Limit Theorems for Random Complexes

角田 謙吉，TSUNODA Kenkichi
大阪大学大学院理学研究科数学専攻
2019／03／15－16 数学と諸分野の連携に向けた若手数学者交流会

LLN for Cubical Complex

Cubical set

－Fix $d \in \mathbb{N}$ ．A subset $Q \subset \mathbb{R}^{d}$ is said to be an elementary cube if Q has the following form：

$$
Q=I_{1} \times \cdots \times I_{d},
$$

where $I_{i}=\left[a_{i}, a_{i}+1\right]$ or $\left\{a_{i}\right\}$ for some $a_{i} \in \mathbb{Z}, 1 \leq i \leq d$ ．
We also define the dimension of Q by

$$
\operatorname{dim} Q=\#\left\{1 \leq i \leq d:\left|I_{i}\right|=1\right\}
$$

－A（bounded）subset $X \subset \mathbb{R}^{d}$ is said to be cubical if X can be written as a union of elementary cubes：

$$
X=\bigcup^{\infty} Q_{i}
$$

for some elementary cubes $Q_{i}, i \in \mathbb{N}$ ．For any $q=0,1, \cdots, d$ ，denote the q－th Betti number of X by $\beta_{q}(X)$ ．

Random cubical set

－For two integers $0 \leq q \leq d$ ，denote by \mathcal{K}_{q}^{d} the set of all elementary cubes in \mathbb{R}^{d} with $\operatorname{dim} Q=q$ ．Fix $0 \leq q \leq d$ ．Let $\left\{t_{Q}: Q \in \mathcal{K}_{q}^{d}\right\}$ be a family of uniform i．i．d．r．v．＇s on $[0,1]$ ．For each time $t \in[0,1]$ ，define the random cubical set $X(t)$ by

$$
X(t)=\bigcup_{Q \in \mathcal{K}_{q-1}^{d}} Q \cup \bigcup_{Q \in \mathcal{K}_{q}^{d} \cdot t_{Q} \leq t} Q,
$$

with the convention $\cup_{Q \in \mathcal{K}_{-1}^{d}} Q=\emptyset$ ．

Figure：Left：$d=2, q=1$ without the 0 th skeleton．Right：$d=3, q=2$ ．
－Fix $0 \leq q<d$ ．For each $n \in \mathbb{N}$ and $t \in[0,1]$ ，let $\Lambda_{n}=[-n, n]^{d}$ and define $\beta_{q}^{n}(t)=\beta_{q}\left(X(t) \cap \Lambda_{n}\right)$ ．Define the integrated Betti number L_{q}^{n} ：

$$
L_{q}^{n}=\int_{0}^{1} \beta_{q}^{n}(t) d t
$$

Theorem（Hiraoka－T，18，Discrete Comput．Geom．）

There exists a function $\widehat{\beta}_{q}(t):[0,1] \rightarrow[0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} \sup _{t \in[0,1]}\left|\frac{1}{\left|\Lambda_{n}\right|} \beta_{q}^{n}(t)-\widehat{\beta}_{q}(t)\right|=0, \quad \text { a.s. }
$$

In particular，we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|\Lambda_{n}\right|} \int_{0}^{1} \beta_{q}^{n}(t) d t=\int_{0}^{1} \widehat{\beta}_{q}(t) d t, \quad \text { a.s. }
$$

Related results

－Hiraoka－Shirai， $16 \cdots$ Correct order of $\mathbb{E}\left[L_{q}^{n}\right]: \mathbb{E}\left[L_{q}^{n}\right] \asymp n$ ．
－Werman－Wright， $16 \cdots$ Intrinsic volumes of random cubical sets．
－Reddy－Vadlamani－Yogeshwaran， $18 \ldots$ CLT for general functionals （including our setting essentially）．
－Hiraoka－T－Miyanaga，ongoing ．．．LDP for Betti numbers．

LLN for Random Čech Complex

Poisson point process and Čech complex

－Fix $d \in \mathbb{N}$ ．Let $\Phi=\Phi(\rho)=\left\{x_{i}\right\}_{i \in \mathbb{N}}$ be the Poisson point process on \mathbb{R}^{d} with density $\rho \in[0, \infty)$ ：
1 For any bounded Borel subset $A \subset \mathbb{R}^{d}$ ，the number of points in A ，denoted by $\Phi(A)$ ，is a Poisson random variable with density $\rho|A|$ ．
2 For any bounded，Borel and mutually disjoint subsets $A_{1}, \ldots, A_{n} \subset \mathbb{R}^{d}$ ， $\Phi\left(A_{1}\right), \ldots, \Phi\left(A_{n}\right)$ are independent．

Figure：Left：Poisson point process．Right：$\beta_{0}=4, \beta_{1}=2$ ．
－For each $n \in \mathbb{N}$ ，let $\Phi_{n}=\Phi \cap \Lambda_{n}$ ．For each $r>0$ ，we are interested in the asymptotic behavior of the Betti numbers of the Čech complex built on Φ_{n} with radius $r>0$ ：

$$
\beta_{q}^{n}(r)=\beta_{q}\left(\bigcup_{x \in \Phi_{n}} B(x ; r)\right) .
$$

Theorem（Yogeshwaran－Subag－Adler，＇17）

There exists a deterministic constant $\bar{\beta}_{q}^{d}(\rho, r) \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|\Lambda_{n}\right|} \beta_{q}^{n}(r)=\bar{\beta}_{q}^{d}(\rho, r), \quad \text { a.s. }
$$

Čech complex on manifold

－Let \mathcal{M} be an m－dimensional C^{1}－smooth compact manifold embedded into \mathbb{R}^{d} ．Let $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of \mathcal{M}－valued i．i．d．random variables with density $f: \mathcal{M} \rightarrow[0, \infty)$ ：

$$
\mathbb{P}\left(X_{1} \in A\right)=\int_{A} f(x) d x, \quad \forall A \subset \mathcal{M}
$$

Set also $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ ．
－Let $r_{n} \downarrow 0$ such that $n^{1 / m} r_{n} \rightarrow r \in(0, \infty)$ ．Define the Betti number β_{q}^{n} by

$$
\beta_{q}^{n}=\beta_{q}\left(\bigcup_{x \in \mathcal{X}_{n}} B\left(x ; r_{n}\right)\right) .
$$

Theorem（Goel－Trinh－T，19＋，J．Stat．Phys．）

Assume that $n^{1 / m} r_{n} \rightarrow r \in(0, \infty)$ and that $\int_{\mathcal{M}} f(x)^{p} d x<\infty$ ，for any $p \in[1, \infty)$ ．Then，for any integer $0 \leq q<m$ ，we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \beta_{q}^{n}=\int_{\mathcal{M}} \bar{\beta}_{q}^{m}(f(x), r) d x, \quad \text { a.s. }
$$

Related results and application

－ $\mathbb{E}\left[\beta_{q}^{n}\right] \asymp n$ has been shown in Bobrowski－Mukherjee，＇15．
－On \mathbb{R}^{d} ，when the support of f is compact，convex and satisfies

$$
0<\inf _{x \in \operatorname{supp}(f)} f(x) \leq \sup _{x \in \operatorname{supp}(f)} f(x)<\infty
$$

a weaker version of our result has been obtained in YSA，＇17．
－As an application of our result，we can also prove the LLN for the persistence diagram：

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \xi_{q}\left(n^{1 / m} \mathcal{X}_{n}\right)=\int_{\mathcal{M}} \nu_{q}^{m}(f(x), r) d x, \quad \text { a.s. }
$$

