[t6—Follmer calculus 1n infinite dimensions

Yuki Hirai*

The 1to—Follmer calculus is a pathwise approach to Itd’s stochastic calculus. Follmer [1] proved that
a deterministic cadlag path satisfies the Itd formula if it has quadratic variation along a given sequence of
partitions. Follmer’s result enables one to construct the Itd type integral fot f(Xs-)dXs, which is defined as
the limit of non-anticipative Riemannian sums, for a nice function f and a path X that admits a quadratic
variation. We call this framework the [t6—-Fo6llmer calculus. Recently, the It6—Follmer calculus has seen
increasing developments, receiving much attention from the viewpoint of its financial applications. In
particular, it has been used to study financial trading strategies in a strictly pathwise manner.

In this talk, we consider the following differential equation in the framework of the It6—F6llmer calculus.

{dYt = AY,dt +dX,, >0,
ey
Yo =X.
Here, A: E — E is some linear operator in a Banach space and X: R,y — FE is a cadlag path that
corresponds to noise term. This equation is interpreted as a strictly pathwise version of a linear stochastic
partial differential equation (SPDE) with additive noise. We aim to solve equation (1) explicitly in the
framework of the Ito—F&llmer calculus in Banach spaces, which was developed by the author [3, 2].

To describe our results, let us define quadratic variations of a Banach space valued path. Fix a sequence
(72 )nen of partitions on R such that |,,| — Oasn — oo. A Banach space valued cadlagpath X: R>g — E
has tensor quadratic variation along (r,,) if there is a cadlag path [X, X]: Rsg — E®,E of finite variation
satisfying the following conditions:

(i) The sequence 2|, sjex, (Xsar — X, nr)®2 converges to [X, X], forall ¢ > 0.
(ii) The equation A[X, X], = AXZ? holds for all > 0.

Here, E®E denotes the projective tensor product of the Banach space E. Moreover, we say that X has
scalar quadratic variation along (7,,) if there is an increasing cadlag path Q(X): Rso — Rxp such that

(i) the sequence Xy, sjex, 1 Xsar — |l converges to Q(X), forall ¢ > 0, and
(i) the equation AQ(X), = ||AX;]|? holds for all r > 0.

The first main result is an extension of the Ito—Follmer formula of [3]. Given two Banach spaces E and
F, let £(E, F) denote the space of all bounded linear operators. We define a family of seminorms (pg)
index by the compact subsets of E as

pk (A) =inf{C > 0| ||Ax|| < C||x]|| for all x € K}.

We use the symbol $I];ip(E , F) for space £ (E, F) with the topology induce by (ok). Then, our extended
[t6—Follmer formula is stated as follows.

Theorem 1. Let f: Rsg X E — F be a continuous function satisfying the following conditions:
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(i) The function [0,00[ 3 t — f(t,x) € F is differentiable for all x € E and 9, f (t, x) is jointly continuous
on [0,00[ X E.

(ii) Themap x — f(t,x) is twice Fréchet differentiable for all t € [0, oo and derivatives Ox f: RoXE —
.,?illélp(E, F) and Bff: Ry o X E — SEII;IP(E§KE, F) are continuous.

If X has tensor and scalar quadratic variations along (), then

t t 1 t
2  f(t.X) - f(0,X0) = / s f (s, Xs-)ds + / Oy f(s, Xs-)dX, + 3 / 8% f(s, X, )d[X, X]¢
0 0 0
+ 0 AAF(5,Xy) = Oef (s, X )AX,},
O<s<t
where the second integral on the right hand side of (2) is defined as the It6—Féllmer integral.

As an application of Theorem 1, we can solve equation (1) explicitly by means of the Itd—Follmer integral.
This result is interpreted as a pathwise version of the variation of constant formula for a linear SPDE with
additive noise.

Theorem 2. Let A: E — E be the generator of a Co-semigroup (Ty);>o0 and X a cadlag path in Dom A
starting at 0. We suppose that X has tensor and scalar quadratic variations along (). Then there is a
unique cadlag path Y satisfying

t
(3) Y,=x+A/ sts+Xt, t>0
0

for every initial value x € E. The solution Y is represented as

4) Y, = T()x + /t(T(t —s)dX,),  t20
0

where the second term is defined as the Ito—Follmer integral. Moreover, if x € Dom A, the path of (4) is a
classical solution to (3).

Finally, we use Theorem 2 to construct a Heath—Jarrow—Morton model of bond markets in a strictly
pathwise manner. In the HIM model, forward rate dynamic is supposed to satisfy the equation

dtf(t7§) = (%f(hf) +CZ(I,§)) dt+a—(t’§)dxt~

With an appropriate setting of Hilbert space and a certain assumption on volatility o-, we can construct the
forward rate function f in the framework of the It6—Follmer calculus.
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A partial rough path space for rough volatility

Masaaki Fukasawa (Osaka University) Ryoji Takano (Osaka University)

A rough volatility model is a stochastic volatility model for an asset price process with volatility being
rough, meaning that the Holder regularity of the volatility path is less than half. We focus on a model of
the following form:

ds; = o(S)f(X)dX;, So€eR 0.1)

where X is a Brownian motion and X is a Riemann-Liouville fractional Brownian motion with the Hurst
parameter H < 1/4. Our aim is to develop a rough path framework to deal with such an (Itd) integration
of an uncontrolled path. Suppose that x : [0,7] — R¢ (d = 1), £ : [0,T] — R, and f : R — R are good
enough. By Taylor expansion, for 71 < 7, (these are close enough),

5] 1 . 2 .
/ For) ® dxy ~ f(8r) ® (xry = xr) + Y SV () / (% — £r,) @ dux,
T1 * T

i=1
ko) r
/ (/ dyu) dyr ~
T 8|

where y; := fot f (%) ® dx,. Therefore, if we preliminarily could define

DI ICOMIES / (5 — ) ( / (fu = 2r,) ® x| ® dy,

0<j+ksn

i ] 1 ! N A ]
Z() : / (& — %) ® dxy, AE’;k) = F,/ (% - xs)"zﬁ’,) ® dx;,
. S

we would be able to define a rough path integral f f(%) ® dx,. By the linearity of the integration and
the binomial theorem, Z®) and AU-%) satisfy the following formula respectively;
foranyi,j,k 20,and s S u < ¢,

7 =7+ Z e ), (R 72D (0.2)
A(isk) — (J k) + (X )k qZ(f) ® Z(q) + ( )j+k—p—qulp"I) (03)
st Z (k )l e I;; (- p)'<k Dl f

In light of these formulas, we define the following space Q,, m)-ma. In this article, fix @ € (%, %], He
(0, %), Ar ={(5,1);0=s St T} 1 :={i €Z;iH+a £ 1},and J := {(j, k) € ZXZ;(j+k)H+2a £ 1}.

Definition 0.1. An (a, H) rough path X = ()? z®, AU”‘)) " is a triplet of functions on Ar
iel,(j,k)eJ
satisfying the following conditions; for any i € I, (j,k) € Jand s S u = t,

(i) X is R -valued, Z® is R? -valued, and AU-%) js R ® R? -valued function.
(ii) Modified Chen’s relation; XS, = Xsu + Xm, and Z® and AU-K) satisfy (0.2) and (0.3) respectively.
(iii) Holder regularities;

Xl < It =5, 1Z9) < 10— s, |AUY) g |p - 5| UHOH2e

Let Qo H)-Hia denote the space of the (a, H) - rough paths. We define a metric function d(,, p) on
Q(a, 1y and [[[X|[|a, m) as following;

iy Y) = IX=Pllma+ > NZE)D = Z) it sar-tna+ A = A0t 1 420-110
iel,(j,k)eJ

11X @ my == 11X -11a + Z NZ it +a-ma + AV Gar) 42011
iel,(j,k)eJ



Definition 0.2. Fix X € Q, g).qia. We define Y (1) and Y@ as follows if exist;

N

N
M ._ g if(s (@) 2 ._ q; (6] (1)
Yst T |%1|1’20; ; \Y f(xtp—l)zlp_ltp’ Yst T |¢1)1|I{1‘0p:1 Yl‘otp_l ® Ytp_ma

LV Ry, IV £ G, AT, ),

Ip-11p
(j,k)eJ

where £, := Xos, and P = {s =19 < t) <.. <ty =t}isapartition on [s,¢]. If they exist on Ay, we
rewrite (Y, Y®) to f f(X)dX, and call it the (o, H) rough path integral of f.

Theorem 0.3. Assume that f : R — Riis CZ“. Then;

(i) For any X € Qo m)-Hid> the (@, H) rough path integral f F(X)dX is well-defined, and f f(R)dX e
Qo-m1a([0, T], RY), where Qq-1ia([0, 77, RY) is the usual a-Holder rough path space.

(ii) The integration map / : Qo H)-HId — Qo-Hia is locally Lipschitz continuous. More precisely, for any
M > 0, the map / |&,, - restricted on the set

Em = {X € Qo myrma 2 11Xlllonr < M}

is Lipschitz continuous; there exist a positive constant C > 0 such that,
da (/ f(V)dV,/f(W)dW) < Cdia,uy(V, W), VW e Ep,

where d, is the usual metric function on Q. ma([0, 7], RY).

Proposition 0.4. Let (, 7, P, {F; };>0) be a filtered probability space. Suppose that X = (X', ..., X¢) is
a d-dimensional standard Brownian motion, and by using the Itd integration, we define X, Z), and AU-%)
as follows (note that Z(© = X); for (s, 1) € Ar

R t S . 1 t R i
Ry = / k(r - r)dX,! — / k(s —rdx), 29 =~ / (Xm) ® dX,
0 0 L Js

. t k. 1
Gk 1 ( ) 0) — H-1/2
AGP . 2 (k) 2V 9 ax, k()= ——
Y / ) B ® e KO = oy T
Then;
(i) for a.s. w € Q, (Y(w), Z0(w), AW‘)(w)) is an (a, H) rough path.
iel,(j.k)el
(ii)

(1) t
( / f(f()dx) / FR)®dX,,  as.

st
where the left-hand-side is the first level of the (@, H) rough path integral and the right-hand-side the Itd
integral.

We now discuss about the following type of RDE (in the sense of Lyon’s meaning);
85 = o(5)dz. 2= [ f(RdX € Quma(0.TLEY 04)

where o : R — Mat(1, d) is CE.

Theorem 0.5. (i) RDE (0.4) driven by Z = f f(X)dX has the unique solution. Moreover, the solution
map;
Q(I-Hld([o’ T]a Rd) X R - Q(Z-Hld([oa T]’ Rd+])

is locally Lipschitz continuous with respect to d,,.
(ii) The first level of the solution to RDE (0.4) is the solution to the 1t6 SDE (0.1).
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Optimal control for stochastic Volterra integral equations
with delay

Yushi Hamaguchi*
(Graduate School of Engineering Science, Osaka University)

This talk is based on our preprint [2]. We investigate a general class of infinite horizon optimal
control problems with the state dynamics given by

X“(t) = (1) +/0 b(t,s, X"(s), X"“(s —9),u(s))ds —I—/O o(t,s, X“(s), X“(s = 9),u(s))dW(s),

t>0,
Xu(t) = So(t)a te [_57 0]

(1)
Here, W (-) is a one-dimensional Brownian motion, u(-) is a control process, ¢(+) is a given adapted
process called the free term, b and o are vector-valued functions, and § > 0 is a constant which
represents the length of the delay of the state. The state equation is a stochastic Volterra
integral equation (SVIE, for short) which has a “finite delay” of the form X"(s — J), and thus we
call it a stochastic delay Volterra integral equation (SDVIE, for short). Our objective is to find a
control process which minimizes the discounted cost functional

In(u() = ]E[/Ooo e MR, XU(E), XUt — 6), u(t)) dt}, 2)

where h is a real-valued function called the running cost, and A > 0 is a discount rate.

