On the conformal walk dimension II: Non-attainment for some Sierpiński carpets

Naotaka Kajino (RIMS, Kyoto University)
Joint work with Mathav Murugan (University of British Columbia)

Fig. [I. Sierpiński gaskets (2-d., harm., 3-d.) Fig. 凹. Sierpiński carpets $\mathrm{SC}_{\ell}(\ell=3,5,7)$
This is a continuation of the speaker's talk from 24 December 2020 on [4], which concerns the following set $\mathcal{G}_{\beta}(\mathcal{D})$ defined for $\beta \in(1, \infty)$ and a metric measure Dirichlet (MMD) space $\mathcal{D}=(K, d, m, \mathcal{E}, \mathcal{F})$, i.e., a strongly local regular symmetric Dirichlet space $(K, m, \mathcal{E}, \mathcal{F})$ over a locally compact separable metric space (K, d) such that $B_{d}(x, r):=\{y \in K \mid d(x, y)<r\}$ has compact closure in K for any $(x, r) \in K \times(0, \infty)$:

$$
\mathcal{G}_{\beta}(\mathcal{D}):=\left\{\begin{array}{l|l}
(\theta, \mu) & \begin{array}{l}
\theta \text { is a metric on } K \text { quasisymmetric to } d, \mu \text { is a Radon mea- } \\
\text { sure on } K \text { charging no set of zero } \mathcal{E} \text {-capacity and with full } \\
\mathcal{E} \text {-quasi-support, }\left(K, \theta, \mu, \mathcal{E}, \mathcal{F}^{\mu}\right) \text { satisfies VD and } \operatorname{HKE}(\beta)
\end{array}
\end{array}\right\} .
$$

Here we say that $(K, d, m, \mathcal{E}, \mathcal{F})$ satisfies VD if and only if $m\left(B_{d}(x, 2 r)\right) \leq c_{\mathrm{v}} m\left(B_{d}(x, r)\right)$ for any $(x, r) \in K \times(0, \infty)$ for some $c_{\mathrm{v}} \in(0, \infty)$, and that it satisfies $\operatorname{HKE}(\beta)$ if and only if $(K, m, \mathcal{E}, \mathcal{F})$ has a continuous heat kernel $p=p_{t}(x, y):(0, \infty) \times K \times K \rightarrow[0, \infty)$ and there exist $c_{1}, c_{2}, c_{3}, c_{4} \in(0, \infty)$ such that for any $r, t \in(0, \infty)$ and any $x, y \in K$,

$$
\frac{c_{1} \mathbb{1}_{\left[0, c_{2}\right]}\left(d(x, y)^{\beta} / t\right)}{m\left(B_{d}\left(x, t^{1 / \beta}\right)\right)} \leq p_{t}(x, y) \leq \frac{c_{3} \exp \left(-c_{4}\left(d(x, y)^{\beta} / t\right)^{\frac{1}{\beta-1}}\right)}{m\left(B_{d}\left(x, t^{1 / \beta}\right)\right)}
$$

HKE (β)
A metric θ on K is said to be quasisymmetric to $d(\theta \stackrel{\text { qs }}{\sim} d)$ if and only if $\theta(x, y) / \theta(x, z) \leq$ $\eta(d(x, y) / d(x, z))$ for any $x, y, z \in K$ with $x \neq z$, or equivalently, for any $x \in K$ and any $r, A \in(0, \infty)$ there exists $s \in(0, \infty)$ such that $B_{\theta}(x, s) \subset B_{d}(x, r)$ and $B_{d}(x, A r) \subset$ $B_{\theta}(x, \eta(A) s)$, for some homeomorphism $\eta:[0, \infty) \rightarrow[0, \infty)$. Each μ as in (G) is such that " \mathcal{E} becomes a regular Dirichlet form on $L^{2}(K, \mu)$ with core $\mathcal{F} \cap C_{\mathrm{c}}(K)$ ", whose domain is then denoted by \mathcal{F}^{μ}; see [$[1$, Corollary 5.2.10, (5.2.17) and Theorem 5.2.11] (here $C_{\mathrm{c}}(K):=\left\{u: K \rightarrow \mathbb{R} \mid u\right.$ is continuous, $K \backslash u^{-1}(0)$ has compact closure in $\left.K\right\}$).

