NEW CHARACTERIZATION OF THE WEAK DISORDER PHASE OF DIRECTED POLYMERS IN BOUNDED RANDOM ENVIRONMENTS

STEFAN JUNK

AIMR, Tohoku University

ABSTRACT. We show that the weak disorder phase for the directed polymer model in a random environment is characterized by the integrability of the running supremum $\sup_{n\in\mathbb{N}} W_n^\beta$ of the associated martingale $(W_n^\beta)_{n\in\mathbb{N}}$. If the environment is bounded, we also show that $(W_n^\beta)_{n\in\mathbb{N}}$ is L^p -bounded in the whole weak disorder phase, for some p > 1. The argument generalizes to non-negative martingales with a certain product structure.

1. Background

The directed polymer model was introduced in the physics literature to describe the folding of long molecule chains in a solution with random impurities. Mathematically, it is a model for random paths, called *polymers*, that are attracted or repulsed by a space-time random environment with a parameter $\beta \geq 0$, called *inverse temperature*, governing the strength of the interaction. See [2] for a recent survey of the model.

We focus on the *high temperature* phase, where it is known that the influence of the disorder disappears asymptotically and that the long-term behavior is diffusive. This weak disorder phase is characterized by whether an associated martingale, $(W_n^\beta)_{n\in\mathbb{N}}$, is uniformly integrable (UI), which is known to hold for small β if the spatial dimension is at least three.

This martingale contains a lot of information about the long-term behavior of the polymers, but (UI) is difficult to analyze in practice. Namely, (UI) means that

$$\sup_{n} \mathbb{E}[\varphi(W_n^\beta)] < \infty \tag{UI}$$

for some convex function φ with $\lim_{x\to\infty} \frac{\varphi(x)}{x} = \infty$, but a priori the growth of $\frac{\varphi(x)}{x}$ may be extremly slow. Much research has therefore focused on a very high temperature phase, characterized by L^2 -boundedness of $(W_n^\beta)_{n\in\mathbb{N}}$, which is however known [1] to be a strictly stronger condition than (UI).

2. Result

We show [5, Theorem 1.1] that in the whole weak disorder phase, the martingale $(W_n^\beta)_{n \in \mathbb{N}}$ satisfies

$$\mathbb{E}\Big[\sup_{n} W_{n}^{\beta}\Big] < \infty, \tag{1}$$

E-mail address: sjunk@tohoku.ac.jp.

²⁰¹⁰ Mathematics Subject Classification. 60K37.

Key words and phrases. directed polymers and random environment.

which is a strictly stronger condition than (UI). In the case of a bounded environment, we use (1) to show that $(W_n^\beta)_{n\in\mathbb{N}}$ is L^p -bounded [5, Theorem 1.1], for some $p = p(\beta) > 1$, i.e., we show that (UI) holds with $\varphi(x) = x^p$.

3. Comments

3.1. Integrability of the running maximum. We first recall an illustrative example [6, Chapter II, Exercise 3.15] for a uniformly integrable martingale that does not satisfy (1), and then discuss why the same is not possible for the martingale $(W_n^\beta)_{n\in\mathbb{N}}$ associated to the directed polymer model. The reason is that $(W_n^\beta)_{n\in\mathbb{N}}$ has a certain "product structure", i.e.,

$$W_{n+m}^{\beta} = W_n^{\beta} \widehat{W}_m^{\beta}, \tag{2}$$

where \widehat{W}_{m}^{β} is a mixture of copies of W_{m}^{β} (each copy is independent of W_{n}^{β}). This structure has been noted before in the context of branching random walks or of the directed polymer on trees, but in those cases \widehat{W}_{m}^{β} is a mixture of *independent* copies of W_{m}^{β} .

3.2. L^p -boundedness. Here, we recall [3] that (1) already implies that (UI) holds with $\varphi(x) = x \log^+(x)$ for martingales with bounded increments, which can be seen as a partial converse to Doob's maximal inequality in the case p = 1. The improvement to L^p -boundedness follows by a variation of this general argument, together with the product structure (2) that is specific to the directed polymer model.

3.3. Applications. Our result gives a new tool to analyse the long-term behavior of the directed polymer model in the high temperature phase. Some consequences are described in the follow-up work [4].

References

- M. Birkner. A condition for weak disorder for directed polymers in random environment. *Electron.* Comm. Probab., 9:22–25, 2004.
- F. Comets. Directed polymers in random environments, volume 2175 of Lecture Notes in Mathematics. Springer, Cham, 2017. Lecture notes from the 46th Probability Summer School held in Saint-Flour, 2016.
- [3] R. F. Gundy. On the class L log L, martingales, and singular integrals. Studia Math., 33:109–118, 1969.
- [4] S. Junk. The central limit theorem for directed polymers in weak disorder, revisited, May 2021. arXiv:2105.04082.
- [5] S. Junk. New characterization of the weak disorder phase of directed polymers in bounded random environments, May 2021. arXiv:2105.03107. To appear in *Communications in mathematical physics*.
- [6] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999.