When 6 = 0, SDVIE becomes a classical SVIE (without delay). Meanwhile, when the
coefficients b(t, s, x1,z2,u) and o(t, s, x1,z2,u) do not depend on the time-parameter ¢, and when
the free term is of the form ¢(t) = ¢(t A 0), SDVIE is reduced to a controlled stochastic delay
differential equation (SDDE, for short)

Xu(t) = Qp(t)v te [_57 0]
More importantly, SDVIE includes a class of controlled fractional SDDE of the form

DR, X (8) = b(t, X (8), XUt — 6),u(t)) + r(t, X(8), X*(¢ — ), u(t)) T L)

Xu(t) = ¢(t), t € [=6,0],

7t>07

where “Dg, denotes the Caputo fractional derivative of order o € (3,1]. Fractional differential
systems are suitable tools to describe the dynamics of systems with memory effects and hereditary
properties. There are many applications of fractional calculus in a variety of research fields including
mathematical finance, physics, chemistry, biology, and other applied sciences. Recently, Zhang et
al. [4] and Moghaddam et al. [3] studied fractional SDDEs (without control) and proved the existence
and uniqueness of the solution. The analysis of stochastic control problems of fractional SDDEs is

therefore an important topic, and this is a main motivation of our work.

*E-mail: hmgch29500gmail. com



For the discounted control problem 7, we provide both necessary and sufficient conditions
for optimality by means of Pontryagin’s maximum principle. An idea here is to “lift up” the
dimension of the state process so that the auxiliary state equation becomes a classical SVIE (without
delay), which was investigated in our previous paper [1]. In [I], we showed that the adjoint equation,
which characterizes the optimal control, of discounted control problems for classical SVIEs becomes
an infinite horizon backward stochastic Volterra integral equation (BSVIE, for short). Applying our
previous results to the auxiliary state process, we show that the adjoint equation of the original
problem f (including delay) becomes an infinite horizon anticipated BSVIE (ABSVIE, for
short), which is a novel class of BSVIEs whose driver depends on some “anticipated terms”. The
optimal control of the problem f is characterized by the infinite horizon ABSVIE, together
with an optimality condition.

As an example of our general theory, we consider an infinite horizon linear—quadratic (LQ, for
short) regulator problem for a fractional SDDE with constant coefficients. Specifically, we treat

the case where the controlled state dynamics is described by a (one-dimensional) linear fractional

SDDE
AW (t)

dt

“Dg X"(t) = bX"(t — &) + cu(t) + o
XU(t) = mo, t € [~5,0],

and the discounted cost functional is given by a quadratic functional of the state and control:
1 o 1
Ta(u() = 21@[/ IXUOP + = u(n)?} ae].
0 Y

Based on the maximum principle, we show that there exists a unique optimal control for this
problem. Moreover, we obtain an explicit formula for the optimal control process of the following
form:

?tZ()?

(optimal control) = (constant) x (delayed optimal state) 4+ (Gaussian process),

which we call a Gaussian state-feedback representation formula for the optimal control. Here, the
Gaussian process is a stochastic convolution of a deterministic function with respect to the Brownian
motion W(:), and the function is determined via linear Fredholm integral equations depending
only on the model parameters. The linear Fredoholm integral equations can be solved by using
a Fredholm resolvent of the kernel, and we get the above Gaussian state-feedback representation
formula.
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Limit distributions for the discretization error of stochastic
Volterra equations

Masaaki Fukasawa and Takuto Ugai
Graduate School of Engineering Science, Osaka University

The discretization of the stochastic differential equations (SDE) has been studied by many researchers for many
years. Consider a standard SDE and its discretization:

t t
X, = Xo + / b(Xy)ds + / o (X,)dW,, 1€ [0,T],
0 0

t t
X,=xo+/ b(}@)dw/ (R )W, 1€ [0,T7,
0 n 0 n

where b and o are continuously differentiable functions whose derivatives being bounded and uniformly continuous.
In the 1990s, the limit distribution of the scaled error U™ = p~1/2 (X - X ) was studied by Jacod, Kurtz and Protter;
see Kurtz and Protter [3] or Jacod and Protter [2]. They proved that (W, U™) converges in law to (W, U) as n
tends to infinity, where U is the solution of the following SDE:

! ’ 4 _L t ’ i
= [ v oo - 22 [ e oo xoan,

with W being a standard Brownian motion independent of W.
The aim of our study is to extend their result to stochastic Volterra equations (SVE) which are represented by

X; :X0+‘/IK(1‘—s)b(XS)ds+/tK(t—s)O'(XS)dWS, te[0,T], (1)
0 0

(H-12

E) H € (0,1/2). Likewise in the case of SDEs, let X be the solution of the discretized SVE

where K(t) =
of (1), that is,

t t
X,=X0+/ K(t—s)b()?M)ds+/ K(t —5)o (X sy )dWy, ¢ € [0,T].
0 n 0 n

We denote by Cg the set of the continuous functions on [0, T'] vanishing at # = 0 and by Cg ! the set of the A-Holder
continuous functions with the same property. Then the following theorem is proved, which is our main result.

Theorem 1. Let € € (0, H). Then the process U™ = nH (X — X) stably converges in law in Cg’er to a process
U which is the unique continuous solution of the SVE

U = /t K(t = s)Us(b'(Xs)ds + o' (X5)dWs) — /t K(t - S)O_/(XS)U-(XS)dWS’ (2)
0 0

1
VI'(2H +2) sinntH

where W is a standard Brownian motion independent of W.

To prove Theorem 1, we start with the following decomposition:

t t t
U ~ /0 K(t—s)US(">(b’()?%)dﬁa’()?%)dwsﬂ /0 K (1—$)b" (X (s YAV W)+ /0 K(t—s)dV™, (3)

n

where U™, V(™ and V(" are defined as

UM =p(x=X), VO =nf [ (R = Xp))dW,, V™ = / 0 (X jns )AV™.
0 n 0 n

Remark that the difference between both sides of (3) converges to zero in Cg H=¢ for any € € (0, H) as n goes to
infinity. We have the limits of the quadratic variation and covariation of V™ and W.



Lemma 2. Forallt € [0,T],

ym ymy " / X,)%ds,
{ o TQH T2 smnd J, T

v wy, 22550,
in L1

Then Lemma 2 and the results of Jacod [ 1] lead us to specify the limit distribution of V" in Lemma 3.

Lemma 3. The process V"™ stably converges in law in Cg to a continuous process V of the following form:

2
WS’

V= ! / o(Xs)d
VI (2H +2)sinnH Jo

where W is a standard Brownian motion independent of W, namely, (W, W) = 0.

The convergence of V) will be considered in Lemma 4. Some outcomes of Kurtz and Protter [4], the general
results for the convergence of stochastic integrals in the Skorokhod topology, are used here.

Lemma 4. The process V" stably converges in law in Cg to the process

‘7:/ o’ (X;)dVs.
0

Regarding the stochastic integral of the fractional kernel K with respect to the process V(™ as a Riemann-

Liouville fractional derivative, we can use the continuity of the derivative from Cg”l into Cg’/l_(H_l/ ? for A >

1/2 — H as in Lemma 7; see Samko, Kilbas, and Marichev [5]. We additionally construct a useful criterion of
tightness in Cg 4 as in Theorem 8. The weak convergence in Cg of V(" i obtained in Lemma 3, and then, Lemma
4 and Corollary 9 imply that the last term of (3) converges in law in the appropriate space. Moreover, we can show
that the second integral of (3) tends weakly to zero in C%~€_ As a consequence, the tightness of U in Cg’H -
is obtained, and thus, together with the uniqueness of the solution U of (2), the desired weak convergence is shown.

Definition 5. Let f € Cg’/l and o = 1/2 — H. We define the integral operator J ¢ as

(TN @) =K@ f(1) - /O (f (@) = f()K' (1 = s)ds.

Proposition 6. LetY be a process such that the stochastic integral fot K (t —s)dYy is well defined. Then the integral
is almost surely represented by J < as

'/Ot K(t —s5)dYs = (JY)(2).

Lemma 7 (Samko, Kilbas, and Marichev [5]). The operator J < is bounded (continuous) from Cg”l into Cg”l_“.

Theorem 8. Let {Y"")},,cw be a sequence of Cg’“-valued random variables. IfE[||Y ™| C(()),ar] is bounded uniformly
in n, the sequence {Y "™}, ey is tight in Cg’ﬁfor 0<B<a

Corollary 9. Let Y™ be a stochastic process which converges to a process Y weakly in Cg as n goes to infinity.

If Y™ satisfies E[||Y ™ lco.o] < C for some C uniformly in n, it converges to V weakly in Cg’ﬁ for any positive
0
B <a.
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1 HE
REFEE T, WL 1 THID TG DOMEIZRIET 5 6 IRIC Bessel #@FE %, 6 X7t Bessel Bl #EE & KO, T O
Rk L M A N T .

§ {RJC Bessel 1, 1 IRITCILHORFETH D, § BHARED & & § IRt Brown EF) D i S D H#E & £ DIk
2N —89 5. § IRIC Bessel FEIZDWTIE, TN X THRA LIRS NTE D, [1] Tl 6 KT Bessel D
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Tab = Inf{r >0 | R*(r) = b}.
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3 IHER

a ¥ (a > 0) 22 DZ 1 THIOT b (b > a) IZEFET S § I Bessel i#fE %2, IR TIE 28D OFHETHES
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FE 1. 0<a<bid%. ZOLE, #iE Markov #ifg H*70 = {H* (1) }iepo,1) T, WRE AT L DHELET
5:0<s<t<1l&uaxyec(0,b)izxL,

b b
q§ )(O7aat7y)qé )(1 B ta y)
a5”(1,a)

P(Ha—>b(t) c dy) — P(Ra(t) c dy | Ta,b = 1) = dy,

P (Ha—>b(t) edy | H“‘”’(S) = aj) =P (R(t)edy | R*(s) =2,Tap = 1)

_n by’ -ty)

V(1 - s, )

H™Y = {H () }epo,1) &5 a HiFEDD b BIED § RIT Bessel 5|#i8%2 (Bessel house-moving) & & .5
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T, 0<ti <tp SLITHLT
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FE 2. 0<a<bldd ZDkZ,

(l D a
_>b|K (b+n) — H*7 (n0)

[0,1]
N AVASR
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(w1 B¢ wa)(s) :== {
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ZDY X, Bessel B[ #EBFED S ADDREARIZIRDEY TH 5.

T 3. 0<a<bid5. O0,1],R) LOEEOAFERREE FioxdL, X
b
B [F(HY)] :/O E[F( ool o @ Hﬁ;}b]P(HHb(t) edy) (O<t<l)

PRALS %, 7L i o L HYT RN TH B LT 5.

