On the conformal walk dimension II:
Non-attainment for some Sierpinski carpets
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Fig. . Sierpiriski gaskets (2-d., harm., 3-d.) Fig.B. Sierpiniski carpets SCy (£ = 3, 5, 7)

This is a continuation of the speaker’s talk from 24 December 2020 on [d], which con-
cerns the following set Gz(D) defined for 8 € (1,00) and a metric measure Dirichlet
(MMD) space D = (K,d,m,E,F), ie., a strongly local regular symmetric Dirich-
let space (K, m,&, F) over a locally compact separable metric space (K, d) such that
Bi(z,r) :={y € K | d(x,y) < r} has compact closure in K for any (x,r) € K x (0,00):

sure on K charging no set of zero £-capacity and with full
E-quasi-support, (K, 0, u, £, F*) satisfies VD and HKE(S)

Here we say that (K, d, m, £, F) satisfies VD if and only if m(By4(z, 2r)) < eym(By(z, 7))
for any (z,r) € K x (0,00) for some ¢, € (0,00), and that it satisfies HKE(S) if and
only if (K, m, &, F) has a continuous heat kernel p = p;(x,y) : (0,00) x K x K — [0, 00)
and there exist ¢y, ¢, c3, ¢4 € (0,00) such that for any r,¢ € (0,00) and any z,y € K,
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A metric § on K is said to be quasisymmetric to d (8 ~ d) if and only if 6(x, y) /0(z, z) <
n(d(x,y)/d(z, z)) for any xz,y,2z € K with = # z, or equivalently, for any x € K and
any r, A € (0,00) there exists s € (0,00) such that By(x,s) C By(z,r) and By(x, Ar) C
By(x,n(A)s), for some homeomorphism 7 : [0,00) — [0,00). Each u as in (GJ) is such
that “€ becomes a reqular Dirichlet form on L*(K,p) with core F N C.(K)”, whose
domain is then denoted by F*; see [, Corollary 5.2.10, (5.2.17) and Theorem 5.2.11]
(here C.(K) := {u: K — R | u is continuous, K \ «~!(0) has compact closure in K}).

It is relatively well known that Gz(D) = @) for any § € (1, 2) (unless K is a singleton);
see [4, (1.5) and Lemma 4.7]. Our concern is whether Gg(D) # () for = 2, or at least
for 5 € (2, 00) arbitrarily close to 2, which is motivated by the following theorem.

Theorem 1 ([6]; see also [@, Theorem 6.30]). Let D be the MMD space of the Brownian
motion on the 2-dimensional standard Sierpiniski gasket (Fig.0, left). Then Go(D) # 0.

More precisely, [6] constructed a concrete element of Go(D) on the basis of the geometry
of the harmonic Sierpiniski gasket (Fig.[, center). As an answer to the question of
whether G5(D) # 0 for a general MMD space D, in [4] we have proved the following.
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Theorem 2 ([, Theorem 2.9]). Let D = (K,d,m,E,F) be a MMD space with K
having at least two elements. Then {f € (1,00) | Gg(D) # 0} is [2,00) or (2,00) or (.
Theorem B further raises the questions of what D satisfies Go(D) # () and what
Go(D) looks like when Go(D) # 0. In these regards, in [4] we have proved the following.
Theorem 3 ([4, Proposition 2.10]; see also [3, Section 4]). Let D = (K,d,m,&,F) be a
MMD space with K having at least two elements, and let i,y be the E-energy measure
of u € F as defined in [2, (3.2.14)]. Then for any (0, u) € Go(D), the following hold:
(1) Define d,(x,y) = sup{u(x) —u(y) | v € FNC(K), py < p} for each x,y € K.
Then c;idu(x, y) < 0(z,y) < cpudu(z,y) for any x,y € K for some ¢y, € [1,00).
(2) Let A be a Borel subset of K. Then u(A) =0 if and only if sup,cr pu) (A) = 0.

Theorem 4 ([4, Theorem 6.32]). Let N € N satisfy N > 3, and let D be the MMD
space of the Brownian motion on the N-dimensional standard Sierpinski gasket (see
Fig.W, right, for a picture for N =3). Then Go(D) = ().

It was left open in [d] whether Go(D) # () for the MMD space D of the Brownian
motion on generalized Sierpinski carpets (see, e.g., [A, Subsection 6.4] and the references
therein for their basics). We have recently been able to answer this question for a family
of generalized Sierpinski carpets in R? as follows, which is the main result of this talk.

Theorem 5 ([5]). Let £ € N\ {1} be odd, and let SC, be the unique non-empty compact
subset of R? such that SCp = g, f0i(SCe) (Fig.B), where fo;: R* — R? is defined by
fei(x) =0 i+l e fori € Z2 and Sy :={i € Z* | f1,([0,1]?) C [0, 12\ (£71, 1—£71)2}.
Then the MMD space D = (K,d, m,E,F) of the Brownian motion on K := SC,, where
d is the Fuclidean metric and m is the uniform distribution on K, satisfies Go(D) = ().

Note that SC3 (Fig. B, left) is nothing but the 2-dimensional standard Sierpiriski carpet.
We fix the setting of Theorem B in the rest of this article. The first step of the proof
of Theorem B is to note the following theorem and proposition, which we had essentially
proved in [4] for any generalized Sierpinski carpet in RY with arbitrary N € N\ {1}.
Theorem 6 (a special case of [@, (6.70) and Theorem 6.49]). Set Vj := K \ (0,1)%. If
Go(D) # 0, then there exists h € F which is E-harmonic on K\ Vy, i.e., which satisfies
E(h,v) =0 for any v € F N Ce(K) with vly, =0, such that (d,,,, kpy) € Go(D).
Proposition 7 (cf. [@, Proposition 6.50, Lemma 6.52 and Proof of Theorem 6.49]).
Set Hy :={h+R1x | h € F, h is E-harmonic on K\ Vo, (dy,,, ny) € G2(D)} and let
h € Hy. Then the closure of {E(ho Fyy,ho Fy,) /2ho Frwtweye, sy in (F/Rlg, )
is a compact subset of Ha, where Fyy = fraw, 0+ 0 fow,|x forw=wy...w, € S}.
Theorem B is obtained by combining Theorem B, Proposition [@ and the following.

Proposition 8 ([0]). Let h € F be £-harmonic on K\ Vy and satisfy h|jo1)x(;y = J for
j €40,1}. Then maxgnoxjoe-1)h <" andd,,, (x,y) = 0 for any z,y € [0, 1]x{0}.
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