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1 Introduction

We consider Markov chains on the lattice Zd or on a subset, which have
site dependent transition probabilities. We denote by P a set of probability
distributions on Zd. We assume that P contains only probabilities on a fixed
finite subset E ⊂ Zd, for instance E := {e ∈ Zd : |e| = 1}. If m is the number
points in E , e.g. m = 2d in the example we gave, then P can be regarded as a
subset of Rm, and of course, we will assume that it is Borel measurable. The
set of Borel subset of P is denoted by BP . A field of transition probabilities

is described as an element ω ∈ Ω
def
= PZd

, ω = (ωx)x∈Zd . Ω is equipped with

the product σ-field F := B⊗Zd

P . Then, the transition probabilities pω, which
depend on ω ∈ Ω, of our “random walk in random environment” (RWRE
for short) are given by

pω(x, x+ y)
def
= ωx(y). (1.1)

We write Px,ω for the law of a Markov chain with these transition probabil-
ities, starting in x. The chain itself is denoted by X0 = x,X1, X2, · · · . We
write Γ for the set of paths in Zd, equipped with the appropriate σ-field G.
The reader will easily check that P defines a Markovian kernel from Zd ×Ω
to Γ, i.e., for any G ∈ G, the mapping (x, ω) 7→ Px,ω(G) is a measurable
mapping.

One should remark that to call this a “random walk” is a kind of mis-
nomer, as random walks are usually understood to have transition proba-
bilities which are homogeneous in the space Zd, which is not necessarily the
case here. However, in the context of random environments, which we are
just going to introduce, the name is firmly established.

The element ω ∈ Ω is the “environment” for this Markov chain, and we
will choose it now randomly. This means that we fix a probability measure P
on (Ω,F). A special case is when we take the ωx as i.i.d. random variables,

i.e. when P is a product measure µZ
d
, µ being a probability distribution on

(P,BP).
The semi-direct product on Ω× Γ is denoted by P̂x, i.e.

P̂x(A×B)
def
=

∫
A
Px,ω(B)P(dω).

Often, one is only interested in the marginal law on Γ, for which by a slight
abuse of nation, we the same symbol P̂x. It has become common to call this
the annealed law, although this is kind of a misnomer, and one just better
call it the averaged law. In contrast, Px,ω is called the quenched law. If
x = 0, we usually leave out x in the notation. One should note that the
sequence (Xn) is not a Markov chain under the averaged law P̂ .

An annealed property of the (Xn) is a property this sequence has under
the law P̂ . In contrast, one speaks of a quenched property if for P-a.a.
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ω, the property holds under Px,ω. For a law of large numbers, there is no
difference: If Xn/n → v ∈ Rd holds P̂ -a.s. then this holds P0,ω-a.s. for
P-a.a. ω. However, for convergence in law, e.g. for a CLT, there is a big
difference.

Remark 1 Although we essentially concentrate on the above model where
the transitions are given by (1.1), one should mention that there is another
one, which is simpler in many respects due to reversibility. This is the model
of random currents. In that model, the bonds are given random weights,
which can be considered as a kind of random current which will be a mea-
sure how “easy” this bond can be crossed. To define the model formally,
denote by Bd, the set of nearest neighbor bonds (undirected) in Zd Consider
furthermore a law µ on the positive real line, and then the product measure
on (R+)B

d
. This measure is again denoted by P. For ω ∈ (R+)B

d
, b ∈ Bd,

we write ξb(ω)
def
= ωb. The transition probabilities of the RWRE are defined

in the following way. If x ∈ Zd, denote by nx the set of bonds where on of
the endpoints equal to x. If y is a nearest neighbor of x, then we define

pω(x, y)
def
=

ξ{x,y}(ω)∑
b∈nx

ξb(ω)
.

In other words, for fixed random environment ω, the random walk, being
at a time point in x, jumps to the nearest neighbor point y with relative
weight ξ{x,y}(ω). In this case, pω(x, ·) and pω(x

′, ·) are not independent if
|x− x′| = 1. The main advantage of this model is that the above transition
probabilities satisfy the detailed balance equation

νω(x)pω(x, y) = νω(y)pω(y, x), ∀x, y

where
νω(x)

def
=
∑
b∈nx

ξb(ω).

The reader can easily check that the transition probabilities given by (1.1)
do not satisfy this detailed balance condition, in general.

2 One-dimensional nearest neighbor case

In this section, we consider the strictly one-dimensional nearest neighbor
case. We will write an environment ω by ωx = (px, qx). px is the probability
to move from x to x+ 1 and qx is the probability to move from x to x− 1.
Therefore qx = 1 − px and the environment is described by the sequence
(px)x∈Z. The following theorem is the main result of this section. It is a
well-known result of Solomon [17].
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Theorem 2 Assume that the sequence {ωx} = {(px, qx)}x∈Z is stationary
and ergodic under P and E| log px|, E| log qx| <∞. Define

λ+
def
= E log

qx
px
.

Then

a) λ+ > 0 ⇔ limn→∞Xn = −∞, P̂0 almost surely.

b) λ+ < 0 ⇔ limn→∞Xn = ∞, P̂0 almost surely.

c) λ+ = 0 ⇔ lim supn→∞Xn = ∞, and lim infn→∞Xn = −∞, P̂0 almost
surely.
In particular, λ+ = 0 holds if and only if the RWRE is recurrent.

Remark 3 The one-dimensional nearest neighbor RWRE is well studied
and much more refined results are known. For instance, the following results
are well-known:

a) Under the assumption λ+ < 0, we have E qx
px
< 1 ⇔ limn→∞

Xn
n > 0

P̂0 almost surely.

b) If λ+ < 0 and E
qx
px

≥ 1, then limn→∞
Xn

n
= 0 although by Theorem

b), one has limn→∞Xn = ∞

c) In the strictly one-dimensional i.i.d. nearest-neighbor case with λ+ =
E log (qx/px) = 0, the displacement of the RWRE after time n is only
of order (log n)2. (not

√
n)

a) (and consequently b)) were proved by Solomon, too. c) is a result by
Sinai [16].

We give a proof of Theorem 2 which can easily be adapted to the more
complicated situation discussed later. We first introduce the exit distri-
bution from the interval [a, b] := {a, a+ 1, . . . , b− 1, b} , (a, b ∈ Z, a < b).
Define the (random) function ha,b,ω(x), x ∈ [a, b],

ha,b,ω(x) := Px,ω(Tb < Ta), (2.1)

where Ty = inf{n ≥ 0 : Xn = y} is the first hitting time of y. This quantity
will play a crucial role in the proof. By the Markov property of {Xn} under
Px,ω, we obtain for a < x < b

ha,b,ω(x) = pxha,b,ω(x+ 1) + qxha,b,ω(x− 1), (2.2)

and the boundary conditions h (b) = 1, h (a) = 0. In order not to overburden
the notation, we often drop the index ω, but the reader should keep in mind
that these are random functions.
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If a < x, we define

φa(x) := ha,x+1(x) = Px,ω(Tx+1 < Ta). (2.3)

For fixed x, this is a non-decreasing random sequence as a function of a, and
we therefore have

η(x) = lim
a→−∞

φa(x) = Px,ω(Tx+1 <∞) ∈ [0, 1] .

For a < x, the strong Markov property implies the equation

φa(x) = px + qxφa (x− 1)φa (x) , (2.4)

and letting a→ −∞

η (x) = px + qxη (x− 1) η (x) . (2.5)

For each x ∈ Z, define Ax := qx/px. Since we assumed that E| log px|,
E| log qx| <∞, Ax is well-defined for P-a.s. ω. By the ergodic theorem and
the assumed ergodicity of the environment

lim
n→∞

1

n
logAn · · ·A1 =

1

n

n∑
i=1

logAi = E log
q1
p1

= λ+.

almost surely. Now we will prove a dichotomy. The following lemma follows
easily from ergodicity and stationarity

Lemma 4 Either P (η(x) < 1) = 1 holds for all x ∈ Z or P (η(x) = 1) = 1
holds for all x ∈ Z.

Proof. Let Bx = {η(x) < 1}. From (2.5) and η (x− 1) ≤ 1, we obtain

η(x) ≤ px + qxη(x− 1).

Therefore, η (x− 1) < 1 implies η (x) < 1, that is Bx−1 ⊂ Bx holds for all
x ∈ Z. On the other hand, by stationarity, P(Bx) = P(Bx−1). Putting these
together, we see that Bx \Bx−1 has P-measure 0, that is, up to a P-nullset,
the event Bx is invariant under shifts. Therefore, by ergodicity, P(Bx) = 1
is true for all x or P(Bx) = 0 holds for all x. This finishes the proof of the
lemma.

Let λη = E log η(0). Remark first that p0 ≤ η (0) ≤ 1, and as we assume
E |log p0| < ∞, we have that log η (0) is integrable and λη is well-defined in
(−∞, 0]. λη = 0 is equivalent with η (0) = 1 P-a.s., which by Lemma 4 is
equivalent with P (η(x) = 1, ∀x) = 1. Applying again the ergodic theorem,
we also have the relation

λη = lim
k→∞

1

k
log Πk−1

j=0η(j), P-a.s. (2.6)
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Lemma 5 a) λη = 0 holds if and only if for any starting point x ∈ Z,
lim supn→∞Xn = ∞ P̂x-a.s., i.e. Px,ω (lim supn→∞Xn = ∞) = 1 for
P almost all ω.

b) λη < 0 holds if and only if for any starting point x ∈ Z, limn→∞Xn =
−∞ P̂x-a.s.

Proof. Assume that λη = 0. From Lemma 4, we have P (η (y) = 1, ∀y) = 1.
If η (x) , η (x+ 1) , . . . are all 1, then from the Markov property, one sees that
for any z > x, z ∈ Z, one has

Px,ω (Tz <∞) = 1.

Therefore
Px,ω (Tz <∞, ∀z > x) = 1,

that is

Px,ω

(
lim sup
n→∞

Xn = ∞
)

= 1.