[0,4] [t,1]

BE, ZONADRREARZIIHT 2720121F, EH 2 O AGEPBE L RD.
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[3] TliE, 0 HFD 1 RITIEHE Brown B % [EIZ 54 1) 5 & Brownian meander IZ§9INEHT 2 Z &, BXT 0 H
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RATEET S :

0
(W1 @ wa)(s) 1= {W'(S)’ s €10,1]
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In this talk, we observe a concentration phenomenon on the empirical eigen-
value distribution (EED) of the principal submatrix in a random hermitian
matrix whose distribution is invariant under unitary conjugacy; for exam-
ple, this class includes GUE (Gaussian Unitary Ensemble) and Wishart
matrices. More precisely, if the EED of the whole matrix converges to
some deterministic probability measure m, then the difference of rescaled
EEDs of the whole matrix and of its principal submatrix concentrates at
the Rayleigh measure (in general, a Schwartz distribution) associated with
m by the Markov—Krein correspondence. For the proof, we use the mo-
ment method with Weingarten calculus and free probability. At some stage
of calculations, the proof requires a relation between the moments of the
Rayleigh measure and free cumulants of m. This formula is more or less
known, but we provide a different proof by observing a combinatorial struc-
ture of non-crossing partitions. This talk is based on joint works [3] with
Takahiro Hasebe in Hokkaido university.

AEETIEI =RV HERE R T VX ATV I — MTIFIDF/NMTH, ZDEEED
MOEFHFUIOVWTBEEL T 5. REABHEHIZESHELK Y OLLFEFSE (3] 1IcHD
. DUFCIEEEHONE Z HEICHEN T 5.

1. Introduction & Main Results

ANvENRT VX LIV I — ML T3, ETEOIZ=Z VT UN I L TULANUN
EANDBADRFLVE ZTAN IR VEBEAETHE 0D, —RIZT LI — MT
Bl Ay = (ai)N._y DFMTFN Ay = (a5)N4 b E7eT I — MIFNCR 2%, £he

MOEFEEKE ZMEES T (NG, {15 e R U & EROAFEADKD 3D

(Cauchy interlacing theorem):
Ai <7 < A1, (i=1,...,N —1).

Interlace 3 25 (& D —f%IZ Rayleigh #lFE) 1ZDW Tl Kerov IZ & % Markov—
Krein XL OZED K < FIH T W5 [5]. Kerov IXBH# T 225D —D & LT Wigner
179% Haar BEEATHNC DOWTHEZZ & 572 b D & 20 E/IMTHIDEHES A DR %
AR, HA XN HRE L 7L o T\ & F/MTA D [EF B 5746 2370 DATH D [EH 5 791
% 5 Markov—Krein X IiZ & o TR LN HERTMICIORL TV e WIS iR 215 7%
[4]. %7, Bufetov X Wigner, Wishart {T|DM] 27 7 22 DOWTRIKDAERDIL D AL
DI tZmRLEL]. BZHL INHDHRD S Goel-Yao ld =& ) HIZAZEL 5 >
ZLINI— MTAID 7 5 ZAZDOWTHEBROFRDIE D LD Z e 2 FAL 21BN
TROERZ RN L T2,

* T 060-0810 AbiEALIREALXAL 10 2578 8 T H AtiE KK EIEZ G EHIK
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FIE 1. Ay 22 =R VHERER S VX LTIV I — MTA, my % Ay ORERFEGED
i 5. mydd2HRAEm ICHRIGIRT 2L %, Ay L ZOIF/MTHI Ay 525
£ 51 % Rayleigh JIIJE 7y = SN 6y, — Z;V;ll 05, 1& m 72 5 Markov—Krein 24812 & -
TR 5415 Rayleigh Il 7 IZHERFHINR T 5.

AR 2. ZOFEHIZT VX LTHHEEICBIT B folkloreDFEDIELWIZ 2 RIFLAY
DEFRDFRIFE L TV DN BIEAZHI S B WER-— 725726 L.,

2. Overview of the Proof
BAGHEDOTRZEHL, T—X Y MelHTEX2RFTTERIPELWVWI & ZFE
BHL 7=, FRIRODEHITHE - 72 DX Weingarten calculus IZBIF 2 RXRDRNAKTH %:
E o TI'O-[AlUNBlUN*, ceey AkUNBkUN*]
= > Trg[Ar, ... A Tro,[By,. .., By Wg(os, N),

01,02,03€6

010203=0

ZIT, AL B (i=1,...,k)IZN x Nif¥ITo € &,.
ZORRZEHWTEREZED TV ERDOMERP IR SN S:

FIE 3. m 2ERWPE T r % Z D Rayleigh PIEE T 2. Dk %

Mi(r) = > (k+1—|p)R,(m)

pENC(k)

DI DILD. T T, NCk)IE{L,... .k} DIEREDEITR,(m) dmOEHF 245
FTH5.
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Hausdorff dimension of collision times in
one-dimensional log-gases

Sergio Andraus

The University of Tokyo

Joint work with Nicole Hufnagel, TU Dortmund

We consider the interacting particle systems in one dimension described by Dyson’s model and the
Wishart-Laguerre processes, in which there is a fixed number of particles and the coupling constant of
interaction 3 is less than unity. In this case, it is well-known that collisions occur between the particles
almost surely in the sense that the first collision time is finite with probability one, whereas the first
collision time is almost surely infinite when S is greater than or equal to one [D]. In spite of this fact,
the set of collision times is known to have Lebesgue measure zero [CL], which means that the stochastic
differential equations that describe these systems have unique strong solutions in spite of the fact that
their drift terms diverge whenever a collision occurs.

A puzzling aspect of the collision times set is that, for the Dyson model of two particles, one can show
that collisions occur infinitely often after they happen for the first time [K]. This is because the two-
particle case can be reduced to the well-known Bessel process, and the set of collision times of the former
corresponds to the returning times to the origin of the latter. It turns out that these characteristics are
explained by the fact that the self-similarity enjoyed by the Bessel processes implies that its set of return
times to the origin has fractal structure [LX]. In this work, we extend this analysis to an arbitrary and
fixed number of particles in both the Dyson model and the Wishart Laguerre processes, and we identify the
Hausdorff dimension of collision times as an appropriate object to characterize this behavior by extending
the techniques of [LX] to non-compact returning sets.

This work is supported by JSPS Kakenhi grant number 19K14617.
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Mixing time and simulated annealing for the stochastic cellular automata,
and beyond

Akira Sakail

There are many real-life situations where we must choose one option among extremely
many, as quickly and optimally as possible. Such combinatorial optimization problems are
ubiquitous and possibly quite hard to solve them fast. One approach to find an optimal
solution to a given problem is to translate it into an Ising Hamiltonian on a finite graph
G = (V, E) with no multi- or self-edges and find a ground state that corresponds to an
optimal solution.

Given a system of spin-spin couplings J = {J, }oyrer (With Jo, =0 if {z,y} ¢ F)
and external magnetic fields h = {h,},cv, the Ising Hamiltonian of a spin configuration
0 = {0.}sev € Q= {£1}V is defined as

o) = —% Z Sy yOz0y — Z heoy. (1)

z,yeVvV zeV

Let GS = argmingcq H (o), which is the set of spin configurations where the Hamiltonian
attains its minimum value. A standard method to find an element from GS is to use a
Markov chain Monte Carlo (MCMC) to sample the Gibbs distribution 7§ (o) oc e=##()
at the inverse temperature § > 0, which attains its highest peaks on GS. There are several
MCMCs that can generate the Gibbs distribution as the equilibrium distribution. One of
them is the Glauber dynamics, which is defined by the transition probability

> 1 wc(o.:n) a1 e—ﬁﬁm(a)ax
Pg(a,a )= ——5 A = _ ’ (2)
VIwg(o) +wg(o®)  |[V]2cosh(Bh,. (o))

where (6%), = (=1)%wvo, and h,(o) = > yev Jeyoy + ha; if the Hamming distance be-
tween o and 7 is bigger than 1, PﬁG (o, 7) is defined to be zero. Since Pg’ is aperiodic,
irreducible and reversible with respect to 75, the Glauber dynamics has a unique equilib-
rium distribution wg. However, since the number of spin-flips per update is at most one,
it is potentially slow and may not be so useful in practice. It has been longed for a way
to update many spins at once, independently of each other.

One such MCMC is in a particular class of probabilistic cellular automata [1, 3]. Since
the abbreviation PCA has long been used for principal component analysis in statistics,
we would rather call it the stochastic cellular automata (SCA). It is defined by the doubled
Hamiltonian with the pinning parameters q = {qm}zeV as

I:I(a, T) = ! JpO2T, he(og + T2) (202Ts
5 yO0aTy —

z,yeV zEV zEV
:——Z 0) + G0z Tx——Zh o (3)
eV zeV
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Let
—BH(o,7) B) Bheos 7
wiy () = Do en S 263 cosh (3(7ul@) + ). @
T xeV

and define the SCA transition probability as

e ﬁH(U T ez (hx(a)+QxUT)Tw

)
. 5
(o) H 2cosh (5)

zeV (U> + qZO—I'))

PSCA( )

SCA

Because of this product form, all spins are updated at once, independently of each other.
Since H is symmetric, P5} is reversible with respect to WEC(IA(O') oc wi (o), which is
different from the Gibbs distribution, so we cannot naively use it to search for an element
in GS. However, since H(o, o) = H(O') — 2> eV U the total-variation distance between

2
Tha and 7§ tends to zero as mingey ¢, T 0o. We take mingey ¢, large enough (e.g., = \/2,

where A is a half of the largest eigenvalue of the matrix [—.J,,]vxyv) to ensure that H
attains its minimum values on the diagonal entries:

min H(o,7) = min H(o, o), argminH (o, o) = GS. (6)

o,T7eN oge ocQ
At the symposium, I will explain the following results from the joint paper [2]:

(i) If the temperature is sufficiently high (depending only on J and q), the mixing time
for the time-homogeneous SCA is at most of order log |V, which is much smaller
than that for the Glauber dynamics under zero magnetic field.

(i) If the temperature drops in time as 3, o logn, then the time-inhomogeneous SCA
weakly converges to the uniform distribution 75 on GS. The sequence {8,}7°, is a
standard cooling schedule in simulated annealing applied to single-spin dynamics.

I will also show some numerical results on the so-called e-SCA, which is introduce to try
to improve performance of the SCA, and explain the current status of the ongoing joint
work with Fukushima-Kimura, Kamijima, Kawamoto, Kawamura and Noda.

References

[1] P. Dai Pra, B. Scoppola and E. Scoppola. Sampling from a Gibbs measure with pair
interaction by means of PCA. J. Stat. Phys., 149 (2012): 722-737.

[2] B.H. Fukushima-Kimura, S. Handa, K. Kamakura, Y. Kamijima and A. Sakai. Mix-
ing time and simulated annealing for the stochastic cellular automata. Submitted.
arXiv:2007.11287

[3] B. Scoppola and A. Troiani. Gaussian mean field lattice gas. J. Stat. Phys., 170
(2018): 1161-1176.



KPZ 7L ¥ AR 7 = L 3 4 > s
EBRSKEXAFIFZRIZEBT7 Ta—F

Sh HE (FIHEKRY), Matteo Mucciconi (University of Warwick), fEAS 85 (R TERY)

MEERAMERN FROFICITERICE FOESHEICE#E L 2B EEELZ RO 0nH D, Thr
MHAS2 Lo THTOMESLA L Y FODMEBOEKEZRD 2L Z N TES. DL RS
WEFEEACITON, AIFEHER (integrable probability) & MHEN 2 X 51Tk o7z, ARFHTIX, Matteo
Mucciconi X (University of Warwick) & A AR (R THEKRYE) & OHFEFRIC X o TR o Nzl
TEHRICRE 3 2 BOL DOAEER Bl IOV TBEHEL T 5.