It is relatively well known that $\mathcal{G}_{\beta}(\mathcal{D})=\emptyset$ for any $\beta \in(1,2)$ (unless K is a singleton); see [4, , (1.5) and Lemma 4.7]. Our concern is whether $\mathcal{G}_{\beta}(\mathcal{D}) \neq \emptyset$ for $\beta=2$, or at least for $\beta \in(2, \infty)$ arbitrarily close to 2 , which is motivated by the following theorem.
Theorem 1 ([6]]; see also [4, Theorem 6.30]). Let \mathcal{D} be the MMD space of the Brownian motion on the 2 -dimensional standard Sierpiński gasket (Fig. \mathbb{D}, left). Then $\mathcal{G}_{2}(\mathcal{D}) \neq \emptyset$.
More precisely, [6] constructed a concrete element of $\mathcal{G}_{2}(\mathcal{D})$ on the basis of the geometry of the harmonic Sierpiński gasket (Fig. \mathbb{D}, center). As an answer to the question of whether $\mathcal{G}_{\beta}(\mathcal{D}) \neq \emptyset$ for a general MMD space \mathcal{D}, in $[4]$ we have proved the following.

[^0]Theorem 2 ([4, Theorem 2.9]). Let $\mathcal{D}=(K, d, m, \mathcal{E}, \mathcal{F})$ be a MMD space with K having at least two elements. Then $\left\{\beta \in(1, \infty) \mid \mathcal{G}_{\beta}(\mathcal{D}) \neq \emptyset\right\}$ is $[2, \infty)$ or $(2, \infty)$ or \emptyset.

Theorem [\mathbb{D} further raises the questions of what \mathcal{D} satisfies $\mathcal{G}_{2}(\mathcal{D}) \neq \emptyset$ and what $\mathcal{G}_{2}(\mathcal{D})$ looks like when $\mathcal{G}_{2}(\mathcal{D}) \neq \emptyset$. In these regards, in [G] we have proved the following.
Theorem 3 ([4, Proposition 2.10]; see also [3, Section 4]). Let $\mathcal{D}=(K, d, m, \mathcal{E}, \mathcal{F})$ be a $M M D$ space with K having at least two elements, and let $\mu_{\langle u\rangle}$ be the \mathcal{E}-energy measure of $u \in \mathcal{F}$ as defined in $[\Sigma,(3.2 .14)]$. Then for any $(\theta, \mu) \in \mathcal{G}_{2}(\mathcal{D})$, the following hold:
(1) Define $d_{\mu}(x, y):=\sup \left\{u(x)-u(y) \mid u \in \mathcal{F} \cap C_{\mathrm{c}}(K), \mu_{\langle u\rangle} \leq \mu\right\}$ for each $x, y \in K$.

Then $c_{\theta, \mu}^{-1} d_{\mu}(x, y) \leq \theta(x, y) \leq c_{\theta, \mu} d_{\mu}(x, y)$ for any $x, y \in K$ for some $c_{\theta, \mu} \in[1, \infty)$.
(2) Let A be a Borel subset of K. Then $\mu(A)=0$ if and only if $\sup _{u \in \mathcal{F}} \mu_{\langle u\rangle}(A)=0$.

Theorem 4 ([4, Theorem 6.32]). Let $N \in \mathbb{N}$ satisfy $N \geq 3$, and let \mathcal{D} be the $M M D$ space of the Brownian motion on the N-dimensional standard Sierpiński gasket (see Fig. 四, right, for a picture for $N=3$). Then $\mathcal{G}_{2}(\mathcal{D})=\emptyset$.