So, we have proved that this holds true for P-almost all ω, i.e. we have
proved a)

Assume that λη < 0. For the sake of notational simplicity, we assume
that the starting point x is 0.We use (2.6). As λη < 0, we have λη < λη/2 <
0. Therefore, for P-almost all ω, there exists N(ω) ∈ N such that

1

k
log Πk−1

j=0ηω(j) ≤
λη
2

; k ≥ N(ω).

We emphasize here the fact that the η are random, i.e. depend on ω. The
product Πk−1

j=0ηω(j) is by the Markov property simply P0,ω(Tk <∞) and we
therefore conclude that

P0,ω(Tk <∞) ≤ exp [kλη/2]

for k ≥ N(ω). Since we assumed λη < 0 we have
∑

k P0,ω(Tk < ∞) < ∞,
and using the Borel-Cantelli Lemma, we conclude

P0,ω(Tk <∞, i.o.) = 0.

This implies that
P0,ω (supnXn <∞) = 1

and we have proved that this holds for P almost all ω.
We now argue that this implies that limn→∞Xn = −∞. For P almost

surely, all px, qx are positive. The Markov chain is therefore irreducible.
If supnXn < ∞, the chain is therefore transient and visits every point
only finitely often. This however implies, together with supnXn <∞, that
limn→∞Xn = −∞.
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Remark 6 a) The above lemma sets up a dichotomy: Either one has

lim sup
n→∞

Xn = ∞, P̂ -a.s.

(irrelevant of the starting point) or

lim
n→∞

Xn = −∞, P̂ -a.s.

This also means that if P̂ (limn→∞Xn = −∞) > 0, then this probabil-
ity is 1.

b) As the whole concept of a RWRE is invariant under a reflection of Z,
just by exchanging px with q−x and qx with p−x, there is also the similar
statement: Either one has lim supn→∞Xn = −∞ P̂ -a.s. (irrelevant
of the starting point) or limn→∞Xn = ∞ P̂ -a.s.

Proof of Theorem 2. Let ∆a(x) := 1 − φa(x). Recall the equation (2.4)
and perform a few elementary computations:

φa(x) = px + qxφa (x− 1)φa (x)

px = φa(x)− qxφa (x− 1)φa (x)

px − pxφa(x) = qxφa(x)− qxφa (x− 1)φa (x)

1− φa(x) =
qx
px

[1− φa (x− 1)]φa (x) .

Which with the abbreviation Ax := qx/px reads as

∆a(x) = Ax∆a(x− 1)φa(x).

Iterating this equality for a ≤ y < x gives us

∆a(x) = AxAx−1 · · ·Ay+1∆a(y)φa(y + 1)φa(y + 2) · · ·φa(x). (2.7)

We can also let a→ −∞ in this relation (with y < x fixed), and get

(1− η (x)) = AxAx−1 · · ·Ay+1 (1− η (y)) η(y + 1)η(y + 2) · · · η(x). (2.8)

We first prove the direction ⇒ in a) and b) of Theorem 2 and in fact
first in case b). Assume that λ+ < 0. Applying (2.7) to y = a, we obtain

∆a(x) ≤ AxAx−1 · · ·Aa+1.

Using the assumption λ+ = EAx < 0, we obtain from the ergodic theorem
in the exactly the same way as in the proof of Lemma 5 that for any fixed
a, ∆a(x) is P-a.s. exponentially decaying in x for x→ ∞. This means that
for P-almost all ω, there exist N (ω, a) ∈ N and ε > 0 such that

Px,ω(Tx+1 > Ta) ≤ exp [−ε (x− a)]
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for x ≥ a+N (ω, a) . In particular, by enlarging N (ω, a) if necessary, we get

∞∑
x=a+N(ω,a)

Px,ω(Tx+1 > Ta) ≤
1

2
.

Using the (strong) Markov property, we conclude that if the Markov chain
starts at b := a+N (ω, a), the probability it never reaches a is at least 1/2.
Therefore

Pb,ω

(
lim
n→∞

Xn = ∞
)
≥ 1/2.

Hence, from Lemma 5, in the form of Remark 6 b), we can conclude that
P (limn→∞Xn = ∞) = 1.

To prove ⇒ in a), we use the reflection to which we alluded in Remark
6 b): Define p̃x := q−x, q̃x := p−x. Then λ̃

+ = −λ+, where of course

λ̃+ := E log
q̃x
p̃x
.

So λ+ > 0 is equivalent with λ̃+ < 0, and so we can apply what we have al-
ready proved to the reflected situation which proves λ+ > 0 ⇒ limn→∞Xn =
−∞ almost surely.

We next prove the directions ⇐ in a) and b). By the same reflection
argument as just explained, it suffices to cope with one case, and we take
a). Therefore, we assume that limn→∞Xn = −∞, a.s.. Then, from Lemma
4 and Lemma 5, we have P-a.s. ∀x, 0 < η(x) < 1, and λη < 0. From the
equality (2.8) with y = 0 < x, we have

1− η(x) = AxAx−1 · · ·A1(1− η(0))η(1) · · · η(x).

Taking a logarithm in this equality,

1

x
log (1− η(x)) =

1

x

x∑
j=1

logAj +
1

x

x∑
j=1

log η(j) +
1

x
log (1− η(0)).

Letting now x→ ∞, the left hand side and the third summand on the right
hand side converge to 0, and we obtain

λ+ + λη = 0,

which, because of λη < 0 implies λ+ > 0.
It remains c) which however is a consequence of a) and b) and Remark 6:

According to a) and b), λ+ = 0 is equivalent with that neither limn→∞Xn =
∞ P̂ -a.s., nor limn→∞Xn = −∞ P̂ -a.s. By Remark 6 this is equivalent with
that lim supn→∞Xn = ∞, and lim infn→∞Xn = −∞, P̂ almost surely.

Remark 7 The standard proofs of Solomon’s theorem use the fact that the
difference equation (2.2) has an explicit solution which can be analyzed quite
easily. The proof above has advantage that it can be generalized to situation
where such an explicit solution is no longer possible.
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3 Quasi-one-dimensional RWRE

3.1 Statement of the result

A precise discussion of the a RWRE on Z with finite range jumps, not just
nearest neighbor ones, is considerably more delicate. In that case ωx, x ∈ Z,
are random variables taking values in the set of probability measures on
{−R, · · · , R}, where R is some fixed natural number. ωx(y) is then the
probability with which the RWRE (under the quenched law) jumps from x
to x + y, i.e. one has for fixed ω = {ωx} the law Px,ω of a Markov chain
{Xn}n≥0 satisfying

Px,ω (X0 = x) = 1

Px,ω (Xn+1 = x+ y|Xn = x) = ωx (y) .

A quantity of crucial importance is the (random) function ha,b(x), a < b,
x ∈ Z,

ha,b(x)
def
= Px,ω(T[b,∞) < T(−∞,a]),

where TA denotes the first entrance time into the set A. Clearly this function
satisfies for a < x < b

ha,b(x) =
∑
|y|≤R

ωx(y)ha,b(x+ y),

and boundary conditions h = 1 on [b,∞), h = 0 on (−∞, a]. Evidently, if
ωx (R) > 0, one can express h (x+R) through h(x + R − 1), . . . , h(x − R)
which leads to following matrix expression for the vectors

hR (x) :=



h(x+R)
...
...
...

h(x−R+ 1)


.

hR (x) =


−ωx(R−1)

ωx(R) . . . 1−ωx(0)
ωx(R) . . . −ωx(−R)

ωx(R)

1 0 · · · · · · 0

0
. . .

...
...

. . .
...

0 1 0

hR (x− 1) .

One is then naturally led to the investigation of the products of the above
random matrices. A difficulty is to match the boundary conditions. This is
the approach of Key [12] who generalized the Solomon’s result to the non-
nearest-neighbor case. The recurrence and transience are then expressed in
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terms of the middle Lyapunov-exponent of the products of the above random
matrices. The approach has recently been taken up by Julien Bŕemont [5],
[6].

We introduce a somewhat different approach in a slightly more general
setup which has the advantage that the arguments of the previous section
can be modified. This approach was developed in [2].

We now consider a RWRE in a strip of whichm : STm := Z×{1, · · · ,m}.
We call the subset {k} × {1, · · · ,m} the k-th layer, and write sometimes as
LAY(k) for it. Transitions in one step are possible from LAY(k) to LAY(k+
1) and to LAY(k− 1), but also inside LAY(k). The transitions probabilities
are therefore described by a sequence of triplets ω = ((Pk, Qk, Rk))k∈Z of
positive m × m-matrices, where Pk describes the transition probabilities
from LAY(k) to LAY(k + 1), Qk from LAY(k) to LAY(k − 1), and Rk the
transitions inside LAY(k). Given an environment ω = ((Pk, Qk, Rk))k∈Z,
we consider a Markov chain Xn = (Yn, Zn) ∈ STm, n ≥ 0, where Yn is the
component in Z and Zn is the component in {1, . . . ,m} . This Markov chain
has the following transition probabilities:

P(x,i),ω(X0 = (x, i)) = 1,

P·(Xn+1 = (x+ 1, j)|Xn = (x, i)) = Px(i, j),

P·(Xn+1 = (x− 1, j)|Xn = (x, i)) = Qx(i, j),

P·(Xn+1 = (x, j)|Xn = (x, i)) = Rx(i, j).

Of course, we have the assumption that Px+Qx+Rx is a stochastic matrix.
In this way, the law of the Markov chain on STm is uniquely defined after
fixing the starting point (x, i) ∈ STm .

Remark 8 It is clear that a RWRE on Z with jumps of maximal size R can
be described in the above setup, simply by chopping Z into pieces

. . . , {−R+ 1, . . . , 0}, {1, . . . , R}, {R+ 1, . . . , 2R}, . . .

and declaring these pieces to be the layers. Due to the restrictions of the
size of the jumps, in the layered situation only jumps to the nearest neighbor
layers are possible.