PIFT, a;,b5,q€10,1),i=1,--- ,\N,j=1,--- M LPZIHEKDOESL T 5. %7 ¢Pochhammer
LS Z (a;q)n = [17_1(1 = ag" ™), (a50)00 =172, (1 —ag"™") TRT.

F3P Lo 2 BHOMRAKEEZEANT 5.
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Myps(N) = Y qlsypar, ... an)sn,(br, - bar) / Zps
pEP
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3] BIZIE 1 ZEFR LD Myw () THHT 27 YR LRDE 1 OFE— e L, X1(M) % g-pushTASEP
XN DR T D N EHOMHEAEHERKN FROEHOK T ORL M 2B T 26EL TS, ZOL X
L X(M), DFD & Xi(M) BASHETH 22 e o TVS. X6 ICHRED RIS HEE O
T, Bethe [REIFDEFAETRDOFELHOWTHAKPZ €7 MIBT 217N HHS 221272 o T
203, 7D MR R 2 BT 5 I ATHIAME OMERGRIVER D X< DS R WK TH o 7.

ftl 5 AR Schur FIEEIEYS 725 VXA 7 M X o TITAIRAERE E 2 Z e A 2] Kk o TRE R
TW5. AERBEAH LI AV ERIBR T2 2 dHLATWS [1].

RHOFHEREIUT O BYTHD, Lo 2 00MEHEOMBEERLTVS.

EIE 3. ([4,5]) A\, p &2 ZNEN g- Whittaker TIEE, JERAK) Schur PIEETHMS 2 7 XL 80EIE L A,
ZENETNDE—WIT T 5. Ty ZOMP(x =n) = (¢; 9)q"/(¢; Q)n, Y1 € Z>o WD TEREL &5
5. ZD&E Vne Zzo L:ﬂL“C

Pl +x <n) =P(A <n)
DI D ALD.

FoEM 31, KPZETF AL EBRIEEY 2L 3 4 v B oBGREHRIICE LTV, ZOBFRIC
X o TKPZ ETNMIEHNBTHIAMEEDORENERIEZEEH 7 2V I A I2H B e hnBaxhs. Lo
EH 3 DD 72912, TAIXHAEDOERNZ 1IN I MBICEE 7 T r—F2L 3.



EIE 4. ([5) 1R 1S T
(V,W, k,v) L (P,Q)

DMFES 5. RELAED (P,Q) ZR UKL & OEFRERORT 2R L, KAD (V,W,k,v) ZLTO X
ITERIND.

o (V,W) : [A UIEZ D vertically strict tableaux(VST) ®X7
ok = (K1, k) €EZEGTHY, LD (VW) DEE 1 & LT = iy BOE K > kip1 2ATTHOD.
evcP.

LB n D VST ik, Y 7B p iCBFEB A>T DT, ZASDBFEI T HAICHFERT 2D
DZrTH5. (LLTOR5ZH)

LD (VW k,v) & (P,Q) &Z 21 g-Whittaker I & B AR Schur #IE DFH A HEERITIIGY) T
HHEH AP SELIER 3 NES.

Bl 5. = (4,3,1) ® VST D

212 3\
53

w|l\3 —

EH A4 DOXIL TIEZDFEERIT TR, ZRSK X4 F I 7 AL MINZEBFEEBRDRT DR E
ERTDLIICE-oTERNR T LITY XnbB5NSE. (LITOH 6 SR, )

Bl 6. TITXoTHIZIZMATD &S M IieHiFEons.

212 21513 4 3
3 3 11315 212
2 3

73 X LDORITIE, EERSK XA F I 7 ZADFRFOMNIMENEE R E| 2 R- 30, Zoxtii,
EFHICEETE 7Y 774 > 27 U XAZ L Demazure 7 UV A Z NI K> THLNITK S.
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NEW CHARACTERIZATION OF THE WEAK DISORDER PHASE OF
DIRECTED POLYMERS IN BOUNDED RANDOM ENVIRONMENTS

STEFAN JUNK

AIMR, Tohoku University

ABSTRACT. We show that the weak disorder phase for the directed polymer model in
a random environment is characterized by the integrability of the running supremum
sup,,ey W) of the associated martingale (W2),en. If the environment is bounded, we
also show that (W2),en is LP-bounded in the whole weak disorder phase, for some
p > 1. The argument generalizes to non-negative martingales with a certain product
structure.

1. BACKGROUND

The directed polymer model was introduced in the physics literature to describe the folding
of long molecule chains in a solution with random impurities. Mathematically, it is a
model for random paths, called polymers, that are attracted or repulsed by a space-time
random environment with a parameter 5 > 0, called inverse temperature, governing the
strength of the interaction. See [2] for a recent survey of the model.

We focus on the high temperature phase, where it is known that the influence of the
disorder disappears asymptotically and that the long-term behavior is diffusive. This
weak disorder phase is characterized by whether an associated martingale, (W?),cy, is
uniformly integrable , which is known to hold for small 3 if the spatial dimension is
at least three.

This martingale contains a lot of information about the long-term behavior of the poly-
mers, but (UI) is difficult to analyze in practice. Namely, (UI) means that

sup E[p(W/)] < oo (UD)
for some convex function ¢ with lim, . el@) _ 0o, but a priéri the growth of @ may
be extremly slow. Much research has therefore focused on a very high temperature phase,
characterized by L?-boundedness of (W}#),en, which is however known [I] to be a strictly
stronger condition than (UI).

2. RESuLT

We show [5] Theorem 1.1] that in the whole weak disorder phase, the martingale (W?),en
satisfies

E[supr] < 00, (1)
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which is a strictly stronger condition than (UI). In the case of a bounded environment,
we use (1) to show that (W/),cn is LP-bounded [5] Theorem 1.1], for some p = p(f) > 1,
i.e., we show that holds with ¢(x) = «P.

3. COMMENTS

3.1. Integrability of the running maximum. We first recall an illustrative example
[6) Chapter 11, Exercise 3.15] for a uniformly integrable martingale that does not satisfy
, and then discuss why the same is not possible for the martingale (W?),cy associated
to the directed polymer model. The reason is that (W/?),cy has a certain “product
structure”, i.e.,

WP, = WEWE, 2)

where /V[Zfi is a mixture of copies of W/ (each copy is independent of W#). This structure
has been noted before in the context of branching random walks or of the directed polymer
on trees, but in those cases W/ is a mixture of independent copies of W2,

3.2. LP-boundedness. Here, we recall [3| that (1) already implies that (UI) holds with
o(z) = zlog™(x) for martingales with bounded increments, which can be seen as a
partial converse to Doob’s maximal inequality in the case p = 1. The improvement to
LP-boundedness follows by a variation of this general argument, together with the product
structure that is specific to the directed polymer model.

3.3. Applications. Our result gives a new tool to analyse the long-term behavior of the
directed polymer model in the high temperature phase. Some consequences are described
in the follow-up work [4].
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Spectral dimension of simple random walk
on a long-range percolation cluster

fery B GRUESR“AEBHARHTIIFET)

Joint work with V.H. Can (National Univ. of Singapore) and D.A. Croydon (RIMS)
https://arxiv.org/abs/2111.00718

TVIRRTTT EDT VI LT =T DARY FIVRILOMGHTIE, A7 ARID B4 O,

T VI LT x— 7 IR OTHRED S B HAICIIESHEA TV S (of. [3]) ., AF#EHTIE, [5]IC
il Iz, VLT T7 DTV LT+ — 7 DEMED on-digagonal lower bound D —fi%
i X O, long-range percolation ED 7 ¥ ¥ A7 4 — 7 OBWETHET~D IS 2B % T O WF
JER R 2 WG T 5,

1. Long-range percolation ED > % L7+ —2 OEBZER
Z% E® long-range percolation T, nearest-neighbour edges IFE»N> T3 bDEFEZ 5,
Thbb, @y 2 z,ycZid (ERX1DAVTIIVAT) BhRoTOBHERE L,

Gy=1iflz—y|l=1, calze—y| 7 <y <cle—yl Fif|lz—yl>1

9% (772U s >d)., [JERE : i long-range percolation 1% ¢, , = 1 — exp(—|z — y|™%) T
HHD, Fex DRERIZEDORED S ETRY D, | TOETIVELTTIE LRP(d,s) £RL.
BEDZ7 vy hx A% P, 2D ¥% E TET,
(X)ien % LRP(d, s) LOHHIZ v ¥ L7+ —2 L L, ZOEBEMUTTED 5,
P (Xi=y)
degg(y)
22T, PYUE Xg =1 & L7 X ®Dquenched law T, degg(y) &y EEEVZRY FOBET 2,

Theorem 1 (Quenched bounds)
(a) d>1, s € (d,min{d + 2,2d}) DK, P-a.s. TTHIRKEWV t € NITDOWTLAFDELD 7D,

Py (z,y) = . VayeZd teN.

e 5 _ @ _d 5
et == (logt) ™™ < p3i(p, p) < cot” 54 (logt)™ .
(b)) d=1, s>2 Dk, P-a.s. TTHREWV Lt e NIZOWTLATAIRD 2D,
est™2 < pSi(p.p) < eat2.

(Lo DfHiiiz, d=1,s=2TbHEhHED,)
(c)d>2,5>d+2DH, P-a.s. THFIREW t € NITDWTL TR Y 32D,

cst 2 (logt) ™ < pSi(p, p) < cst ™ (logt)’™.

Theorem 2 (Annealed bounds)
(a) d>1, s € (d, min{d + 2,2d}) DK, TTRE t € NIZDOWTL TR Y 32D,

ert™ 1 < B (p§(p.p) < ot (log)™.
(b)d>2,s=d+2DK, T RKEVteNIZDWTAFED 7D,
cst™2 (logt) ™™ < E (p§i(p,p)) < cat 2.
(¢)d>1, s>min{d+2,2d} DI, TTKRE WVt e NIZOWTLUTAEDIZD,
cst 2 <E(pS(p.p)) < cot t.
(B2 o DfEfiiZ, d=1, s=2THRHID,)



IS DEMOFEO—E (KR L6 DfHilin% <) 1, §TIC[1, 2, 4 FOHEITIE T
LT3, Ez, —ffl nearest-neighbour edges 238035 T\ 3 &0 ) REZED T IZAEHH
T&E 5%, bl IFEHEETHAT 5,

DUN ORFR2IEAE T B K, Z 11 Z 41 quenched, annealed D A X7 F ILRIG & WS,

2log p§, 2log E (pS.(p,
d9(d, s) := —tlim 40g1p2gt§,0, p)’ P—as, d?d,s):=— tlim o8 1(};2;('0 ) .
—00 o — Y

Corollary 1 (Quenched and annealed spectral dimension)

(a) d>1, s € (d,min{d + 2,2d}) DK, P-a.s. TLAFDELD LD,
2d

s—d’

(b)) d>1, s>min{d+2,2d} £7:13 d>2, s=d+2 DK, P-a.s. T 2D,
d9(d, s) = dD(d,s) = d.
0ed=1,5=2DLIATAXRY P NVRILBANHERLIC L > T B 2 EDTN 50, Z I TDANR

7 bARItE (BIROFES &DT) 3o Tk,

d(d,s) = d(d,s) =

2. %D on-diagonal lower bound

G RIS T Y S 0057 pe G L L. T2 8 haflblE 25 7 O (G, pn)
D3 (G, p) I Benjamini-Schramm JURT % & 5, [Thbb, p, 1 G, DKL S uniform 12
MO, fEED k> 11220 T G, WD p, FULERE kE DBRDS G WD p HILERE k DBRIC I
HI2L9%, |G=(V,E),Gp=(Vo,E,) EBE, m, % G, LOBHT V5 L7 5 — 7 DRE
W, 75 (e) = max {m, (W) : [W| < ¢|V,,|} £ T 5,