It was left open in [[] whether $\mathcal{G}_{2}(\mathcal{D}) \neq \emptyset$ for the MMD space \mathcal{D} of the Brownian motion on generalized Sierpiński carpets (see, e.g., [G, Subsection 6.4] and the references therein for their basics). We have recently been able to answer this question for a family of generalized Sierpiński carpets in \mathbb{R}^{2} as follows, which is the main result of this talk.
Theorem 5 ([5]). Let $\ell \in \mathbb{N} \backslash\{1\}$ be odd, and let SC_{ℓ} be the unique non-empty compact subset of \mathbb{R}^{2} such that $\mathrm{SC}_{\ell}=\bigcup_{i \in S_{\ell}} f_{\ell, i}\left(\mathrm{SC}_{\ell}\right)$ (Fig.([)), where $f_{\ell, i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $f_{\ell, i}(x):=\ell^{-1} i+\ell^{-1} x$ for $i \in \mathbb{Z}^{2}$ and $S_{\ell}:=\left\{i \in \mathbb{Z}^{2} \mid f_{\ell, i}\left([0,1]^{2}\right) \subset[0,1]^{2} \backslash\left(\ell^{-1}, 1-\ell^{-1}\right)^{2}\right\}$. Then the MMD space $\mathcal{D}=(K, d, m, \mathcal{E}, \mathcal{F})$ of the Brownian motion on $K:=\mathrm{SC}_{\ell}$, where d is the Euclidean metric and m is the uniform distribution on K, satisfies $\mathcal{G}_{2}(\mathcal{D})=\emptyset$.
Note that SC_{3} (Fig.[Z], left) is nothing but the 2-dimensional standard Sierpiński carpet.
We fix the setting of Theorem ${ }^{-1}$ in the rest of this article. The first step of the proof of Theorem is to note the following theorem and proposition, which we had essentially proved in [4] for any generalized Sierpiński carpet in \mathbb{R}^{N} with arbitrary $N \in \mathbb{N} \backslash\{1\}$.
Theorem 6 (a special case of [4], (6.70) and Theorem 6.49]). Set $V_{0}:=K \backslash(0,1)^{2}$. If $\mathcal{G}_{2}(\mathcal{D}) \neq \emptyset$, then there exists $h \in \mathcal{F}$ which is \mathcal{E}-harmonic on $K \backslash V_{0}$, i.e., which satisfies $\mathcal{E}(h, v)=0$ for any $v \in \mathcal{F} \cap C_{\mathrm{c}}(K)$ with $\left.v\right|_{V_{0}}=0$, such that $\left(d_{\mu_{\langle h\rangle}}, \mu_{\langle h\rangle}\right) \in \mathcal{G}_{2}(\mathcal{D})$.
Proposition 7 (cf. [G, Proposition 6.50, Lemma 6.52 and Proof of Theorem 6.49]). Set $\mathcal{H}_{2}:=\left\{h+\mathbb{R} \mathbf{1}_{K} \mid h \in \mathcal{F}\right.$, h is \mathcal{E}-harmonic on $\left.K \backslash V_{0},\left(d_{\mu_{\langle h\rangle}}, \mu_{\langle h\rangle}\right) \in \mathcal{G}_{2}(\mathcal{D})\right\}$ and let $h \in \mathcal{H}_{2}$. Then the closure of $\left\{\mathcal{E}\left(h \circ F_{\ell, w}, h \circ F_{\ell, w}\right)^{-1 / 2} h \circ F_{\ell, w}\right\}_{w \in \cup_{n=0}^{\infty} S_{\ell}^{n}}$ in $\left(\mathcal{F} / \mathbb{R} \mathbf{1}_{K}, \mathcal{E}\right)$ is a compact subset of \mathcal{H}_{2}, where $F_{\ell, w}:=\left.f_{\ell, w_{1}} \circ \cdots \circ f_{\ell, w_{n}}\right|_{K}$ for $w=w_{1} \ldots w_{n} \in S_{\ell}^{n}$.

Theorem is obtained by combining Theorem [l], Proposition $\mathbb{\square}$ and the following.
Proposition 8 ([5]). Let $h \in \mathcal{F}$ be \mathcal{E}-harmonic on $K \backslash V_{0}$ and satisfy $\left.h\right|_{[0,1] \times\{j\}}=j$ for $j \in\{0,1\}$. Then $\max _{K \cap\left([0,1] \times\left[0, \ell^{-1}\right]\right)} h<\ell^{-1}$ and $d_{\mu_{\langle h\rangle}}(x, y)=0$ for any $x, y \in[0,1] \times\{0\}$.

References

[1] Z.-Q. Chen and M. Fukushima, London Math. Soc. Monogr. Ser., vol. 35, 2012.
[2] M. Fukushima, Y. Oshima and M. Takeda, de Gruyter Studies in Math., vol. 19, 2011.
[3] N. Kajino and M. Murugan, Ann. Probab. 48 (2020), 2920-2951.
[4] N. Kajino and M. Murugan, preprint, 2021. arxiv:2008. 12836
[5] N. Kajino and M. Murugan, in preparation.
[6] J. Kigami, Math. Ann. 340 (2008), 781-804.

[^0]: Naotaka Kajino was supported in part by JSPS KAKENHI Grant Numbers JP17H02849, 18H01123. Mathav Murugan was supported in part by NSERC and the Canada research chairs program.
 Keywords: Brownian motion on generalized Sierpiński carpet, sub-Gaussian heat kernel estimate, walk dimension, time change of strongly local regular Dirichlet space, quasisymmetric change of metrics.