We use the matrix norm

∥A∥ := max
i

∑
j

|A(i, j)|,

and on Rm, we will use the supremums norm ∥x∥ := maxi |xi|.

Condition 9 Our basic assumptions for the main theorem are

(C1) The sequence (Px, Qx, Rx)x∈Z is stationary and ergodic.
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(C2) For all j ∈ {1, · · · ,m}, and all x ∈ Z,
∑

i Px(i, j) and
∑

iQx(i, j) are
strictly positive P-almost surely.

(C3)

E log (1− ∥R0 + P0∥)−1 <∞,

E log (1− ∥R0 +Q0∥)−1 <∞.

In order to simplify somewhat the presentation, we use below a stronger
assumption than (C2), namely

(C2’) Px (i, j) , Qx (i, j) > 0 P-almost surely, for all x ∈ Z, i, j ∈ {1, . . . ,m} .

This is not necessary but simplifies irreducibility considerations.
Three sequences of matrices: Crucial in our approach is the construction
of three sequences of (random)m×m-matrices φx, ψx, and Ax, x ∈ Z, which
will now be introduced. φa,x will be similarly defined as in (2.3) with the
additional information about the transition probabilities for the elements
within the layers: If a < x and i, j ∈ {1, . . . ,m} we define

We define Tx to be the first entrance time of the Markov chain into
LAY (x) , x ∈ Z. Then

φa,x (i, j) := P(x,i),ω

(
Tx+1 < Ta, ZTx+1 = j

)
.

This is not a stochastic matrix, but it is a positive substochastic one:∑
j φa,x (i, j) < 1. φx (i, j) is the probability that the Markov chain, when

starting in (x, i) enters the LAY (x+ 1) at j before reaching LAY (a) . Evi-
dently ∑

j

φa,x (i, j) = P(x,i),ω (Tx+1 < Ta) .

Due to (C2’), this is strictly smaller than 1. By the Markov property, one
has the matrix identities

φa,x = Px +Rxφa,x +Qxφa,x−1φa,x (3.1)

from which we can compute φa,x in terms of φa,x−1:

φa,x = (I −Rx −Qxφa,x−1)
−1 Px.

Here I is the m × m identity matrix. Remark that the right hand side is
well defined as we had assumed that

∥Rx +Qxφa,x−1∥ ≤ ∥Rx +Qx∥ < 1

almost surely. The boundary condition for φa,x is φa,a = 0.
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We next introduce the matrices ψx which satisfy the same recursion
relation (3.1), but {ψx} and {φx} have a different boundary condition at
LAY (a) . ψx is always a stochastic matrix.

Given a ∈ Z, x > a and a stochastic matrix ρ = (ρ(i, j))1≤i,j≤m, we
define ψx = ψa,ρ,x by

ψa,ρ,x(i, j) = P̃(x,i),ω(ZTx+1 = j),

where P̃(x,i),ω is the distribution of the Markov chain on [a,∞)×{1, . . . ,m}
which has the above defined transition probabilities, except on LAY (a)
where we have a reflection to the right with the matrix ρ, i.e. on this layer,
we replace (Pa, Qa, Ra) by (ρ, 0, 0). It is evident that ψa,ρ,x is a stochastic
matrix, as the chain, when starting on LAY (x) has eventually to leave the
finite set [a, x]× {1, . . . ,m} , and due to the reflection at LAY (a) it cannot
do so on the left side. By the Markov property, we have the equations

ψa,ρ,x = Px +Rxψa,ρ,x +Qxψa,ρ,x−1ψa,ρ,x, (3.2)

ψa,ρ,x = (I −Rx −Qxψa,ρ,x−1)
−1Px,

for x > a, which are the same as for the φa,x, but now we have the different
boundary condition ψa,ρ,a = ρ.

Proposition 10 a) P-a.s., there exists a sequence {yx}x∈Z of (random)
stochastic matrices such that lima→−∞ supρ ∥ψa,ρ,x − yx∥ = 0 P-a.s.

b) The sequence {yx}x∈Z is the unique sequence of stochastic matrices
satisfying the equation yx = (I −Qxyx−1 −Rx)

−1Px.

c) The sequence {(Px, Qx, Rx, yx)}x∈Z is stationary and ergodic.

Sketch of proof. We don’t give a full proof which can be found in [2],
Theorem 1, but we give an explanation what probabilistically is behind this
result.

One has to distinguish two cases. The simple one is the case where
P(x,i),ω (Tx+1 <∞) = 1 P-a.s. It is not difficult to see from our assumptions
that if this is true for one (x, i) , then it is true for all others. In this case,
the φx are stochastic matrices, and it is evident that

ψa,ρ,x → φx

as a → −∞, uniformly in ρ. This simply comes from the fact that the
chain, starting in (x, i) visits LAY (a) only with very small probability when
a≪ x.

The more delicate case is when P(x,i),ω (Tx+1 <∞) < 1 with positive
P-probability, which actually implies by ergodicity, that it is true with P-
probability 1. In that case, there is a non-vanishing P(x,i),ω-probability that

11



the chain reaches LAY (a) with a ≪ x, even in a → −∞ limit. This prob-
ability of course depends on ω. Under P̃(x,i),ω the chain is however now
reflected to the right at LAY (a) where the law of the reflection is given by
ρ. Due to this reflection, eventually, the chain reaches LAY (x+ 1), but it is
at first sight not completely clear why the first entrance distribution should
not depend on ρ. Actually, it does, but with less and less dependence the
smaller a is. The chain, when starting in LAY (a) has a high chance to
return to LAY (a) before reaching LAY (x+ 1) when a ≪ x. Typically, the
probability is exponentially close to 1, exponentially in x− a. Therefore, it
needs an exponential number of “trials” to escape from LAY (a) and reach
LAY (x+ 1), but for fixed a, the probability is 1 that this finally (after a long
time) happens. This successful “escape” from LAY (a) has to go through
the strip on a the distance x + 1 − a, and due to the mixing properties of
the transition probabilities, the influence of ρ gets lost for a≪ x.

It is possible to describe the excursion from LAY (a) to LAY (x+ 1)
probabilistically rather precisely. A complication is coming from the fact
that in the RWRE case, the transitions, described by (Py, Qy, Ry) vary from
layer to layer a < y < x+ 1.

For the formal proof, which is a bit tricky, see [2].
Using the matrices ψ and y, we define the matrices Aρ,a,x, a < x, and

Bx in the following way:

Aρ,a,x := (I −Rx −Qxψρ,a,x−1)
−1Qx,

Bx := (I −Rx −Qxyx−1)
−1Qx.

It should be remarked that in the classical m = 1 case discussed in the pre-
vious chapter, one evidently has ψρ,a,x = yx = 1 for all x, a, ρ and therefore

Ax = Bx =
qx
px

in agreement with the setting there.

By Proposition 10 c), The sequence {Bx} is a stationary and ergodic
sequence of non-negative random matrices. By Kingman’s subadditive er-
godic theorem (see [13], [9]) the following Lyapunov number exists, and is
non-random

λ+ = lim
N→∞

1

N
log ∥BNBN−1 · · ·B1∥, (3.3)

One should remark that in the m = 1 case, this is exactly what we had
in the last chapter: λ+ = E log (qx/px).

The following theorem describes the recurrence-transience behavior of
the RWRE in terms of λ+. It is an extension of the Solomon’s Theorem.

Theorem 11 Under the assumptions 9, the following hold.

a) λ+ > 0 ⇔ limn→∞ Yn = −∞ almost surely.

b) λ+ < 0 ⇔ limn→∞ Yn = ∞ almost surely.

12



c) λ+ = 0 ⇔ lim supn→∞ Yn = ∞ and lim infn→∞ Yn = −∞ ⇔the
RWRE is recurrent.

Remark 12 The theory of RWRE’s in the quasi one-dimensional case has
been developed considerably in the past years. First, the Sinai type behavior
of Remark 3 has been proved in [4]. Then, also results similar to 3 a) and
b) have been proved in [8].

3.2 Proof of Theorem 11

The proof of the theorem runs parallel to the one for m = 1, given Propo-
sition 10. There is however one part of the argument which is considerably
more complicated for general m, namely the symmetry under reflection with
regards to the Z-component of the strip. We explain this first.

For x ≤ b set

φ−
b,x (i, j) := P(x,i)

(
Tx−1 < Tb, ZTx−1 = j

)
.

The matrices with a reflection with a stochastic matrix ρ at b are defined by

ψ−
b,ρ,x (i, j) := P̃(x,i)

(
ZTx−1 = j

)
, (3.4)

where P̃(x,i) has the same transition probabilities as before except at LAY (b)
where (Pb, Qb, Rb) is replace by (0, ρ, 0) . Furthermore

y−x := lim
b→∞

ψ−
b,x (i, j) .

These quantities satisfy similar equations as the original ones, for instance

φ−
b,x = Qx +Rxφ

−
b,x + Pxφ

−
b,x+1φ

−
b,x.

for x < b. We again define

A−
ρ,b,x := (I −Rx − Pxψ

−
ρ,a,x+1)

−1Px,

B−
x := (I −Rx − Pxy

−
x+1)

−1Px,

and then

λ− := lim
N→∞

1

N
log ∥B−

−NB
−
−N+1 · · ·B

−
−1∥.

Lemma 13
λ+ + λ− = 0.

The proof of this lemma will be given in Subsection 3.3.
Similarly to the ηx of Section 2, we define the ηx here as matrices:

ηx (i, j) = lim
a↓−∞

φa,x (i, j) = P(x,i)(Tx+1 <∞, ZTx+1 = j).

13



Here, the convergence is trivial as the φa,x (i, j) are monotone increasing if
a decreases. The ηx are also sub stochastic. By the Markov property, they
satisfy the equation

ηx = Px +Rxηx +Qxηx−1ηx.

