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Particle system

m Each particle moves on the one-dimensional discrete torus
Ty=72/NZ=4{1,2,--- N}, N € N.

m Denote the number of particles at site x € Ty at time t by 7:(x).

m Let 7; be a Markov process on {0, 1} TN with the generator

(LyF)(m) = > i (mAFr ) — £(n)},

XETN
where Y is defined by
(n(y) ifz=x,
X,y — " —
7 (z) =S nx) ifz=y,
n(z) ifz#x,y.

mFor j=2,3,---, define the local function g;j(n) by

g(n) =n(-1) +n(2),
g3(n) = n(=2)n(—=1) + n(=1)n(2) + n(2)n(3),

g4(77) — T
1
m Set c)/(\fx+1(n) =nt > i cigi(txn) (n > 2,¢; > 0), where

(x)(2) = n(x + 2).
Jump rates: 7(—1) + n(2)
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Diffusive scaling and Empirical measures

m Fix a continuous function pg : T — [0, 1] and start {n;} from the product
measure 1/, () with marginals

X

Vpo(-) 11 1(x) = 1) = pol5):
m Define the empirical measure 7T£V by

1
' (d0) = 5 > Mea(x)9
XETN

mLet T be the one-dimensional torus R/Z = [0,1) and let M_ be the set of
positive finite measures on T.

«(d0).

Known result

Theorem 1 ('09, P. Gongalves, C. Landim and C. Toninelli)

For any t € [0, T], {wN(d8); N > 1} converges to the deterministic measure
p(t,0)d0 in probability as N — oo, where p(t, ) is the unique weak solution of

the PDE
{atp = 99(D(p)p),
p(0,6) = po(0),
where D(a) = Zfzzjcjozj_l. ( €[0,1])

Main results

mlLet D([0, T], M4(T)) be the path space of cadlag trajectories endowed with
the Skorokhod topology.

m Let QY be the distribution on D([0, T], M. ) induced from the measure valued
process {mV}.
m Define the subset A of D([0, T], M(T))

A = {=n(t,d0) = p(t,0)d0d| p(t,0); smooth,
1
O<E|5<§s.t.5§,0§1—5}.

m Assume that there 3¢ > 0s.t. € < pg(f) <1 —e.

degenerate particle system
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Theorem 2 (Large deviation principle)

For each closed set C and each open set O of D([0, T], M4(T)),

1
lim sup — log QN[C] < — inf I(7),
N— 00 N el
1 N :
i 7 = Ol>— inf I(r).
,'\,”;'Qo N og Q70 = wel(gﬂ/l (W)

Assume that ¢ > 0. (Technical assumption)

Theorem 3 (Large deviation principle)

The full LDP holds, that is, for each closed set C and each open set O of
D([07 T]7 M—|—(T))’

1
lim sup — log QV[C] < — inf_I(n),
Nooo N reC
1 N .
| f—| O > — inf (7).
N e 71O = = g 1)

Some topics on main results
Define ¥ : [0,1] — R by ¥(a) = E,_[W]. (V: Local func.)

Lemma 1 (Super exponential estimate)

For each G € C([0, T| x T) and each ¢ > 0, let

Vi e(t1) = 1 Sy 6t x/N) () — DGV ()]

Then for any 0 > 0,

1 T
lim sup lim supﬁlog PN”/O Viv £(t, e )dt| > 0] = —oo.

e—0 N—oo

If we don’t have the term N in the jump rates

1 n

N

Cx,x—|—1(77) N T Z ngj(Txﬁ),
j=2

the super exponential estimate doesn't hold!

Lemma 2 (Approximation lemma)

For each m with finite rate function (I(m) < 00), there exists a sequence 7y, in A
converging to 7 in D([0, T], M4 (T)) and such that

lim [(mp) = I(m).

n—oo

m The important key to show the approximation lemma is control of energy of
trajectories: For each m € D([0, T], M%), recall the energy Q(7);
o
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() —Sl(J;p {2/0 dt/TdQ d(p)0pG /O dt/TdQ (p)G*}
(7 9pd (p(t,0))I°
R oo

mIf d(p) = p?, informally, we have

! 20092 4 0pp)?
QW—/dt/dﬁ —2/dt/d0 .
(™) 0 T 2p%(1 - p) 0 T (1-p)

m [ hese are informal calculations but we can verify rigorously.

m Consequently, we can deal some objects in the ! sense.

m Perturbed PDE:
{atA — 0y (D(N)IA) — 205(A(1 — N)D(N)dgH),
A0, 0) = ~(9),
m The density of the trajectory m € D([0, T|, M(T)).

Without the technical assumption, we don’t know differentiability of the density
of the limiting trajectory .



