ, µ)

∣∣∣∣∣
θ is a metric on K quasisymmetric to d, µ is a Radon mea-
sure on K charging no set of zero E-capacity and with full
E-quasi-support, (K, θ, µ, E ,Fµ) satisfies VD and HKE(β)

}
. (Gβ)

Here we say that (K, d,m, E ,F) satisfies VD if and only ifm(Bd(x, 2r)) ≤ cvm(Bd(x, r))
for any (x, r) ∈ K × (0,∞) for some cv ∈ (0,∞), and that it satisfies HKE(β) if and
only if (K,m, E ,F) has a continuous heat kernel p = pt(x, y) : (0,∞)×K×K → [0,∞)
and there exist c1, c2, c3, c4 ∈ (0,∞) such that for any r, t ∈ (0,∞) and any x, y ∈ K,

c11[0,c2]

(
d(x, y)β/t

)
m(Bd(x, t1/β))

≤ pt(x, y) ≤
c3 exp

(
−c4

(
d(x, y)β/t

) 1
β−1

)
m(Bd(x, t1/β))

. HKE(β)

A metric θ onK is said to be quasisymmetric to d (θ
qs∼ d) if and only if θ(x, y)/θ(x, z) ≤

η
(
d(x, y)/d(x, z)

)
for any x, y, z ∈ K with x ̸= z, or equivalently, for any x ∈ K and

any r, A ∈ (0,∞) there exists s ∈ (0,∞) such that Bθ(x, s) ⊂ Bd(x, r) and Bd(x,Ar) ⊂
Bθ(x, η(A)s), for some homeomorphism η : [0,∞) → [0,∞). Each µ as in (Gβ) is such
that “E becomes a regular Dirichlet form on L2(K,µ) with core F ∩ Cc(K)”, whose
domain is then denoted by Fµ; see [1, Corollary 5.2.10, (5.2.17) and Theorem 5.2.11]
(here Cc(K) := {u : K → R | u is continuous, K \ u−1(0) has compact closure in K}).

It is relatively well known that Gβ(D) = ∅ for any β ∈ (1, 2) (unlessK is a singleton);
see [4, (1.5) and Lemma 4.7]. Our concern is whether Gβ(D) ̸= ∅ for β = 2, or at least
for β ∈ (2,∞) arbitrarily close to 2, which is motivated by the following theorem.

Theorem 1 ([6]; see also [4, Theorem 6.30]). Let D be the MMD space of the Brownian
motion on the 2-dimensional standard Sierpiński gasket (Fig. 1, left). Then G2(D) ̸= ∅.
More precisely, [6] constructed a concrete element of G2(D) on the basis of the geometry
of the harmonic Sierpiński gasket (Fig. 1, center). As an answer to the question of
whether Gβ(D) ̸= ∅ for a general MMD space D, in [4] we have proved the following.
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Theorem 2 ([4, Theorem 2.9]). Let D = (K, d,m, E ,F) be a MMD space with K
having at least two elements. Then {β ∈ (1,∞) | Gβ(D) ̸= ∅} is [2,∞) or (2,∞) or ∅.

Theorem 2 further raises the questions of what D satisfies G2(D) ̸= ∅ and what
G2(D) looks like when G2(D) ̸= ∅. In these regards, in [4] we have proved the following.

Theorem 3 ([4, Proposition 2.10]; see also [3, Section 4]). Let D = (K, d,m, E ,F) be a
MMD space with K having at least two elements, and let µ⟨u⟩ be the E-energy measure
of u ∈ F as defined in [2, (3.2.14)]. Then for any (θ, µ) ∈ G2(D), the following hold:

(1) Define dµ(x, y) := sup{u(x)− u(y) | u ∈ F ∩ Cc(K), µ⟨u⟩ ≤ µ} for each x, y ∈ K.
Then c−1

θ,µdµ(x, y) ≤ θ(x, y) ≤ cθ,µdµ(x, y) for any x, y ∈ K for some cθ,µ ∈ [1,∞).

(2) Let A be a Borel subset of K. Then µ(A) = 0 if and only if supu∈F µ⟨u⟩(A) = 0.

Theorem 4 ([4, Theorem 6.32]). Let N ∈ N satisfy N ≥ 3, and let D be the MMD
space of the Brownian motion on the N -dimensional standard Sierpiński gasket (see
Fig. 1, right, for a picture for N = 3). Then G2(D) = ∅.

It was left open in [4] whether G2(D) ̸= ∅ for the MMD space D of the Brownian
motion on generalized Sierpiński carpets (see, e.g., [4, Subsection 6.4] and the references
therein for their basics). We have recently been able to answer this question for a family
of generalized Sierpiński carpets in R2 as follows, which is the main result of this talk.

Theorem 5 ([5]). Let ℓ ∈ N\{1} be odd, and let SCℓ be the unique non-empty compact
subset of R2 such that SCℓ =

∪
i∈Sℓ

fℓ,i(SCℓ) (Fig. 2), where fℓ,i : R2 → R2 is defined by
fℓ,i(x) := ℓ−1i+ℓ−1x for i ∈ Z2 and Sℓ := {i ∈ Z2 | fℓ,i([0, 1]2) ⊂ [0, 1]2\(ℓ−1, 1−ℓ−1)2}.
Then the MMD space D = (K, d,m, E ,F) of the Brownian motion on K := SCℓ, where
d is the Euclidean metric and m is the uniform distribution on K, satisfies G2(D) = ∅.
Note that SC3 (Fig. 2, left) is nothing but the 2-dimensional standard Sierpiński carpet.

We fix the setting of Theorem 5 in the rest of this article. The first step of the proof
of Theorem 5 is to note the following theorem and proposition, which we had essentially
proved in [4] for any generalized Sierpiński carpet in RN with arbitrary N ∈ N \ {1}.
Theorem 6 (a special case of [4, (6.70) and Theorem 6.49]). Set V0 := K \ (0, 1)2. If
G2(D) ̸= ∅, then there exists h ∈ F which is E-harmonic on K \V0, i.e., which satisfies
E(h, v) = 0 for any v ∈ F ∩ Cc(K) with v|V0 = 0, such that (dµ⟨h⟩ , µ⟨h⟩) ∈ G2(D).

Proposition 7 (cf. [4, Proposition 6.50, Lemma 6.52 and Proof of Theorem 6.49]).
Set H2 := {h+R1K | h ∈ F , h is E-harmonic on K \ V0, (dµ⟨h⟩ , µ⟨h⟩) ∈ G2(D)} and let

h ∈ H2. Then the closure of {E(h ◦ Fℓ,w, h ◦ Fℓ,w)
−1/2h ◦ Fℓ,w}w∈

∪∞
n=0 S

n
ℓ
in (F/R1K , E)

is a compact subset of H2, where Fℓ,w := fℓ,w1 ◦ · · · ◦ fℓ,wn|K for w = w1 . . . wn ∈ Sn
ℓ .

Theorem 5 is obtained by combining Theorem 6, Proposition 7 and the following.

Proposition 8 ([5]). Let h ∈ F be E-harmonic on K \V0 and satisfy h|[0,1]×{j} = j for
j ∈ {0, 1}. Then maxK∩([0,1]×[0,ℓ−1]) h < ℓ−1 and dµ⟨h⟩(x, y) = 0 for any x, y ∈ [0, 1]×{0}.
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