The following two lemmas are similar to the case m = 1. First the
analogue to Lemma 4:

Lemma 14 Under the Condition 9, one has the following alternative

(i) Either for all x ∈ Z, one has ηx · 1 = 1 P-a.s. (meaning that the
ηx are all stochastic matrices), where 1 denotes the vector with all
components equal to 1.

(ii) or
∑

j ηx(i, j) < 1 holds for all (x, i) P-a.s.

The proof of the Lemma is very similar to the proof of Lemma 4, and we
leave it to the reader to fill in the details, or go to [2] Lemma 5 and Corollary
2. Kingman’s subadditivity theorem and ergodicity gives the existence (and
finiteness) of the Lyapunov exponent

λη = lim
n→∞

1

n
log ∥η1 · · · ηn∥ ≤ 0.

Lemma 15 Case (i) in Lemma 14 is equivalent to λη = 0 in which case one
has lim supn→∞ Yn = ∞, P̂(x,i)-a.s. for all (x, i) ∈ STm. (ii) is equivalent

to λη < 0 which implies limn→∞ Yn = −∞, P̂(x,i)−a.s. for all (x, i) ∈ STm .

Remember that P̂(x,i) was the annealed law. P̂(x,i)-a.s. just means
P(x,i),ω-a.s. for P almost all ω.

The proof of the above lemma is again very similar to the proof of
Lemma 5, and so we leave the small necessary modifications to the reader.
Proof of Theorem 11. By Lemma 13, a) is equivalent to b). As in the
m = 1 case, it is convenient to prove the implication =⇒ in case b) and the
reverse implication in case a). Given Lemma 13, this proves a) and b) fully.

We start by introducing notations. For each a, x, a < x, define ∆a,x :=
yx − φa,x. It is easy to see that the ∆a,x are non-negative matrices: yx
and φa,x both satisfy the same recursion relations (3.1), but the boundary
condition at LAY (a) is 0 for φ and the non-negative matrix ya for y. From
that, it follows by induction on x that yx (i, j) ≥ φa,x (i, j) for all x > a, i, j ∈
{1, . . . ,m} . (Actually, under Condition (C2’), yx (i, j) > φa,x (i, j)). From
the definitions of matrices, one sees, using the matrix identity A−1−B−1 =
A−1 (B −A)B−1, that

∆a,x = [(I −Rx −Qxyx−1)
−1 − (I −Rx −Qxφa,x−1)

−1]Px

= (I −Rx −Qxyx−1)
−1Qx(yx−1 − φa,x−1)(I −Rx −Qxφa,x−1)

−1Px

= Bx∆a,x−1φa,x.
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Inductively, we obtain, for a ≤ u < x,

∆a,x = Bx · · ·Bu+1∆a,uφa,u+1 · · ·φa,x.

We also consider the a → −∞ limit of the above relations. Remember
that ηx := lima→−∞ φa,x. We define ∆̂x := yx − ηx which satisfies

∆̂x = Bx · · ·Bu+1∆̂uηu+1 · · · ηx.

Now assume that λ+ < 0. Fixing a ∈ Z we then have that ∥Bx · · ·Ba+1∥
decays P-almost surely exponentially fast if x → ∞, and so, with ε :=
−λ+/2 > 0, we find for almost all ω, a natural number N(ω, a) > x such
that

∥∆a,x∥ ≤ e−ε(x−a), x ≥ N (ω, a) .

For a < x < b

P(x,i) (Tx+1 < Ta) = (φa,x1) (i) = ((yx −∆a,x)1) (i) ≥ 1− ∥∆a,x∥

≥ 1− e−ε(x−a)

the last inequality for x ≥ N (ω, a) . Arguing now in exactly the same way
as for m = 1, one concludes first that P̂(a,i) (limn→∞ Yn = ∞) > 0, and then
it has to be 1.

We now deal the reverse implication in a). Assume that limn→∞ Yn =
−∞. Again from Lemma 15, we conclude that for all x ∈ Z, ηx1 < 1 P-a.s.

∆̂x = Bx · · ·B1∆̂0η1 · · · ηx. (3.5)

Because of ηx1 < 1,
{
∆̂x

}
is a stationary ergodic sequence of strictly sub-

stochastic matrices. Therefore, using (C3), one has

lim
x→∞

1

x
log
∥∥∥∆̂x

∥∥∥ = lim
x→∞

1

x
log
∥∥∥∆̂0

∥∥∥ = 0

almost surely. Therefore,

lim
x→∞

1

x
log ∥Bx · · ·B1∥+ lim

x→∞

1

x
log ∥η1 · · · ηx∥ = 0.

Hence λ+ = −λη > 0, which finishes the proof of a), b) of Theorem 11.
The first implication in c) follows from a), b) and Lemma 15 in the

same way as in the m = 1 case. The statement about recurrence and
transience needs a slight additional argument which we only sketch: If
lim supn→∞ Yn = ∞ and lim infn→∞ Yn = −∞ then the Markov chain
has to pass through LAY (x) infinitely often, for every x. It then fol-
lows from elementary Markov chain theory (and (C2’)) that every point
(x, i) ∈ STm is visited infinitely often, with probability 1. On the other
hand, if limn→∞ Yn = ∞ or limn→∞ Yn = −∞, then the Markov chain can
visit points only finitely often.
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3.3 Proof of Lemma 13

The proof of λ+ + λ− = 0 is not completely trivial (for m > 1). It depends
on the existence of a unique invariant measure (πx)x∈Z, πx = (πx(i))1≤i≤m,
unique up to normalization which satisfies

πx = πx+1Qx+1 + πxRx + πx−1Px−1.

We start by fixing a < b, a, b ∈ Z and impose reflecting boundary conditions
on LAY (a) and LAY (b) by matrices ρa and ρb, i.e. we replace (Pa, Qa, Ra)
by (ρa, 0, 0) and (Pb, Qb, Rb) by (0, ρb, 0), where ρa and ρb stochastic ma-
trices. Since this modified Markov chain is defined on a finite set and is
irreducible, there exists a unique stationary measure (unique modulo mul-
tiplying by a constant). We denote this stationary measure by {πa,b,x}x∈Z ,
where πa,b,x = πa,b,ρa,ρb,x are strictly positive vectors in Rm. By the irre-
ducibility assumptions (C2) and (C3) it is easily checked that the stationary
distribution is positive everywhere. For the moment, keep a, b, ρa, ρb fixed.
For notational simplicity, we just write πa,b,x, but the dependence on ρa, ρb
should be kept in mind.

Usually, the stationary measure (on a finite set) is normalized to be
a probability measure, but for us, it is more convenient to normalize it
differently. We assume that a < 0 < b, an then we assume that

∥πa,b,0∥ = max
i
πa,b,0 (i) = 1. (3.6)

This defines {πx}a≤x≤b uniquely, given the above boundary conditions ρa, ρb
and the sequence {(Px, Qx, Rx)}a<x<b . Uniqueness follows from the irre-
ducibility condition (C2’). It is important to remember, that πx of course
depends on ω.

Lemma 16 For a ≤ x < b, one has

πa,b,x = πa,b,x+1αa,x

with

αa,a = Qa+1

αa,x = Qx+1(I −Rx −Qxψa,x−1)
−1, x > a.

(Remark that α’s depend also on ρa but not on b and ρb).

Proof. We write ψa,x for ψa,ρa,x for notational simplicity which satisfies the
boundary condition ψa,a = ρa.

The relation πa,b,a = πa,b,a+1Qa+1 is trivial. The other is a consequence
of simple computations. Notice that

πa,b,a+1 = πa,b,aρa + πa,b,a+1Ra+1 + πa,b,a+2Qa+2

= πa,b,a+1(Qa+1ρa +Ra+1) + πa,b,a+2Qa+2.
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Since ρa = ψa,a, the above equality gives the result for x = a+ 1.
Inductively, we have

πa,b,x = πa,b,x−1Px−1 + πa,b,xRx + πa,b,x+1Qx+1

= πa,b,x(αa,x−1Px−1 +Rx) + πa,b,x+1Qx+1.

Therefore
πa,b,x(I − αa,x−1Px−1 −Rx) = πa,b,x+1Qx+1.

From induction assumption, we have

αa,x−1Px−1 = Qx(I −Rx−1 −Qx−1ψa,x−2)
−1Px−1 = Qxψa,x−1,

where we have used the recursion relation (3.2). Hence,

πa,b,x = πa,b,x+1Qx+1(I −Qxψa,x−1 −Rx)
−1.

This finishes the proof.

Remark 17 Completely similarly, we obtain a representation in the other
direction: For a < x ≤ b

πa,b,x = πa,b,x−1βb,x

with

βb = Pb−1

βb,x = Px−1

(
I −Rx − Pxψ

−
b,x+1

)−1
, x < b,

where the ψ− were introduced in (3.4).

Lemma 18 The limits

ᾱx := lim
a→−∞

αx,a = Qx+1(I −Rx −Qxyx−1)
−1,

β̄x := lim
b→∞

βx,b = Px−1

(
I −Rx − Pxy

−
x+1

)−1

exist and do not depend on the sequences {ρa} , {ρb} for a → −∞ and b →
∞.

Proof. This follows from the convergence property of ψa,x−1 for a → −∞,
and ψ−

b,x+1,b for b→ ∞.
We can now finish the proof of Lemma 13.
We argue that lima→−∞,b→∞ πa,b,0 exists. We first remark that

πa,b,0 = πa,b,1αa,0 = πa,b,0βb,1αa,0

= πa,b,nαa,n−1 · · · · · αa,0

= πa,b,0βb,1 · · · · · βb,n−1 · αa,n−1 · · · · · αa,0
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for a < 0 < n < b. So, from the convergence of αx,a, βx,b we obtain that any
possible limit π̄0 along subsequences of a and b satisfies

π̄0 = π̄0β̄1 · · · · · β̄n−1 · ᾱn−1 · · · · · ᾱ0. (3.7)

Our assumptions 9 however imply that the matrices β̄1 ·· · ··β̄n−1 ·ᾱn−1 ·· · ··ᾱ0

are P-almost surely irreducible non-negative matrices, and therefore π̄0 is
uniquely define and we have proved that

π̄0 = lim
a→−∞,b→∞

πa,b,0.