(A1) o > 0557t L THEED n € NizowT B (L) < s h o,

(A2) fEED e > 01N L, n D3RS FHIUSE (n5(6)?) < as IR D 32,

(A3) 0, ++,03,7 >0 & X:(0,00) — [1,00) DIFFAEL T, WD D D, fEEDt € NI
DWT, ng =ng(t) € NDBFELEL, n > ng I22WT 1 — \(t)% BLEDOERT disjoint
() C Vi & Ay C Y PEFEELTUT 22T 1 () max—y, x| < atYA(t)%,

(b) 320y ma(Ai) 21— aA(t) ™%, (¢) 34y capg, (Ai) < 2a] Ealt ™' A() 7.
Proposition 1 (A1),(A2), (A3) ZRET 5,

SgASaASs

(a) S22, Ae')™ <oo kL. e SANE)/Aet) forallel <t <et! and alli € N &
T2, ZOK, P-as. THFHIKRE Wt € NIZOWTUTARD 2o,
G C2
P3P, p) 2 EYN(2)0112(02103) °
SoASaAS3

(D) At) =X, 1=Co)y, 2 >0&T 5, T c(a, ) > 0 DFAEL TUUFAR D 2D,

E (55 (p, o) > 2220

. VteN.
7
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Construction of a canonical p-energy on the
Sierpiniski carpet

Ryosuke Shimizu (Kyoto University)*

This talk will present the main results of [6], where a scaling limit &, of discrete p-energies
on a series of finite graphs approximating the planar Sierpinski carpet (SC: see Figure 1) and an
associated (1, p)-“Sobolev” space ¥, are established for p > dimarc(SC). Here dimarc(SC)
is the Ahlfors regular conformal dimension of the SC, which is well-studied in “quasiconformal
geometry” (cf. [2]). Its definition is not important to follow our results.

To give concrete descriptions, we recall the definition of the SC. Let S = {1,...,8} and let
{F;}cs be a family of 3~ !-similitudes on R? illustrated in Figure 1 (each p; in Figure I is the fixed
point of ;). Then the SC is a unique non-empty compact subset K of R? such that | ;.5 Fi(K) =
K. We always consider the Sierpiniski carpet as a metric measure space (K, d, u), where
d is the Euclidean metric and y is the normalized log 8/log 3-dimensional Hausdorff measure
(a := log 8/log 3 is the Hausdorff dimension of (K, d)). Let {G,},>1 be a series of finite graphs
approximating SC whose vertex set is W,, :== {w;---w, | w; € Sforeachi € {1,...,n}} and
edge setis defined by E,, == {(v,w) | v,w € W,, and K, NK,, # 0}, where F,, .= F), 0---0F,,
and K,, = F,,(K) forw = wj ---w, € W,. Then discrete p-energy 8,?" on G, is defined by

1

e (=5 D, IMuf ()= Muf ()17

(v.w)eE,

where M,, f(w) := m wa fdufor f e LP(K, ). Our p-energy &, is obtained as a scaling

limit of 85”. An appropriate scaling constant is determined by behaviors of 7%1(,") given by
R;” = (inf{&5" (M,.f) | Myf = 0 on the “left” of G, and M, f = 1 on the “right” of Gn})_l.

By using p-combinatorial modulus, which is a fundamental tool in “quasiconformal geometry”,
Bourdon and Kleiner [3] proved that there exists p, > 0 such that Ré”) = p), forany n € N. An
important fact is that p > dimarc (K, ) if and only if p,, > 1 by the result of Kigami [4].

Our first main result provides (1, p)-“Sobolev” space ¥, on the SC:

Theorem 1. Assume that p > dimarc (K, d). A norm space (7, || - ||7.r-p), which is defined by

To = {f e L7 (K.

su;l) Jos 8[(,;”(Mnf) < oo},
nz

1/p
and ||f||7_—p = |fllr + (supnzl Pp 85” (Mnf)) , is a reflexive and separable Banach space.

Moreover, ¥, is continuously embedded in the Holder space COBr=2)IP on K, where By =
log (8p,)/log 3. Furthermore, ¥, is dense in C(K) with respect to the sup norm.

Ryosuke Shimizu was supported in part by JSPS KAKENHI Grant Number JP20J2020
*Email: r.shimizu@acs.i.kyoto-u.ac.jp



This Holder embedding result is powerful and relies on the assumption: p > dimarc (K, d).
Indeed, we can regard this embedding result as a generalization of the classical Sobolev em-
bedding of WP (RN) for p > N.

Our second main result provides a “canonical” p-energy &, on the SC:

Theorem 2. Assume that p > dimarc (K, d). Then there exists a functional &, : F, — [0, o)
such that &, ( YYP is a semi-norm, a norm || - ||8p =l +Ep( VP is equivalent to || - ||7_—p,
and the Banach space (7, || - || Sp) is uniformly convex. Furthermore, (E,,F,) satisfies the
following conditions:

(@) 1x € Fp, and, for f € F,, E,(f) = 0 if and only if f is constant. Furthermore,
Ey(f+alg)=8E,(f) forany f € F, and a € R;

(b) (Markov property) for every f € ¥, and ¢: R — R with Lip(¢) < 1, it follows that
pofeFpand&y(po f) < E(f);

(c) (Symmetry) for every f € ¥, and isometry T : R? — R? with T(K) = K, it follows that
foT eF,and &,(f oT) =E,(f);

(d) (Self-similarity) it holds that ¥, = {f € C(K) | f o F; € ¥, foralli € S} and E,(f) =
pp Sies Ep(f 0 Fy) for every f € F.

I will also give an associated energy measure ,u? f> (dx) on the SC, which plays the roles of

the measure |V f|” dx on RV.

p7 Pe D5
Fr; | Fs | Fs

Dse F8 F4 P4
Fi | Fy | F3

p1 132 P3

Figure 1: The planar Sierpiniski carpet
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BV FUNCTIONS AND SETS OF FINITE PERIMETER ON THE
CONFIGURATION SPACE

KOHEI SUZUKI (Bielefeld University)

ABSTRACT

A function of bounded variation (BV function) in the Euclidean space R™ is defined
as an integrable function whose weak partial derivative is a (signed) Radon measure
with finite total variation. A measurable subset A in R™ is called a set of finite
perimeter, or Caccioppoli set if the indicator function x4 on A is a BV function.

The theory of BV functions provides the study of ‘measure-theoretic differen-
tiable functions’ and it has been one of the main subjects in geometric measure
theory to study properties of singular sets arising in various geometric and analytic
contexts, e.g., the theory of minimal surfaces, the structure theory of perimeters,
and furthermore, it plays a significant role for stochastic analysis with singular
boundaries.

In this talk, we explore the theory of BV functions on the configuration space
T (R™) over the Euclidean space R™ equipped with the Poisson measure 7. As the
space T(R") is not locally compact and the Poisson measure 7 does not support the
volume doubling property with any reasonable choice of distance functions, there is
no chance to apply the existing general theory for BV functions on doubling spaces.
In particular, the concept of finite-codimensional measures needs to be rigorously
understood in T(R™). Furthermore, due to the lack of the local compactness, the
Riesz—Markov—Kakutani representation theorem is not available, which affects the
construction of perimeter measures supporting the GauB—Green formula.

We start by introducing the concept of the m-codimensional Poisson measure
p™ on T(R™), which is formally written as ‘(co —m)-dimenisonal Poisson measure’.
We then construct p™ by using the finite-particle approximation. Based on the
measure p"", we develop the theory of BV functions:

e we prove Cap, ,(A) =0 == p™(A) = 0 provided ap > m. This is an
extension of the well-known relation between («, p)-Bessel capacities and
finite-codimensional Hausdorff measures on R™ to the case T(R");

e we define BV functions in terms of the variational approach, the relaxation
approach, and the semigroup approach, and prove the equivalence of them.

e we construct the total variation measures and the perimeter measures |Dx 4|
on a Caccioppoli set A, and prove the co-area formula;

e we introduce a measure-theoretic boundary 0*A (reduced boundary) for a
Caccioppoli set A, and prove the De Giorigi’s theorem:

IDxal = p'lo- a3
e we prove the Gaufi—Green formula.

If time allows, we also discuss applications of BV theory to stochastic analysis of
infinite particle systems.

This talk is based on the joint work with Elia Brué (Institute for Advanced
Study, Princeton).



Renormalization of the stochastic nonlinear heat and wave
equations driven by subordinate cylindrical Brownian noises

Hirotatsu Nagoji (Kyoto University)

We consider the following stochastic nonlinear heat and wave equations on two-dimensional
torus T? = (R/27Z)?:
Lu = +uf + 9, (1)

where k > 2, L=09; — A or 8,52 — A and W, denotes a “subordinate cylindrical Brownian motion”
which we define as follows: Let W be a cylindrical Brownian motion on L?(T?), formally expressed

by Fourier expansion
W(t)=_ Bty
lez?

with independent and identically distributed sequence of standard Brownian motions {5l}leZ27 and
let L be R -valued stochastic process with nondecreasing and cadlag sample paths. We also assume
that L is independent of {3'},cz2.Then, we define Wy, by

Wi(t) = W(L(2)).

The main reason of considering such a time-change is that if L is Lévy process, Wy, also becomes a
Lévy process and some important Lévy processes are constructed by this “subordination” procedure.

If L(t) = t, 0;Wp, is nothing but a space-time white noise. Stochastic heat equation (1) with
an additive space-time white noise is studied in [1]. Stochastic wave equation (1) is also considered
in [2] by a similar approach. We generalize these settings and study both heat and wave equations
driven by subordinate cylindrical Brownian noise.

It is expected that a solution u of (1) is a distribution-valued stochastic process and the nonlinear
term u* does not make sense. We overcome this difficulty by “renormalization” similarly to [1].

1. Let {Pn}nen be mollifier and consider the equation with regularized noise Py0,W7, instead
of &gWL.

2. Then, we replace the nonlinear term u’f\, by

u%k = Hyp(un;cn)

with suitable sequence ¢ where Hy(x; ¢) is kth Hermite polynomial. (For example, Ha(z,c) =
2?2 — ¢, Hs3(z,c) = 2° — 3cx.)

Thanks to this renormalization procedure, we can get a nontrivial limit u := limuy and we define
by u the solution of renormalized equation:

Lu = +u®* + 9, W, (2)

In our setting, we have to choose cy to be a L-measurable R,-valued stochastic process which
diverges in some sense, while in [1] and [2], ¢y can be chosen as a diverging constant. Indeed, we
define it by conditional expectation:

CN = E [\I/N(t)z‘]:L]



where FL is g-algebra generated by L and ¥y is the solution of
LYy = PyoW, . (3)

To solve (2), we define the shifted solution vy = uny — ¥ and expand u%k as

k
k
i =3 ())oh e

=0
where \I'%k = Hp(Un;cn). We have the following theorem on the convergence of \Il%k.

Theorem 1. Let k € N and let U be the solution of (3) with initial condition 0.

