Limit Theorems for Random Complexes 角田 謙吉, TSUNODA Kenkichi 大阪大学大学院理学研究科数学専攻 2019/03/15-16 数学と諸分野の連携に向けた若手数学者交流会

LLN for Cubical Complex

Cubical set

• Fix $d \in \mathbb{N}$. A subset $Q \subset \mathbb{R}^d$ is said to be an elementary cube if Qhas the following form:

 $Q = I_1 \times \cdots \times I_d$, where $I_i = [a_i, a_i + 1]$ or $\{a_i\}$ for some $a_i \in \mathbb{Z}$, $1 \le i \le d$. We also define the dimension of Q by $\dim Q = \#\{1 \le i \le d : |I_i| = 1\}.$

LLN for Random Čech Complex

Poisson point process and Čech complex

- Fix $d \in \mathbb{N}$. Let $\Phi = \Phi(\rho) = \{x_i\}_{i \in \mathbb{N}}$ be the Poisson point process on \mathbb{R}^d with density $\rho \in [0,\infty)$:
 - 1 For any bounded Borel subset $A \subset \mathbb{R}^d$, the number of points in A, denoted by $\Phi(A)$, is a Poisson random variable with density $\rho|A|$.
 - 2 For any bounded, Borel and mutually disjoint subsets $A_1, \ldots, A_n \subset \mathbb{R}^d$, $\Phi(A_1), \ldots, \Phi(A_n)$ are independent.

• A (bounded) subset $X \subset \mathbb{R}^d$ is said to be cubical if X can be written as a union of elementary cubes:

$$X = \bigcup_{i}^{\infty} Q_i ,$$

for some elementary cubes Q_i , $i \in \mathbb{N}$. For any $q = 0, 1, \dots, d$, denote the *q*-th Betti number of X by $\beta_q(X)$.

Random cubical set

• For two integers $0 \le q \le d$, denote by \mathcal{K}_q^d the set of all elementary cubes in \mathbb{R}^d with dim Q = q. Fix $0 \le q \le d$. Let $\{t_Q : Q \in \mathcal{K}_q^d\}$ be a family of uniform i.i.d. r.v.'s on [0, 1]. For each time $t \in [0, 1]$, define the random cubical set X(t) by

 $X(t) = \begin{bmatrix} J & Q \cup \end{bmatrix}$ $Q \in \mathcal{K}_{q-1}^d \qquad Q \in \mathcal{K}_q^d : t_Q \leq t$ with the convention $\bigcup_{Q \in \mathcal{K}^{d}} Q = \emptyset$.

Figure: Left: Poisson point process. Right: $\beta_0 = 4, \beta_1 = 2$.

• For each $n \in \mathbb{N}$, let $\Phi_n = \Phi \cap \Lambda_n$. For each r > 0, we are interested in the asymptotic behavior of the **Betti numbers** of the **Čech complex** built on Φ_n with radius r > 0:

$$\beta_q^n(r) = \beta_q \left(\bigcup_{x \in \Phi_n} B(x; r) \right).$$

Theorem (Yogeshwaran-Subag-Adler, '17)

There exists a deterministic constant $\bar{\beta}_a^d(\rho, r) \ge 0$ such that

$$\lim_{n\to\infty}\frac{1}{|\Lambda_n|}\beta_q^n(r) = \bar{\beta}_q^d(\rho, r), \quad a.s.$$

Figure: Left:
$$d = 2, q = 1$$
 without the 0th skeleton. Right: $d = 3, q = 2$.
• Fix $0 \le q < d$. For each $n \in \mathbb{N}$ and $t \in [0, 1]$, let $\Lambda_n = [-n, n]^d$ and define $\beta_q^n(t) = \beta_q(X(t) \cap \Lambda_n)$. Define the integrated Betti number L_q^n
 $L_q^n = \int_0^1 \beta_q^n(t) dt$.

Theorem (Hiraoka-T, 18, Discrete Comput. Geom.)

There exists a function $\widehat{\beta}_q(t) : [0,1] \to [0,\infty)$ such that

$$\lim_{n \to \infty} \sup_{t \in [0,1]} \left| \frac{1}{|\Lambda_n|} \beta_q^n(t) - \widehat{\beta}_q(t) \right| = 0, \quad \textbf{a.s.}$$

In particular, we have

Čech complex on manifold

• Let \mathcal{M} be an *m*-dimensional C^1 -smooth compact manifold embedded into \mathbb{R}^d . Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of \mathcal{M} -valued i.i.d. random variables with density $f : \mathcal{M} \to [0, \infty)$:

$$\mathbb{P}(X_1 \in A) = \int_A f(x) dx, \quad \forall A \subset \mathcal{M} .$$

Set also $\mathcal{X}_n = \{X_1, \ldots, X_n\}$. • Let $r_n \downarrow 0$ such that $n^{1/m}r_n \rightarrow r \in (0,\infty)$. Define the Betti number β_a^n by

$$\beta_q^n = \beta_q \Big(\bigcup_{x \in \mathcal{X}_n} B(x; r_n) \Big) .$$

Theorem (Goel-Trinh-T, 19+, J. Stat. Phys.)

Assume that $n^{1/m}r_n \to r \in (0,\infty)$ and that $\int_{\mathcal{M}} f(x)^p dx < \infty$, for any $p \in [1, \infty)$. Then, for any integer $0 \le q < m$, we have

$$\lim_{n \to \infty} \frac{1}{n} \beta_q^n = \int_{\mathcal{M}} \bar{\beta}_q^m (f(x), r) dx , \quad \textbf{a.s.}$$

$$\lim_{n \to \infty} \frac{1}{|\Lambda_n|} \int_0^1 \beta_q^n(t) dt = \int_0^1 \widehat{\beta}_q(t) dt , \quad \textbf{a.s.}$$

Related results

- Hiraoka-Shirai, 16 · · · Correct order of $\mathbb{E}[L_q^n]$: $\mathbb{E}[L_q^n] \simeq n$.
- Werman-Wright, 16 · · · Intrinsic volumes of random cubical sets. • Reddy-Vadlamani-Yogeshwaran, 18 · · · CLT for general functionals (including our setting essentially).
- Hiraoka-T-Miyanaga, ongoing · · · LDP for Betti numbers.

Related results and application

- $\mathbb{E}[\beta_q^n] \asymp n$ has been shown in Bobrowski-Mukherjee, '15.
- On \mathbb{R}^d , when the support of f is compact, convex and satisfies

 $0 < \inf_{x \in supp(f)} f(x) \le \sup_{x \in supp(f)} f(x) < \infty,$

a weaker version of our result has been obtained in YSA, '17. • As an application of our result, we can also prove the LLN for the persistence diagram:

$$\lim_{n\to\infty} \frac{1}{n} \xi_q(n^{1/m} \mathcal{X}_n) = \int_{\mathcal{M}} \nu_q^m(f(x), r) dx , \quad \text{a.s.}$$