Similarly, it follows that

π̄x = lim
a→−∞,b→∞

πa,b,x

exists (and does not depend on the boundary conditions ρa, ρb chosen), and
(π̄x)x∈Z is a stationary distribution for our Markov chain.

We can now prove λ+ + λ− = 0 by relating these Lyapunov exponents
to the {ᾱx} ,

{
β̄x
}
sequences.

From (3.7), and πn = π̄0β̄1 · · · · · β̄n−1 we obtain

1 = ∥π0∥ = ∥π0β̄1 · · · β̄N∥∥ πN
∥πN∥

ᾱN−1 · · · ᾱ0∥. (3.8)

Define two exponents λᾱ and λβ̄ by

λᾱ := lim
n→∞

1

n
log ∥ᾱn−1 · · · ᾱ0∥, λβ̄ := lim

n→∞

1

n
log ∥β̄1 · · · β̄n∥.

Then (3.8) implies that
λᾱ + λβ̄ = 0.

On the other hand,

ᾱn−1 · · · ᾱ0 = Qn(I −Rn−1 −Qn−1yn−1)
−1Qn−1 · · · (I −R0 −Q0y−1)

−1

= QnBn−1 · · ·B1(I −R0 −Q0y−1)
−1.

Therefore, taking the limit as n → ∞ in the above equation gives us λᾱ =
λ+. Analogously, we can conclude that λβ̄ = λ−. Hence λ++λ− = 0, which
completes the proof of Lemma 13.
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4 Exit distributions of RWRE on Zd for d ≥ 3

Throughout this section, we always assume the following.

Condition 19 The law µ of a random environment ω0 (see Section 1) sat-
isfies:

1. µ(Pϵ) = 1 holds for some ϵ ∈ (0, 1/(2d)), where

Pϵ := {q ∈ P : |q(e)− 1/(2d)| ≤ ϵ for all e ∈ E}.

2. For any orthogonal mapping O, leaving the lattice Zd invariant, the
laws of (ω0(O(e)))e∈E and (ω0(e))e∈E coincide.

The aim of this section is to review the method developed in [1] and [3]
to prove that, in dimension d ≥ 3, the exit distributions of the RWRE on
large balls (or more general sets) is close to the one of the ordinary random
walk (ORW for short) on Zd, if the above condition is satisfied, for small
enough ε.

To begin with, let us introduce some notations. For x, y ∈ Zd set
I(x, y) = 1 if x = y, and I(x, y) = 0 otherwise. A function F : Zd×Zd → R,
is also called a kernel. We will always assume that for any x ∈ Zd the set{
y ∈ Zd : F (x, y) ̸= 0

}
is finite. For two kernels F,G, we write FG for the

(matrix) product

FG(x, y) :=
∑
z∈Zd

F (x, z)G(z, y),

which evidently is a kernel with the above finiteness property. For a given F,
we define the powers F k in the usual way, also be setting F 0(x, y) := I(x, y).

We write ∥·∥tv for the total variation norm. For a finite subset V of
Zd, denote the exit distributions from V for the RWRE by ΠV,ω(x, y), i.e.,
ΠV,ω(x, y) := P x

ω (XτV = y) where τV is the exit time for the RWRE from V .
Similarly, πV (x, y) is the exit distribution from V for the ORW. Moreover,
for L ∈ R+ and x ∈ Zd, let VL := {v ∈ Zd; |v| ≤ L} and VL(x) := x+ VL.

The main objective of this section is to review the following theorem.

Theorem 20 Assume d ≥ 3 and Condition 19. There exists ϵ0 > 0, de-
pending only on the dimension such that for ϵ ∈ (0, ϵ0], the following state-
ment is true: Consider an arbitrary smooth probability density φ : Rd → R+

of support in the unit ball. Then, for any t ≥ 1 define a discrete smoothing
kernel by

φt (x, y) =
φ ((y − x) /t)∑

z∈Zd φ (z/t)
, x ∈ Zd,

which is well defined, at least for large enough t. For any function λ of L
with λ(L) ↗ ∞ as L→ ∞, we have

P
(

lim
L→∞

∥∥(ΠVL
− πVL

)φλ(L)(0, ·)
∥∥
tv

= 0

)
= 1. (4.1)
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Remark 21 In the proof, we work mainly with the following very special
smoothing kernel π̂t instead of φt which is defined by

π̂t(x, y) :=

∫ 2

1
πVℓt(x)(x, y)ϕ(ℓ) dℓ,

where ϕ : R → R+ is a smooth probability density with support on [1, 2]. This
choice is important for performing the induction explained below. In the end,
with a simple additional argument, one can show the main result (4.1) for
an arbitrary smoothing kernel. We will leave out the technical details of the
proof of this claim.

Remark 22 It is fairly obvious that ∥(ΠL − πL)(0, ·)∥tv cannot go to 0.
This is coming from the disorder close to the boundary which certainly has
a non-vanishing effect on the total variation norm. However, it turns out
that this effect of the disorder close to the boundary is very local, and is
smeared out by a smoothing whose scale is increasing at an arbitrary small
rate λ (L) . We give some more discussion about that later.

There are only a few results on RWREs which satisfy conditions of the
type above. The first one is a celebrated paper by Brimont and Kupiainen
[7] which proved, under similar conditions, that the RWRE is diffusive for
d ≥ 3. For similar processes in continuous space and time, diffusivity has
been proved by Sznitman and Zeitouni [18]. Theorem 20 was first proved
in [3]. In [1] the statement was proved under a weaker condition than the
isotropy condition. There, we assume only that µ is invariant under all d
reflections Oi : Rd → Rd mapping the unit vector ei to its inverse for each
i = 1, . . . , d.

Before starting with a discussion of the main technical steps, we give a
quick heuristic argument which shows why d ≥ 3 is important for the result.
This argument indicates that the disorder is disappearing in the L → ∞
limit for d ≥ 3, but not for d = 1, with d = 2 being the difficult border line
case.

Let ξx (ω) be the “quenched” expectation of the RWRE after one step.
“Quenched” refers to keeping ω fixed, i.e.

ξx (ω) :=
∑
e

ωx (e) e.

Evidently, from the basic assumptions, and the isotropy property, ξx has
the same distribution for all x, and Eξ = 0 and the covariance matrix is a
multiple of the identity:

cov (ξ) = δId,

Id being the d× d identity matrix. δ depends on the distribution of µ, but
as (2d)−1∑

e e = 0 and |ωx (e)− (2d)−1 | ≤ ε, one has δ ≤ ε2.

20



We now define

ξL (ω)
def
=

E0,ω (XτL)

L
,

and are interested in the quenched expectation of the exit position, scaled
down by L in order to have an object which can be compared with ξ. It
is plausible that for small ε, the leading contribution comes from a “kick”
given by the disorder just at one location of VL, and therefore

ξL (ω) ≈ 1

L

∑
y∈VL

gL (0, y) ξy, (4.2)

where gL (0, y) is the expected number of visits of y ∈ VL by an ordinary
random, before exiting VL. This is a special case of the perturbation ex-
pansion (4.7) which will be discussed in details below. By the isotropy:
EξL = 0, cov (ξL) = δLId.

How does δL behave for small ε? Using the above approximation, we get

covP (ξL) ≈
[
L−2

∑
x∈VL

gL (0, x)2
]
δId. (4.3)

The right hand side is easy to evaluate in all dimensions:
d = 1 : In that case, for x not being close to the boundary, gL (0, x) is of
order L, and therefore

covP (ξL) ≈ const×LδId.

It follows that the disorder parameter δ is multiplied by a (big) factor of
order L.
d = 2 : In this case, gL (0, x) ≈ logL for x = 0, and gL (0, x) ≈ 2

π log L
|x| ,

x ̸= 0, close to 0. At the boundary of VL, gL (0, x) behaves differently. One
can use an approximation of gL by the corresponding Green’s function for
the Brownian motion in the unit ball which is explicitly known, and some
computation give for large L (and small δ)

covP (ξL) ≈
2

π
δId.

Therefore, it looks that the covariances stay always of order δ. However,
one has to take into consideration that we have been very imprecise about
the limits L → ∞, δ ≈ 0, and the meaning of ≈ in (4.2). We will discuss
this issue more careful below. What is quite easy to prove, however, is that
for any fixed (large) L, one has

lim
δ→0

1

δ
covP (ξL) = c (L) Id,

where

lim
L→∞

c (L) =
2

π
.
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This is just a simple exercise I leave to the reader to check. We however
believe that for any fixed small enough δ, one has

lim
L→∞

covP (ξL) = 0,

but this is an extremely challenging open problem.
d ≥ 3 : In that case, gL (0, 0) stays of order 1 for L large, and gL (0, x) decays

like |x|−d+2 for x not close to the boundary of VL where it is smaller. Well
known approximations for gL (see for instance in [14]) show that

∑
x∈VL

gL (0, x)2 ≈ const×


L for d = 3

logL for d = 4
1 for d ≥ 5

,

so that

δL = const×


L−1δ for d = 3

(logL)L−2δ for d = 4
L−2δ for d ≥ 5

.

Then, it appears, that the disorder is indeed contracting strongly for d ≥ 3.
A moments reflection however reveals that the above rough computations
don’t tell us much about the problem we are really after. The above ap-
proximations give indeed the correct behavior for arbitrary (large) L when
δ → 0. This again is just a simple exercise. That’s however not what we are
after. We want δ > 0 fixed (small), and L → ∞. For that, the approxima-
tion (4.3) is totally useless, as the covariances of ξL for large L are certainly
not determined by “kicks” at one place.