1. Let L =0, — A. Then, V¥ converges in L%([O,T]; Bi£0o(T?)) as N — oo almost surely for
any € > 0,7 > 0.

2. Let L = 0} — A. Then, USF converges in C([0,T); B3 oo (T?)) as N — oo almost surely for
any € > 0,7 > 0.

In the case of heat equation, we cannot expect the temporal continuity of W since we are dealing
with the equation driven by jump-type noise. So we discuss on LP-space with respect to time
variable t. Note that in the case of k > 3, we have to consider LP-space for 0 < p < 1 since % < 1.
We also note that it is well-known that if L(t) = ¢, US¥ converges to some ¥ in C([0, T7; B )
i.e. ¥OF has time-continuity. In the case of wave equation, however, we can get the continuity in
time, although the noise is jump-type.

By applying Theorem 1, we can show local-in-time well-posedness of singular SPDE (2).

Theorem 2. 1. Let L =0 — A and k = 2. Then, the renormalized heat equation (2) is locally
well-posed.

2. Let L = 0? — A. Then, for any integer k > 2, the renormalized wave equation (2) is locally
well-posed.

In the case of heat equation, we have not been able to deal with the case k > 3 due to the lack
of time-integrability of ¥ (See Theorem 1). On the other hand, in the case of wave equation, we
could show local well-posedness for all £ > 2. Indeed, the same fixed-point argument as in [2] is
applicable to our situation in view of the time-continuity of ¥<*.
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FORWARD DRIFT-LESS SDES AND BACKWARD SDES

TR #n

1. INTRODUCTION

L1, KBHNGBROFEEE—EME. bW 2%, Forward-Backward Stochastic Differential Equations (FBSDEs)
DRI fROBUIRIFE DR EZ AT 72 28Il T, SIREDHV >R E LTI A EiE
RIS 2 4 — 2 F VBB RRICAER T RITIC R > T 225 L 2556 Td (RIS Z QB0 L 75
EDRBDGEITEBWT) ZOHEE —RIEZR L% [3]. S SICNRROfFERAISNTED, ZDIRD
BbED k) %HZHH ) Decoupling filed" 2 HFEADEKRICTE & LIAATH—NE 7 70 —F 2 HIY
L7 4% EH 5.

1.2. BILTBRE. TR RODIILHZEEZEZLL). TEDe>0%ED, RODLIBRNTRXA=FEHDOD—RK
JLD FBSDE ## 2 %,

Xe(r) =X (t) + /TYE(S) ds + /7" €Y (s)dW (s)
(1) tT ¢
Y.(r) = X(T) —/ Ze(s)dW(s), rel[t,T], e€>0.

CDRDEAEIE [4] I X > THRIES N T 32 Z2 L TCAL-F L7 724 dB(s) = dW(s) — e tds 2V %
& DUT @ drift-less Forward and Backward Stochastic Differential Equation 1272 %,

X(r)y=z+ /tri/;(s)dB(s)

Y.(r) = X(T) —I—/ (=€) Zc(s)ds +/ Z.(s)dB(s), reltT].

COMMNT e ZEQIED T2 EZICER IS Z EICHIERDH S, EIADBERNIZe=0E LZbDITHIET
% Z L%z 9 % FBSDE (%

zo(r) =z + /TYO(S) ds
(2) R
Yo(r) = Xo(T) —/ Zo(s)dW (s), rel[t,T],

ThYH, ZDRPTNZRERIX
r T
(Xo,Yo,Zo)(r):(1_(T_t)x,1_(T_t)x,O>, 1-T<t<r<T.

L7 CTHIAED 2 > 06 FET 2L DRSS T 5N/ £ ZATEBALBERLTLEY. Ao
FELTHHMLTLE), ZLTCae=0ICRY HHLRMAICR D,

CO—RT2E2FE50WHIIOVT, 2 =00 & ELTRBNLREEZEZTHWEDTIE W, ? ERG%
MAZTHDL, 006 DHFEIIREDY 01272 2 O TREIZHIHED 53 S ATh7R, E2AB3PLTH 0008
NHERFYV 73D 5BOREMEZEEZHLTCLES TR TCINLGL LT LE SR EEZTASL, T5E
BALT 2 WEPROFEDEE LTI R > TV EDTIE R L W) FERIH <,

LOER 0 X SRt T oML DR XT EECIEIRTS, ZLT, (tz) DRTICHIET 2% 510 E SDE Off
Y = Y5® |22 T decoupling field & 1F YH®(t) = u(t,z) 224 7% filtration ZERH$ 5 2 & T/ 7,
2B o N TR REEMWC F=F=Fand F(y) = —ey2 THZ I 0 obhs, JHUMHEED T >0 THARTHY,
5 DD Theorem 5.2 @ (iii) ICEIF % F(1) <0 & F(0) = 0 A7z N5, L7H3> T Theorem 7.3 76 —RIEEHFENF A 5.
1




1.3. FER(biE & RBITEE. REDSBLL Z0EAIC O LTI~V v =D X ) Ic XK B ShK
SAINEIED D %, FEBRIC FBSDE 128\ T H Ry RO BERHIEFICEICHRE L T, S & ICHERm 72
iz 2 2 T, ROFELE B OV THRRKED LoHIn w5, Bz 1), #2L, ZH
TEBURBUARAF T 2 LERIBINNCH 5. R LSRHDTBEADBR» S /UL Z 2525 2 L3 X D EMAIE
MG 2wy T2 ) 2 Licz b, ZIUIREICE L CRFDEARIKRE W, L LEdIS Z 23Aik
BEOaEZ 0 TORBBRICH V., ol 3213 Z 3IIEICEET 2 80 DR & 15 R T implicit
ICERRINDEDTVDW B MREDRBICED 2. ZOTATIE 2] 2 KU D ICIERIE 7 Fokker-Planck %»
5 ST A RAE 72 R B E FfD SDEs ~D A3 L ) Blih S FAMEA TV 5,

FBSDEs DFEHAICER 2 £ Z DRI RICE W TRERERDOO EDTH 255D 7 7u—F [4 T L
DOHlix 2 DIEREEZ RAEIEKEL T0E D, BILL T BRTFIREZ Sz, F R 2R O A5E
JETEBFHETHY, I Fromm DHEO—BILIFE L VW& 5 IcEBbh 3

—75, MR TRA TR L BEDIR 2T VIC OB T—RITDBH AL S Feller D5 E L TIRHICEEL
CHISNTVS, ZRIDOBEICE W TRED 720 6 0 THIUSIHAILIHOE# D &, BT 2856 TH-T
SIEBFET 2 X ) XY OESFUIKREO T SN Tw s, AR TIEZO L) kiR iticd 2 FE 2=
JHIZ L C, FBSDE DOff#DREEICH LT HIBMMT 2850 X - TR 23k A7z, 2 L TUU T D X 9 Rl
WL FERBh s THlEE T 5,

2. DRIFT-LESS FORWARD AND BACKWARD SDES
AW TIIRD & I RATHEEED FY 7 PR WEAZIZOWTEZ 5.

X(r) =X(1) +/tTU(X(s),Y(5),Z(s)) dW (s)

Y(r) =¢@UW—/‘HH$Y®Z@D®+/AH$®

R o, o, fIFEL LTI E WSS 2RI T ET 5,

F7, HHMEEOMHICE W TR 7 A N=LIEEND 2376, E5I—RILTHIUIRT 5 Z & 28 Lk,
L 72 2 DX decoupling field u WWZEMNBI L THARIEo 2 X, R 7’y y vz R>2 L, 3561
Wi EBROFEALF v =2 O AERC XS, INoD0FE2Z0F FIRL, dLAEFASLFE
BEZTRAEDPEDZE)RAAARDL ES R0, ¥Rl u OEGES N 74 N—DFETIZLEA LA R
(o TLEHIZLEILDH S,

Z D7 ORI T v DEFEETY 7Yy VEIdFE O . b it~y =i I A9 ¢k
AT, BREBICHZREDICTETIIZFNERT, I 5IELTRF2REL, Btz Hw3 2 L TGS
DROIHIINEHTE S, T5&, ZOIHEEVE L\ FBSDE D2 726 LTSNS, 2D LI L
> TED, DETEE»% ) B3 FiEzHvTw5,

TR BRI FH TR 7 — S F VBB OERMEDREZ I L, S 51— REE XKILicE
THRL TS, 2L, HAZREOvLT 7 —MEKEL TW2DTRY 7 MEEDTXRTORRZ
SUbITTIER LI LICHEET 3.
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Local time penalizations with various clocks for Lévy

processes

B AR R AW
REF 2R K GUEBREFATZERD & o[RS

(X,P,) % Xo = x £ 73 1 K¢ Lévy B2 L, (F)) #2074 L—aved2. X6 L% 0
B 2 mATEE (local time) €35, ZOFT, UTO XS eMRoMELZE Z 2. Zhz w0 SikE
(penalization problem) &5 :

_ Po[Ff(Lr)]
e B (L)
72 l, Qp BHRTHESNSHERME, P[], Q] BZHIFMEDOERTH D, F, 13 F-rlfl72 A FNBE, f 1
JS f(@)de < oo R BIARBTH S UTINE fe Ll tHODT). IDHIT 71 oo WHMT 27 ¥ & LK
ZOBAMBETH 5. Zhzhst (clock) 5.

EBREHCN T 2 WEIE DML, 77 v Y EBNIN LT Roynette—Vallois—Yor [2, 3] IZIZU £ D, MHRLE
HFEIZHF LT Yano—Yano—Yor [5] TH#ANR Sz, Profeta—Yano—Yano [1] & 1 ZoTiHGERRICH L, 7 ¥ X AKEEE
DALEIERE 2 i AFRIETIE, FRX [4] 1ITHD %, JERFRR 1 K9T Lévy BI2ICH LT, 7 ¥ X alEt o Rk
LS DAS R 2 5 % .

= Qw[Ft} (01)

FHEBIB DI W (N) & Pole?Xt] = e N TEZETZ. 2o, FHveR, 0 >0 [((1Az*)r(dz) < oo
AT R\ {0} Lo Lévy JIE v FEL T,

W(A):ivA%—%o2A2+l/klg—€X‘+iAxhﬂ<1ﬁ4dx) (0.2)
R
LRED. RHEHTIE, BIMUTZ2RET 5.
RE. X IZHEIFY (recurrent) THH, 2OEED ¢ > 01T L T,
I
——_|dx 0.3
[ oo < 03
WIS 5.
DL E, ¢-LYANRY NEE v, (z) DIFEL,
r@y—l/mm%emr)dx (0.4)
R q+¥(\) ' ‘
YRBZEMHBRTVS. hy(z) =1y(0) — ro(—z) LERTZ Y, UTFARIT 5.

FIE 1. h(z) = limg o4 hy(z) F 2 € R THFE L THIRME.

ROBEEERT S
m? =P[X?] = o + / z?v(dz) € (0,00], (0.5)

R
M”@ﬂ:h@ﬁ+é%a (0.6)

o0

Mt(%f) = (X)) f(Ly) + /0 f(Ly + u) du. (0.7)

1



TRl -1<~y<1, fellt3d m =00l &I YICXZBWHPELRVWILIERTS. DL E,
KD >0 THD, MO BIFEDNAF S F—A RS ZEHTRES.
TR, 7YX ARG RREET - BHERGT - 2 REREREHC L2 20, ASHEORRZBRNS.

T 2 (HEHIEHC X BH55Y). e, 2T 1/q DM RISKNT, fe Ll vTaey,
M = 1y (0P, [f (Le, )| Fi] =255 a0 (0.8)
2 Py-as. 220 LY(P,) THRILT .