The way out of this difficulty is to do a multiscale analysis which will be
explained in some details below.

4.1 Preliminaries

For a sub-Markov kernel p = (p(x, y))x,y∈Zd and a finite subset V of Zd, we
write

(1V p)(x, y)
def
=

{
p(x, y), x ∈ V,

0, x ̸∈ V,
, x, y ∈ Zd.

The Green’s function of p is defined by

g(p)(x, y)
def
=

∞∑
n=0

pn(x, y),

assuming that the sum converges. We will always be in situations where the
convergence will be evident through cutoffs outside a finite region. We write

gV (p)
def
= g(1V p).

22



Note that if ((Px)x∈Zd , (Xn)
∞
n=0) is a Markov chain with a transition

probabilities (p(x, y))x,y∈Zd , then for x ∈ Zd, y /∈ V ,

gV (p)(x, y) = Px(XτV = y),

where τV is the first exit time for the Markov chain from V. In particular, if
x /∈ V , then gV (p)(x, y) = δx,y.

Since g(q) = I + qg(q) = I + g(q)q, we have for sub-Markov kernels q1
and q2,

g(q2)(q1 − q2)g(q1) = g(q2)q1g(q1)− g(q2)q2g(q1)

= g(q2)(g(q1)− I)− (g(q2)− I)g(q1)

= g(q1)− g(q2),

and therefore
g(q1) = g(q2) + g(q2)(q1 − q2)g(q1). (4.4)

One can iterate this equation, by replacing g (q1) on the right hand side
again:

g(q1) = g(q2) + g(q2)(q1 − q2) [g(q2) + g(q2)(q1 − q2)g(q1)]

= g(q2) + g(q2)(q1 − q2)g(q2) + g(q2)(q1 − q2)g(q2)(q1 − q2)g(q1).

Repeating this procedure inductively, we arrive for any n ∈ N at

g(q1) = g (q2)+
n∑

k=1

[g(q2)(q1 − q2)]
k g (q2)+[g(q2)(q1 − q2)]

n+1 g (q1) . (4.5)

In case that the last summand on the right hand side converges to 0 as
n→ ∞, we get

g(q1) = g (q2) +

∞∑
k=1

[g(q2)(q1 − q2)]
k g (q2) .

We then have expressed g (q1) through g (q2) and the differences q1 − q2.
Specializing to q1 = 1V p1, q2 = 1V p2, we get for the exit distributions

π
(1)
V , π

(2)
V of p1, p2 from V :

π
(1)
V = π

(2)
V +

∞∑
k=1

[g(1V p2)(1V p1 − 1V p2)]
k π

(2)
V

provided that
lim
n→∞

[g(1V p2)(1V p1 − 1V p2)]
n = 0.

We will use these equations for various versions of the RWRE transitions p1,
and the ordinary random p2. However, the transition kernels will enter in a
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modified form which is suitable for the multiscale approach. Details will be
given in the next section.

Let us first look at the first iteration where p1 (x, x+ e) := ωx (e) and
p2 (x, x+ e) = (2d)−1 . If V ⊂ Zd is a finite set, ΠV is the exit distribution
of the RWRE and πV the one of the ordinary random walk, we get with
∆ (x, x+ e) = ωx (e)− (2d)−1 the perturbation expansion

ΠV = πV +

∞∑
k=1

[gV 1V ∆]k πV . (4.6)

On the right hand side, the disorder sits only in ∆. In case that the right
hand side is dominated by the k = 1 summand, we get

ΠV ≈ πV + gV 1V ∆πV . (4.7)

This immediately leads to (4.2). However, as remarked before, it is
clear that for VL, L → ∞, there is absolutely no reason to believe that
this is a good approximation, and in fact, the k ≥ 2 terms dominate the
series in (4.6). However, for fixed L and ε small, the k = 1 summand
dominates. The key idea is to choose L = L1 and ε such that (4.7) is a good
approximation. Then, one concludes that ΠVL1

− πVL1
is small, with high

probability, measured in an appropriate norm. Define now

πL (x, y)
def
= πVL(x) (x, y) ,

ΠL (x, y)
def
= ΠVL(x) (x, y) ,

which are our transition kernels on scale L, the first one coming from the
ordinary random walk, and the second one from RWRE1. As explained, the
difference

∆L (x, ·) def
= ΠL (x, ·)− πL (x, ·)

for L = L1 should be smaller than the one on level L = 1, but one should
keep in mind, that this has to be a probabilistic statement: There is a small
probability that ∆L is quite big. As a simple example, take a RWRE which
has one randomly distributed preferred direction:

ωx (e) =

{
1
2d + ε if e = Ex (ω)

1
2d − ε

2d−1 if e ̸= Ex (ω)
,

where {Ex}x∈Zd are independent uniformly chosen vectors of length 1 from

the lattice. Then, in the box VL1 , with probability (2d)−|VL1
|+1 , all Ex are

1I hope, the notations will not confuse the reader. πVL (x, ·) is the exit distribution for
a random walk, starting in x, with exits from the ball VL centered at 0. πL (x, ·) however
is the exit distribution from a ball VL (x) , centered at x, and for a walk starting in x.
Evidently, πL (x, y) = πVL (0, y − x) . There will however be modifications on later levels
where the distinction is useful.
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the same, and in that case, ∆L1 (0, ·) is large in total variation, unless ε
is really tiny. This event has however a probability which is exponentially
small in |VL1 | . By ergodicity, one has that almost surely there exist infinitely
many x ∈ Zd, where ∆L1 (x, ·) is large. The hope evidently is that these
“bad” points x are thinly placed.

Neglecting this important point for the moment, one chooses L2 > L1

and one expresses ΠVL2
−πVL2

through the perturbation expansion in terms
of ΠL1 (x, ·)−πL1 (x, ·) , which are, appropriately measured, smaller than the
original differences, and one chooses L2 in such a way that again the k = 1
term in the expansion dominates, and goes in this way, along a sequence of
scales L1 < L2 < L3 < · · · .

As remarked, we expect that the ∆Lk
are getting smaller with k in-

creasing, so that one can also choose the sequence {Lk} in such a way that
Lk+1/Lk is increasing. That will turn out to be an important technical

point. Writing ∆k (x.·)
def
= ΠLk

(x, ·) − πLk
(x, ·) , one gets in a somewhat

schematic way:

∆k+1 = gk,k+k∆kπk,k+1 + gk,k+1∆kgk,k+1∆kπk,k+1 + · · · , (4.8)

where gk,k+1 is the Green’s function on VLk+1
based on random walk steps

with transitions given by πLk
, and πk,k+1 is the exit distribution from VLk+1

coming from the same transitions on level k.
There are essentially two problems: The first one is that the above ex-

pression is not quite correct, as we can of course not express the exit distri-
bution from VLk+1

through the exit distributions from VLk
(x) , x ∈ VLk+1

,
because of problems near the boundary, where the exits from the smaller
balls would overshoot the boundary of the bigger box. This is an annoy-
ing technical but essentially minor problem which is solved by adapting the
transitions close to the boundary of VLk+1

.
A more serious problem is coming from the fact that, as explained above,

we cannot expect that differences of the exit distributions on large balls are
close to 0, when measured for instance in total variation. They can only
decrease if some smoothing is applied. In the induction step, one however
wants to apply inductively smallness properties of ∆k to prove that ∆k+1

is even smaller. In the perturbation expansion (4.8), ∆k enters through
∆kgk,k+1. gk,k+1 is however not really a good smoothing operator.

The next serious problem is coming from the fact that there are always
some x where ∆k (x, ·) is large.

We cannot give full details of the approach how to solve all these issues,
but let us give some indications of the key issues in the next sections.

4.2 The precise recursion scheme

The main scheme is an induction to transfer information about the exit dis-
tributions on one scale to information on a bigger scale, as shortly explained
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in the last section. We first fix the sequence of scales: Start with L0 > 1,

and for k ≥ 0 define Lk+1
def
= Lk(logLk)

3 inductively.
One of the key difficulties to follow the ideas explained in the last sec-

tion is that, as explained, the disorder can on big scales only decay if the
exit distributions are smoothed. This implies that one has to work in the
induction with smoothed transitions. We do a smoothing with averaging
the exits over the radius, and, in addition, convolute the exit distribution
with a smoothing kernel. Fix once for all a smooth probability density φ on
R with support in [1, 2] . Then we define

π̂L (x, y)
def
=

∫ 2

1
πℓL (x, y)φ (ℓ) dℓ,

Π̂L (x, y)
def
=

∫ 2

1
ΠℓL (x, y)φ (ℓ) dℓ.

In order not to overburden the notations, we use some abbreviations, and
write π̂k for π̂Lk

, and similarly Π̂k. Also, we write Vk instead of VLk
. π̂k, Π̂k

will be our basic transition kernels with which the path moves inside a
bigger box. The exit distributions without the averaging over the radius will
be written without the hat: πk,Πk. As remarked, there is the problem to
represent the exits from a bigger box VL′ , L′ > L through these transitions.
In order to do this, we need a shrinking of the radius of the jumps inside
the bigger box when the Markov chain approaches the boundary. We divide
Vk+1 into the following three regions:

A
(1)
k+1

def
=
{
x ∈ Vk+1 : d(x, ∂Vk+1) ≥ 4Lk = Lk+1/(logLk)

3
}
,

where d(x, ∂Vk+1) is the Euclidean distance of x from the boundary.

A
(2)
k+1

def
=
{
x ∈ Vk+1 : Lk+1/(logLk)

10 ≤ d(x, ∂Vk+1) < 4Lk+1/(logLk)
3
}
,

A
(3)
k+1

def
=
{
x ∈ Vk+1 : d(x, ∂Vk+1) < Lk+1/(logLk)

10
}
.

Then, we define for x ∈ Vk+1, a transition kernel

p̂k,k+1(x, ·)
def
=


π̂k(x, ·) for x ∈ A

(1)
k+1

π̂d(x,∂Vk+1)/4(x, ·) for x ∈ A
(2)
k+1

πVk+1∩V10Lk+1/(logLk)10 (x)
(x, ·) for x ∈ A

(3)
k+1

Similarly, define P̂k,k+1 for the RWRE. In addition, set

∆k,k+1
def
= P̂k,k+1 − p̂k,k+1

and gk,k+1 is the Green’s function of p̂k,k+1, with killing at the boundary of
Vk+1. In words: We start to shrink the radius for the transition as soon as

26



the chain is closer than 4Lk+1/ (logLk)
3 = 4Lk to the boundary of Vk+1.

The jump radius in this region is then always proportional to the distance
to the boundary. We however stop this shrinking if the chain is closer than
Lk+1/(logLk)

10 to the boundary, and when reaching such points, we just
jump with the non-smoothed transition kernel, also cut at the boundary
∂Vk+1. The motivation for stopping the shrinking is probably difficult to see
at the moment. Essentially, the point is that we don’t want to cope with
too many “bad” boxes, i.e. regions where ∆k,k+1 is larger than a certain
value which will be specified below. One should however remark that in

the last layer A
(3)
k+1, we can essentially not use any induction hypothesis for

∆k,k+1, as in this region, the exits are no longer described through exits from
centered balls. However, Lk+1/ (logLk)

10 is chosen because what happens
on this scale is essentially irrelevant for the induction hypothesis we are now
going to formulate.

Define εk
def
= (logLk)

−9 , and formulate the event

GOOD(1) (k)
def
=
{∥∥∥(Π̂k − π̂k

)
π̂k (0, ·)

∥∥∥
tv
< εk

}
.

Essentially, what we want to prove is the following implication: Assume that
L1 is large enough. Then for all k ∈ N

P
(
GOOD(1) (j)

)
≥ 1− exp

[
− (logLj)

2
]
, ∀j ≤ k (4.9)

=⇒ P
(
GOOD(1) (k + 1)

)
≥ 1− exp

[
− (logLk+1)

2
]
.

This would be sufficient to prove our main theorem. We would start with
taking L0 appropriately large, and then choose ε small enough such that
the claim is correct for k = 0. This can trivially be achieved. From that we
would conclude that the statement holds for all k. This is not quite what we
need in the theorem, as we use here a special smoothing kernel π̂Lk

, whereas
in the theorem, we allowed an arbitrary one. Also, in the expression Π̂k−π̂k,
there is an averaging over the radii L with Lk ≤ L ≤ 2Lk which is not present
in the statement of the theorem. These are a minor technical points which
can be taken care of at the end, and I am not going into details about it.2

There is a more serious problem, and in fact we have not been able to
prove the implication (4.9). The difficulty comes from the fact that the
Green’s function is not a good smoothing kernel, and so, it is difficult to
implement properties of (Π̂j − π̂j)π̂j into the perturbation expansion. It
however turns out, that only a relatively modest information on the non-
smoothed exits is needed to remedy the situation. The point is, as had been

2The averaging over the radius is done only to be able to prove good estimates for
the Green’s function coming from the transitions on scale Lk. These estimates require
“smooth” transition kernels. As we are not going to discuss these estimates at all, the
reader can as well “forget” this averaging over the radius.
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remarked before, the reason that ∥Πk − πk∥tv cannot go to 0 as k → ∞,
comes only from effects of the disorder near the boundary. Although this
effect does not disappear on large scales, it however is produced by essentially
independent small regions near the boundary, and therefore, by a kind of
law of large numbers, there should be good tail estimates. To formulate it,
fix a δ ∈ (0, 1) and define

GOOD(2) (δ, k)
def
=
{∥∥∥Π̂k (0, ·)− π̂k (0, ·)

∥∥∥
tv
< δ
}
,

and put

GOOD(δ, k)
def
= GOOD(1) (k) ∩GOOD(2) (δ, k)

Then the proper induction scheme is to prove that for properly chosen
L1, ε, δ, one has

P (GOOD(δ, j)) ≥ 1− exp
[
− (logLj)

2
]
, ∀j ≤ k (4.10)

=⇒ P (GOOD(δ, k + 1)) ≥ 1− exp
[
− (logLk+1)

2
]
.

There will still be a small technical modification needed, which we men-
tion a bit later.

4.3 The induction: Outline of the proof

We will give some details about the implication from the left hand side of
(4.10) to derive

P
(
GOOD(1) (k + 1)

)
≥ 1− 1

2
exp

[
− (logLk+1)

2
]
.

In particular, we will explain why in the induction hypothesis, one needs
the event GOOD(2) (δ, j) , j ≤ k. Of course, one then still has to prove

P
(
GOOD(2) (δ, k + 1)

)
≥ 1− 1

2
exp

[
− (logLk+1)

2
]
,

but that, we leave out, and give just some rough indications.
We apply the perturbation expansion with V = Vk+1, q1 := 1Vk+1

P̂k,k+1

and q2 := 1Vk+1
p̂k,k+1 leading to

Πk+1 (0, ·)− πk+1 (0, ·) =
∞∑
i=1

Xi (0, ·)

where
Xi (0, ·) := (gk,k+1∆k,k+1)

i πVk+1
(0, ·) , i ∈ N.

Here the kernel πVk+1
(x, y) is appearing, which, as the reader may remember,

is the exit distribution from Vk+1 (which is centered at 0), by a random walk,
starting in x and not 0.
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We may also add a convolution with π̂k+1 to get information about
∆k+1 :

∆0
k+1

def
= Πk+1π̂k+1 − πk+1π̂k+1 =

∞∑
i=1

X1π̂k+1.

In the end, we also have to perform the averaging over a radius L between
Lk+1 and 2Lk+1 in order to get ∆k+1, but this is trivial step after having
estimated ∆0

k+1.
As remarked before, the scheme is chosen in such a way that the X1-

term, i.e. the first term in the perturbation expansion dominates, and the
contribution of the other terms is in the end negligible. We in fact use
somewhat sophisticated estimates only in the summand with i = 1, and
estimate the others rather crudely.

We define GOOD(1) (k, x) (ω)
def
= GOOD(1) (k) (θxω) , where (θxω)y

def
=

ωy+x, and similarly the shifted events, GOOD(2) (δ, k, x) , GOOD(δ, k, x) .
The tasks one has to perform can be summarized roughly as follows. In

order to get estimates of P
(
GOOD(1) (k + 1)

)
one has to do:

1. Estimate ∥X1π̂k+1∥tv on the event

ALLGOOD :=
∩

x∈VLk+1

GOOD(δ, k, x) .

Actually one has also to consider GOOD(δ, j, x) for j ≤ k, for x near
the boundary of VLk+1

, but we leave out this technical nuisance.

2. Estimate ∥X1π̂k+1∥tv on the complement of this event, but some x ∈
VLk+1

where GOOD(δ, k, x) fails are concentrated in a subcube of
VLk+1

of side length of order Lk. We call this event ONEBAD .

3. Estimate the probability of the complement of ALLGOOD∪ONEBAD.

4. Estimate ∥Xiπ̂k+1∥tv for i ≥ 2 under the above events ALLGOOD
and ONEBAD . As we will have an overall estimate of Task 3, we
don’t have to care for any details on (ALLGOOD∪ONEBAD)c .

The reader should however keep in mind, that this solves only “half”
of the problem, as we still remain to have to obtain a similar estimate for

P
(
GOOD(2) (δ, k + 1)

)
.

We start writing

(X1π̂k+1) (0, z) =
∑

x∈Vk+1,y,y′∈Vk+1∪∂Vk+1

gk,k+1 (0, x)∆k,k+1 (x, y)

×
(
πVk+1

) (
y, y′

)
π̂k+1

(
y′, z

)
.
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In principle, we would only be interested in probabilistic properties of
X1 (0, ·) , but as explained before, we apply the smoothing kernel π̂k+1 in
order to obtain a quantity which in total variation is smaller than the one
on the previous level k. It should also be remarked that randomness in
the above expression is only in ∆k,k+1. In order to be able to apply the
inductive hypothesis, we observe that the exit distribution πVk+1

from Vk+1

can be written as
πVk+1

= p̂k,k+1πVk+1
,

simply because, by the strong Markov property, we can perform one step
with the coarse grained jump probabilities given by p̂k,k+1, and then exit
again according to the standard random walk. In order to apply the strong
Markov property, one only has to observe that p̂k,k+1 (x, ·) is the probabil-
ity distribution of the ordinary random walk, stopped at a (randomized)
stopping time.

Observe furthermore that∑
y

∆k,k+1(x, y) = 0,

and therefore also ∑
y

∆k,k+1p̂k,k+1(x, y) = 0.

Thus, we can write∑
x,y,y′

gk,k+1 (0, x)∆k,k+1 (x, y)
(
πVk+1

) (
y, y′

)
π̂k+1

(
y′, z

)
(4.11)

=
∑
x,y

gk,k+1 (0, x) ξ(x, y) [σ (y, z)− σ (x, z)] ,

with
ξ := ∆k,k+1p̂k,k+1, σ := πVk+1

π̂k+1.

On ∆k,k+1p̂k,k+1 (x, ·) we can apply the induction hypothesis.
There are some technical complications near the boundary which we

don’t want to discuss in details. Therefore we just look the case where

x ∈ A
(1)
k+1. We use two facts about ∆k,k+1p̂k,k+1 in this region:

• Up to a probability exp
[
− (logLk)

2
]
, ∥∆k,k+1p̂k,k+1 (x, ·)∥var is ≤ εk.

• If d (x, x′) ≥ 4Lk then ∆k,k+1p̂k,k+1 (x, ·) and ∆k,k+1p̂k,k+1 (x
′, ·) are

independent.