ZHUC X D MEIREOREIE o NS, EBE, P, (M) >0) =152y, F-uliilies R F, o6 LT,

0,f)
R ST [ AT (09
PR TE206THS. LUTROVWTHRLTHZH5, ZOHTHERNZDIZERT 3.
EIE 3 (FBERENC X BMR). T, =inf{t > 0: X; =a}, hP(a) =Py[L7,] ¥ T 5. ZDLXE,
M = WP (a)Py[f(Lr, )| Fi] <52 M (0.10)

M Py-as. 20 LYP,) THRILT 5.

EIE 4 (2 AELERGEIC X 2HR). Tupy =T, ATy 235, 2612, 0<p<l,g=1-p, vy=p—gq,
hC(a,b) =P[Lr,,) £F5. ZOLE,

MP = hC (pa, —qa)Py[f (Lpa, —qa) | Fe] 22 MO (0.11)
2 Py-as. 220 LY(P,) THRILT .

INSDEHNS, m? <oco DX EE, F7YVXAKOBEVFICK ST, WROMRNMENRLSZDHNTH5.
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Arcsine and Darling—Kac laws
for piecewise linear random interval maps

Kouji YANO (Kyoto University)

SUR BT F— 7K UTHRIET 5 LY o OWIERIER] & B OREEIT I F RIS L
THRMYTAZERHONTWD., KEETIL, HEXRGBMEXBBEGL DT & L)Y #
2L DT UH LIFERICK U CHIERIERINRL T 5 Z L 2T 5. AL, £
CROBELHT (] 2o LR L 0B [2] IcE5< .

WIESA AR CHE D HER A 2 A LEL:

du
P(A € du) = ——— 0,1). 1
(A € du) o on (0,1) (1)
—RICHEMKIR T v F by 4+ —7 {Z,} 1 LT LY ¢ OHIEKIER]
1 n
=Y Lo~ A onR 2)
k=1

DEALT D . ARXEOMWESIENE I THMINEKRT A Z EICEETDHE, ZoFEREIE, K
DEICHLEXBZONS:

%zpmiiA@m+u—mamcmmﬂﬁwy (3)

k=1

fHL, [—oo, 00l lIZR D=7 METHY, PSIIAFEZEM S O FEORESRHRIE 2RI
PR DA Z AN 222K, FHEE o @ [—oo,00] — [0,1] ZHWD &,

1 n
gzymmizMﬁﬂfAm on P[0, 1]. (4)
k=1
EWOTBIZ LD ERAZEFEHZ DN TED.
Thaler [4] 12 7 —JLEERICSK L CERGIERIASENI S 5 2 & &R L, 77—V AH# &g,
Sr=x—1/r CEEDEHS R-RESIN, BHEHRD: (0,1)>2— f&:i) eERIZ
Lo TERSNEEBRT 0,1 — [0,1] LA+ 5:

z(1—2x)
Ty — ) Too=a? (0<z<1/2)
1-T(1—2z) (1/2<x<1).

(5)

ZOEBY, FER e =0,1 DEHERS LI TH D2, RBIRz =0, 1128V TIE
BANTEL THDIZDIL, TOROEICHET DRHNZER L 2D, RIS, #oo
25 £1 &2 5 ARENRIEHIL (neutral H 5 WM indifferent) & FEEINLDS.

EHE 0.1 (Thaler [4]). #ixhEfi/moA &2 FFATE DT V¥ LPIHE O € [0,1] ITxF L,

%Z@mim%+aﬂmommmy (6)

k=1

CORERIE, RRIBAERICHT BREROBEASA L LTURSATHEY, 85I
Gl B AR LT — AR 3R AME BALTUN S (BIESTIRIE Sera [3] 10 % £ BTG,



TIT, WDZODEBEEZD:

/2 (0<z<1/2) )2 (0<z<1/2)
ﬁu)_{%%J_(U2<I§1L’/h@%_{@+1ﬂ2(ﬂ2<x§1) (7)
B ZOD BTG B ARE R A £
'(x) — 0, 7m3(x) — 1 for z € [0,1] except 0,1/2,1. (8)

n—oo n—oo

TN ZHODEREFEHRETEINT 57V FLEREEZ S:

SO (with probability 1/2),
RS (with probability 1/2).

O FLEHRTICHLT, AER 2 =0, ITROERTHILTH S:
Elog |T'(0+)| = Elog |T'(1-)| = 0. (10)
FUELEBT ORKBITRO L 1cExb0d. {T,} -, T 0ida—& LT
T =T, 0T, 10---0T) (11)
ERL. TWIEREZ U FLEHBT On BRKEICHYETS.
EHE 0.2 (Hata-Y [2]). 7 v ¥ 2585 {T,} &ML Tkt BkER 070 2 FFATED T
VHEBAIEAR O € [0,1] 1Txf L,

1 n
- > 6rme — Ady+ (1—A)gy on P[0, 1]. (12)
k=1

AERAIE, skew-product (2 & o THEAEZEM {1, o} x [0,1] EOWRENIIFRITIFEL,
<7 5EI R L T La ZEg & O conjugacy 7~ LC, Thaler—Zweimiiller [5] @
EHEZHEMAT 5.
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Hitting times of rare events for a reaction—diffusion model

1L

i §ift# (Kenkichi TSUNODA)

Abstract

SIS B S O R 2 1 75 B o ST 3 = & % FIC [2] 12
BOCHA S AU, KO [6] O FAR2 BT 2651 E & b IS~ 3,

NeNZRTF—V VI RIA=FLLTTy %2 1 R —F A Z/NZ L § 5. 1R
ReZEf % Xy = {0, 1}V ICX D ERL, ZOMERELE Xy = {(n(@)}eery EXRT. KB
PEEEARLI R O/ NVERERFRIC X D ERSI NS, Xy LD Markov e {n)N : ¢ > 0} ©
CLTHD: Xy hOFEMEBIE f 12 LT,

Lyf(n) = N> > {fn™ ) = fm)} + D c(mm{f) = f(n)}-
z€T N z€Tn
I Tcl3{0,1}? LOIEERFBESTH 2 (N DK EFIUL Xy LOBBE ALY 2). %
Fe{rp ix € Ty} 13 Xy IHEHS 2 ATRREIRECH D, nY, n" BZNZNRTERI NS
ETH5:

n(y), ifz=uz, .
Tl — ey J1=n(x), ifz=umx,
nY(z) = ¢ n(x), ifz=y, n"(z) = {n(Z), s 4o

n(z), if 2 # z,y.
AT T %2 1IRIUEFT I —FAR/ZEL, n€ Xy D OIRE DDA EZRTERT %:

1
7TN(77) - N Z U(x)(sx/N-
z€T N
TIZTu e TIHLTE, FulcEfT2 DiracllEETH2. /ot > 0L Tl =
NNy L B<.

REBR AR 7N 1SS 5 REOER] (A 2R 13 2] LB W TRShk. o
ICCDRERZHNTS. 0 < p < 1LIZNL Ty, % {0,1}2 LOEFR Bernoulli HIEE & L,
F(p) = [e(m@ —2n0)v(dn) £$5. TOLE, o)l XN — 0o T po(u)du(du (¥ T D
Lebesgue HIE) ICHERICRT 22 613, EED t > 0126 LT a]¥ 2N — oo T p(t, u)du I
WERIR T 2. 22 Tp:[0,00) x T¢ = [0, 1] (&R D RIILBSTEROMETH %

{Btp =Ap+ F(p),
p(0,-) = po(-).

KIRKFEREBGEHAEFFE R B e-mail: k-tsunoda@math.sci.osaka-u.ac.jp
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Glauber part DTRFEHILIE & KE L 72 DT, Markov 82 {n : ¢ > 0} IZFEIC 2 D X
CHIGNTW S L) ITHE—~DAEHERMEE py % b, HEHE OIS [4] 1B W COERIREE
N SRS B REDER] GRAFR15E) DR S, RICSTNZHFNT 5. DI FIdE—D3E
Hpe€(0,1)2b D L2RETS. My 2 T LORMEED 1 AT OHEE L L5902z fi
A S 5. S907AHIZE Y 2 FEEE SN U CHEBMUTBECH 2 DT, 2D K ) ZiflE d 2 —D[
ET S, ZDESERED I > 01K L TRIBLT 5.

Jim iy (02 d(7™ (n), pudu) > 5) = 0.
CORERDPS O C My, pedu g O 75D
; . N _
Jim gy (=7 (n) € 0) =0,
Ziitz . T D7z Markov i8R {n)V ¢ > 0} 23 (7V)7H(O) IKEHET 2 L) FHRIZ “rare
event” EEZ 5N5. COFENLE HO L ¥ 2 &, [6] DEMEEL T4 5.

Theorem 0.1. R c L OWIHSARIZEET 28U 2 IKED T T, N = oo IZEB W TIERIL
L 7SRRI HQ /R, [HO) V&P 1 OB I il § % .

Theorem 0.1 Z /89 721 [1] 1T & % — kG, AT FEMERICN § 2 K2R [4], it
RE AT 2 KR AR (3] R ONRAR O3 [5]) 2 Fvs 2. ARGHE T R R O 4
BIREZIBNS L EHIZITNGDFRERICOVTHHANT 5.
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Some relation between spectral dimension and Ahlfors regular

conformal dimension of resistance metrics

MR BT (SUEA¥ D2)

ATl Sierpiniski Carpet (MAF, SC) % Sierpiriski Gasket (LT, SG) RED 7 7 7 X% ELHHHT
» 3 WHTE R OHRIZ BT, Ahlfors regular conformal dimension (BT, ARC XJt) & A7 hLRITD
BfRIC OV TR 3.

HEEEZER > ARC KT, BUF D X 512 quasisymmetry K¢ Ahlfors regularity 12 &k > TERZX N 3.

E#& 1 (quasisymmetry). $£45 X LOFRE d, p 25 quasisymmetric TH 3 21X, H 2 FHEGEE 0 : [0,00) —
[0,00) 3B 5T, x # 2 RBIEED z,y,2 1T LT
0(d(z,y)/d(z,2)) > (p(z,y)/p(, 2))

LBHILTHD. COLE, d o p B
HRL d o p O L STEMES X LICHCRIAERATS D, 27 ~ 13 X EORMORIMRIGES<

E&E 2 (a-Ahlfors regular). FEEEZERH (X, d) U a > 0L, 2 Borel JIlfE pu RTER C > 0235 -
T, MEED 2 € X KU r € [infyyr, d(z,y), diam(X,d)] H LT Cr* < u(By(z, 7)) < Cr® Zifi/z3 &
% (X, d) & a-Ahlfors regular (XA F,a-AR) THB &\ 5.

E#&E 3 (ARC Xur). FEEEZERM (X, d) ® ARC RITZATTED S. (7L, inf ) = c0.)
dimag (X, d) = inf{a | d Gs P D p:a-AR %% X LOEE p HTFE }

(X, d) WIS ED 202 5 dimag (X.d) = inf{dimu(X,p) | p:p & d»2, 5% a>01CML a-AR }
Y HRED.
Ak [2] 1, ML R a o8y RN B O OB R IS BEENS A > T B & X, ZORiE
MEPSEEZ 757 LD p REINAF— (p> 0) OESIEH,SEE 3 H 2MOMHIMEY LT, 20
o ARC RIEHEIN2 Z e &R L. (BB ,ARC RITIC 1 D OMMIIR MM 2 52 72.) X 5122 0
M2 AWT, UFORSERER L.

FEIE 4 (2], Theorem 4.7.9). X:SG %721 (generalized) SC, d: 22— 2V v FEEBEOHIRD & =
dil’nAR(X, d) < ds(X, d) <2 ¥ dimAR(X, d) > ds()(7 d) >2 (1)
DWT NP —STDD LD,
L, 22 Tds(X,d) & (X,d) DRARZ PARTE, BB (X,d) EOT 7Y VEBOD (550, 8HES 7
7 D) B p(t,z,x) Tt L, limy_o —2log(p(t, ,z))/logt TREINIZBETH 5.
AHEE R, X (1) ORI O K S A Hi P o FREEZ & OO S 3 2 FEHERY R FESRE AR U CTRROL S % 20, B
FealTo CE . AMHTE, IO A - M2 E 2 5. £E X LoEUER L E, REQICEZ

X LOEBBOEMAIEZER F &, 20 Lo IEEMENF 2 XERX € O (€, F) TH - T, Markov %
Fb, oo Ay RBPZEED v,y € X 10 LA

R(z,y) := min{E(f, f) |u e F, ulz) =1, u(y) =0})"* BFEL 0 < R(z,y) < 0o



Zii7e T X5 bDTH 5. R(r,y) & X Lo k2 ZepHonTE D, WMIUERIHTFE T 2 WPTEE
HEE I 2. SR EROBELMEL SRR SN LZED, (6, F) B EDRMZiLT L E, FED € X K&
Ur>01HL 0 < pu(By(r,r)) < oo Zifizzd & 57 (X, R) ® Borel flfE p i< LT, (€, F) 1% L?(X, p)
L@ IEAI Dirichlet JE: & 72 2. 05 OFFREIIFES % Dirichlet JER O BMFHEIC O W T [1] 12D
LRTW3. il LT, SG % generalized SC @ 5 HMEFTIIR S DIZOWTIE, XInT 27 7 v VEED
Dirichelet FERix Z DR HHICE TN 5.

FRERICOVWTHRNR B 20, —f5E2M L doubling &2 EAT 5. (X, d) REEEEZEM Y 3 5.

EE S5 (—HRESMN). (X,d) P—REETHI22E, 257> 10D T, EFED 2z € X, r>0THo>T
Ba(z,7) # X 722 X 572b DXL By(x,yr) \ Balz,7) #0 2522 TH 5.

E# 6 (doubling condition). 2 N > 12H-T, ROz e X, r>0NL, Hd 2, € X(1<i<N)
W&o T Bg(x,2r) C Ui<i<nBa(z,7) 75 & Z (X,d) & doubling TH 2 5.

(X, d) D3—#k5e4 5D doubling (resp. 7E0#) TH - T, X LDOHEHRE p 1L d G P THE, (X,p) bE
7=—HRR5ER DD doubling (resp. 7)) TH 3. £/ D Z b, I RE R WEHREZERM (X, d) 1220
T, dimag(X,d) < oo Zifi7z 572 6, —Fk5E4AH D doubling TH 2 Z & HHES .

BUF, (X, d) \352H, —#k5E4, doubling ZREEREZERMI E L, (€, F) # X Lo TH - THEYUERH R 23
d & R%EWi73TE5%dbDLT3. X512 u% (X,d) LD Borel IERIIET, FED x € X RUr > 01
FHL 0 < p(Ba(z,r)) < o0 27T ESRbDLFH. COr E (1] BB LD, (6, F) & LA(X, 1) LOF
Al Dirichlet JE X & 72 D, WIS 3 2 XN ERE R BN p(t, z,y) DFIET 5. A#HO FRERIZATO@ED T
»H5.

EIE 7. MR

_ 1 . »
ds =2 lim sup ogp(s/t,z,x) —logp(s,z,x)
t=20 pe X, s€(0,diam(X,d)] log t

HFIEL, dimar(X,d) < ds <2 AUED LD,

SC®SG L7 5 VEHDEGE ds i3 ds & —T 20, ~ROBFARICIID 2 O00RIFEL S, FEB,
ds WOWTIEIARF XN 2 RERDOKBIDLLT D & S5 ITHFET 5.

EIE 8 ([3], Theoreml.b DHEHIR). LI DOIREZWMITH 2 (X,d), (E,F), p THo>7T, dg =
lim;_,0 —2log(p(t,z,x))/logt 23 2 T X BRVWE I LR E L THEIEL. 22D ds < dimar(X,d) <2722
OBV ELET S.
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On the conformal walk dimension II:
Non-attainment for some Sierpinski carpets

Naotaka Kajino  (RIMS, Kyoto University)
Joint work with Mathav Murugan (University of British Columbia)
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Fg.III. Sierpiﬁki gaskets (2-d., harm., 3-d.) Fig.B. Sierpinski carpets SC, (¢ = 3,5, 7)

This is a continuation of the speaker’s talk from 24 December 2020 on [d], which con-
cerns the following set Gz(D) defined for § € (1,00) and a metric measure Dirichlet
(MMD) space D = (K,d,m,E,F), ie., a strongly local regular symmetric Dirich-
let space (K, m,&, F) over a locally compact separable metric space (K, d) such that
Bi(z,r) :={y € K | d(x,y) < r} has compact closure in K for any (x,r) € K x (0,00):

sure on K charging no set of zero £-capacity and with full
E-quasi-support, (K, 0, u, E, F*) satisfies VD and HKE(S)

Here we say that (K, d, m, £, F) satisfies VD if and only if m(By4(x, 2r)) < c¢ym(By(z, 7))
for any (z,r) € K x (0,00) for some ¢, € (0,00), and that it satisfies HKE(S) if and
only if (K, m, &, F) has a continuous heat kernel p = p;(x,y) : (0,00) x K x K — [0, 00)
and there exist ¢y, ¢, c3, ¢4 € (0,00) such that for any r,¢ € (0,00) and any z,y € K,

Cs3 eXp(—C4 (d(l‘a y)ﬁ/t) ﬁ)
m(Bg(x, tY/5))

0 is a metric on K quasisymmetric to d, i is a Radon mea—}
- (Gs)

gﬁ(D) = {(97 N)

1105 (d(z, )" /1)
m(Bq(x,tY/7))

< pi(z,y) < HKE(S)

A metric § on K is said to be quasisymmetric to d (6 ~ d) if and only if 6(x, y)/6(z, z) <
n(d(a:,y)/d(a:, z)) for any xz,y,z € K with = # z, or equivalently, for any x € K and
any r, A € (0,00) there exists s € (0,00) such that By(x,s) C By(z,r) and By(x, Ar) C
By(x,m(A)s), for some homeomorphism 7 : [0, 00) — [0,00). Each p as in (G]) is such
that “€ becomes a reqular Dirichlet form on L*(K,p) with core F N C.(K)”, whose
domain is then denoted by F*; see [Il, Corollary 5.2.10, (5.2.17) and Theorem 5.2.11]
(here C.(K) := {u: K — R | u is continuous, K \ «~!(0) has compact closure in K}).

It is relatively well known that Gg(D) = 0 for any § € (1, 2) (unless K is a singleton);
see [4, (1.5) and Lemma 4.7]. Our concern is whether Gg(D) # () for § = 2, or at least
for 5 € (2, 00) arbitrarily close to 2, which is motivated by the following theorem.

Theorem 1 ([6]; see also [, Theorem 6.30]). Let D be the MMD space of the Brownian
motion on the 2-dimensional standard Sierpiniski gasket (Fig.[, left). Then Go(D) # 0.

More precisely, [6] constructed a concrete element of G (D) on the basis of the geometry
of the harmonic Sierpinski gasket (Fig.[, center). As an answer to the question of
whether G5(D) # 0 for a general MMD space D, in [d] we have proved the following.

Naotaka Kajino was supported in part by JSPS KAKENHI Grant Numbers JP17H02849, 18H01123.
Mathav Murugan was supported in part by NSERC and the Canada research chairs program.
Keywords: Brownian motion on generalized Sierpiniski carpet, sub-Gaussian heat kernel estimate, walk
dimension, time change of strongly local regular Dirichlet space, quasisymmetric change of metrics.



Theorem 2 ([@, Theorem 2.9]). Let D = (K,d,m,E,F) be a MMD space with K
having at least two elements. Then {§ € (1,00) | Gg(D) # 0} is [2,00) or (2,00) or (.
Theorem Pl further raises the questions of what D satisfies Go(D) # 0 and what
Go(D) looks like when Go(D) # 0. In these regards, in [4] we have proved the following.
Theorem 3 ([4, Proposition 2.10]; see also [3, Section 4]). Let D = (K, d,m, &, F) be a
MMD space with K having at least two elements, and let i,y be the E-energy measure
of u € F as defined in [2, (3.2.14)]. Then for any (0, u) € Go(D), the following hold:
(1) Define d,(x,y) = sup{u(x) —u(y) | v € FNC(K), py < p} for each x,y € K.
Then c;idu(x, y) < 0(z,y) < cpudu(z,y) for any x,y € K for some ¢y, € [1,00).
(2) Let A be a Borel subset of K. Then u(A) =0 if and only if sup,cr pi)(A) = 0.

Theorem 4 ([2, Theorem 6.32]). Let N € N satisfy N > 3, and let D be the MMD
space of the Brownian motion on the N-dimensional standard Sierpinski gasket (see
Fig.W, right, for a picture for N =3). Then Go(D) = ().

It was left open in [4] whether Go(D) # () for the MMD space D of the Brownian
motion on generalized Sierpinski carpets (see, e.g., |4, Subsection 6.4] and the references
therein for its basics). As our main result, we answer this for those in Fig. 2 as follows.

Theorem 5 ([B]). Let £ € N\ {1} be odd, and let SC, be the unique non-empty compact
subset of R? such that SC, = Uies, fei(SCe) (Fig.B), where fo;: R? — R? is defined by
fei(x) =0 i+l e fori € Z* and Sy :={i € Z* | f1,([0,1]%) C [0, 12\ (£71, 1—¢71)2}.
Then the MMD space D = (K,d, m,E,F) of the Brownian motion on K := SC,, where
d is the FEuclidean metric and m is the uniform distribution on K, satisfies Go(D) = ().

Note that SC3 (Fig. B left) is nothing but the 2-dimensional standard Sierpiriski carpet.
We fix the setting of Theorem Blin the rest of this article. The first step of the proof

of Theorem H is to note the following theorem and proposition, which we had essentially

proved in [] for any generalized Sierpiniski carpet in RY with arbitrary N € N\ {1}.

Theorem 6 (a special case of [4, (6.70) and Theorem 6.49]). Set V, := K \ (0,1)2. If
G2(D) # 0, then there exists h € F which is E-harmonic on K\ Vj, i.e., which satisfies
E(h,v) =0 for any v € F N Cc(K) with vly, =0, such that (d,,,, ny) € Ga(D).
Proposition 7 (cf. [4, Proposition 6.50, Lemma 6.52 and Proof of Theorem 6.49)).
Set Hy :={h+R1x | h € F, h is E-harmonic on K\ Vo, (dy,,, n)) € G2(D)} and let
h € Hy. Then the closure of {E(ho Fyu,ho Fy,) /2ho Frwweyz, sp in (F/R1g, E)
is a compact subset of Ha, where Fyy = fra, 0+ 0 fow,|x forw=wi...w, € S}.
Theorem [ is obtained by combining Theorem B, Proposition [ and the following.

Proposition 8 ([B]). Let hy € F be E-harmonic on K \ ([0,1] x {0,1}) and satisfy
holiox gy = J for j € {0,1}. Then maxgno)xfo,-1]) ho < . Moreover, if h € F is
E-harmonic on K\ Vo and bl 1yx oy = 0, then d,,, (x,y) = 0 for any z,y € [0, 1] x {0}.
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