Essentially gk,k+1(x, y) should be like the Green’s function of the ORW
with a scaling, and the ORW Green’s function should be like the Brownian
motion Green’s function.
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We first have to discuss how gk,k+1(0, y) behaves. One should remember
that it is the Green’s function of a random walk in Vk+1 jumping with
smeared out exit probabilities from balls, centered at x, of radius between
Lk and 2Lk. It is therefore clear, that without the killing of the walk outside
VLk+1

, the Green’s function on all of Zd would be of order

L−d
k

(
1

1 + |y|L−1
k

)d−2

.

With the killing, the Green’s function is only smaller, but for y not close
to the boundary, the above form is essentially the right one. Most of the
y-summation comes from y’s which are at distance Lk+1 from the origin, so
we simplify things by replacing gk,k+1 by L−d

k (Lk+1/Lk)
−d+2. In particular,

it is not difficult to prove that∑
x∈VLk+1

gk,k+1 (0, x) = O
(
Ld
k+1L

−d
k (Lk+1/Lk)

−d+2
)
= O

(
(Lk+1/Lk)

2
)

= O
(
(logLk)

6
)
,

as we had chosen Lk+1 = Lk (logLk)
3 . Of course, for a correct argument,

one has to carefully check that the summation of y close to 0 does not spoil
things, but this is an easy technical point. So we don’t discuss it here.

Next, there is a very important observation which is the only one point
where the isoptropy assumptions really enters: In order to apply exponential
inequalities, we have to center the expression on the right hand side of (4.11)
and write it as∑

x,y

gk,k+1 (0, x) [ξ(x, y)− Eξ(x, y)] [σ (y, z)− σ (x, z)] (4.12)

+
∑
x,y

gk,k+1 (0, x)Eξ(x, y) [σ (y, z)− σ (x, z)] .

Of course, Eξ(x, y) = Eξ(0, y−x), and this inherits the invariance properties
from the original random environment: It is invariant under lattice isome-
tries. Together with the fact that the function y 7→ σ (y, z) is harmonic with
respect to the transition kernel π̂k, this leads to two cancellation which are
crucial, as we roughly explain:

Remember that we are finally interested in the total variation norm.
So, it is natural to investigate ∥σ (y, ·)− σ (x, ·)∥var for x, y which are at a
distance of order Lk, which is the relevant distance in the above expression.
As σ is produced via the exit distributions from Vk+1 convoluted with a
smoothing kernel at scale Lk+1, it is plausible, and easy to prove, that

∥σ (y, ·)− σ (x, ·)∥var ≤ C
Lk

Lk+1
= C

1

(logLk)
3 .
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A moment’s reflection reveals that this is far from sufficient. We cannot
expect that ∥Eξ(x, ·)∥var is better than (logLk)

−9 . This follows from the
induction hypothesis on level k. Using this estimate, we therefore would
get for the second summand in (4.12) an estimate of order (logLk)

−6 which
is far from the desired (logLk+1)

−9 . A finer argument uses the fact that
σ (x, ·) is essentially differentiable in x. Of course, one has to be careful here
as we are on a lattice. Anyway, one can easily prove that there is a function
Dσ (x, z) such that

∥σ (y, ·)− σ (x, ·)− ⟨y − x,Dσ (x, ·)⟩∥var ≤ C
1

(logLk)
−6 ,

for |x− y| of order Lk. As evidently,
∑

y (y − x)Eξ(x, y) = 0 from the sym-
metry properties, one would get with this better approximation an estimate
of order (logLk)

−9 for the second summand in (4.12). This is not quite
enough as one needs something like 1

2 (logLk+1)
−9, hoping of course that

one gets the same for the first summand. In fact, one needs to go to a sec-
ond derivative of σ (x, ·) in x, and use a second cancellation coming again
from the invariance property of Eξ(x, y) under discrete rotations and har-
monicity of σ in x. In fact, we proved in [3] (see also Proposition 3.1 of [1])
that∥∥∥∑

x,y
gk,k+1 (0, x)Eξ(x, y) [σ (y, ·)− σ (x, ·)]

∥∥∥
var

≤ C (logLk+1)
−9−η ,

for some C, η > 0. Probably, with some efforts, one could take η = 3.
From this one sees that the second summand in (4.12) is fine for the

desired bound, and therefore, the first remains.
For that, one has to use probabilistic arguments. In fact, we definitely

cannot assume that ∥ξ (x, ·)− Eξ(x, ·)∥var is of order (logLk)
−9 for all x.

There is the additional technical problem that ξ (x, ·) and ξ (x′, ·) are de-
pendent if |x− x′| are of order Lk. We divide Zd into disjoint hypercubes Cj

of side length 4Lk, j ∈ Zd. Ck is the set of such cubes which intersect Vk+1.
We call a cube Cj in Ck bad, if there exists x ∈ Cj ∩ VLk+1

such that

∥(∆kπ̂Lk
) (x, ·)∥var > (logLk)

−9 . (4.13)

As indicated before, we define ALLGOOD to be the event that there is no
bad cube in Ck. The event ONEBAD is the event that (4.13) occurs for some
x ∈ Vk+1, but the set of such x is confined to at most two adjacent cubes.
The event TWOBAD then defined as (ALLGOOD∪ONEBAD)c. All these
notions depend of course on k.

With these notions, our tasks 1-4 can now be attacked. We start with
the simplest one:
Task 3:
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TWOBAD ⊂
∪

x,x′∈Vk+1:|x−x′|>4Lk

[{
∥(∆kπ̂k) (x, ·)∥var > (logLk)

−9
}

∩
{∥∥(∆kπ̂k)

(
x′, ·
)∥∥

var
> (logLk)

−9
}]

.

If |x− x′| > 4Lk, then the events which are intersected are independent.
Moreover, each event has, by the induction hypothesis, probability at most
exp[− (logLk)

2]. Therefore

P (TWOBAD) ≤ C (Lk+1)
2 exp

[
−2 (logLk)

2
]
≪ exp

[
− (logLk+1)

2
]
.

So this is done.
Task 1:

We have to estimate

P (∥(Πk+1 − πk+1) π̂k+1∥tv ≥ εk+1, GOOD) , (4.14)

where d ≥ 3 is crucial.
We again consider the cubes Cj as above. Put

y(x, z)
def
=

∑
y∈Vk+1

gk,k+1(0, x){ξ(x, y)− Eξ(x, y)}{σ(y, z)− σ(x, z)},

so that

∥(Πk+1 − πk+1) π̂k+1 (0, ·)∥tv =
∑
z

∣∣∣∣∑x∈Vk+1

y(x, z)

∣∣∣∣ .
and we split the x-summation according to the cubes Cj : For any u ∈ C0

we consider the translates by multiples of 4Lk : u+ 4Lkn, n ∈Zd

∑
z

∣∣∣∣∑x∈A(1)
k+1

y (x, z)

∣∣∣∣ =∑
z

∣∣∣∣∑x∈A(1)
k+1

y (x, z)

∣∣∣∣
≤
∑
z

∑
u∈C0

∣∣∣∣∑n:u+4Lkn∈A
(1)
k+1

y (u+ 4Lkn, z)

∣∣∣∣ .
The summation over z is over at maximum const×Ld

k+1 points and the

summation over C0 is over const×Ld
k points. The variables inside the abso-

lute value on the right hand side are independent and have mean 0 and the
number of them is const× (Lk+1/Lk)

d . We have to know how big y (x, z)
can be, but it has to be remembered that we restrict for the moment to
be inside GOOD where ∥ξ(x, ·)− Eξ(x, ·)∥var is at most (logLk)

−9 . Then,
for individual z, σ (x, z) is of order L−d

k+1 but as we consider the differences
σ(y, z) − σ(x, z) with |y − x| ≈ Lk, we gain an additional factor Lk/Lk+1
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through a discrete differentiation. Therefore |σ(y, z)− σ(x, z)| is of order
LkL

−d−1
k+1 . Finally, gk,k+1(0, x) is of order L−d

k (Lk/Lk+1)
d−2. As remarked

before, this is not correct for x close to 0, but a more exact computation
reveals that this does not change anything. Therefore, we get

|y(x, z)| ≈ LkL
−d−1
k+1 L−d

k (Lk/Lk+1)
d−2 (logLk)

−9

= L−1
k L−2d+1

k+1 (logLk)
−9 .

The Hoeffding inequality states that for independent centered random vari-
ables Xi with |Xi| ≤ bi, one has

P
(∣∣∣∑n

i=1
Xi

∣∣∣ ≥ t
)
≤ 2 exp

[
− 2t2∑

i b
2
i

]
.

Applying this we get

P

(∑
z

∣∣∣∣∑x∈A(1)
k+1

y (x, z)

∣∣∣∣ ≥ t

)
≤ exp

[
−t2(logLk)

18

(
Lk+1

Lk

)d−2
]

= exp
[
−t2 (logLk)

3d+12
]
.

For t = (logLk+1)
−9 , we get a bound

exp
[
− const× (logLk)

3d+12 (logLk)
−18
]
≤ 1

10
exp

[
− (logLk+1)

2
]
,

provided Lk is large enough. This can always be achieved by choosing
already L0 large enough, and adapt the ε for the starting condition small
enough.

This settles Task 1, except that we have restricted the summation above

to x ∈ A
(1)
k+1, and there remain the other two regions. x ∈ A

(2)
k+1 can be

handled in essentially the same way, with some slight additional technical
considerations. Here, we still use exits from smaller balls, but in a scale be-
tween ≈ Lk and ≈ Lk+1/ (logLk)

10 . In order to do it, we need the induction

hypothesis for certain j < k. The summation over x ∈ A
(3)
k+1 has however be

handled differently, as we no longer can use fully the induction hypothesis.

The exits from x ∈ A
(3)
k+1 are performed via truncated smaller balls. What

helps is that the scale with which the random walk jumps when being in

A
(3)
k+1 is now of order Lk/ (logLk)

10 and some crude technical estimates give

then that the contribution of the summation over x ∈ A
(3)
k+1 to the estimate

of the expression in (4.12) is at most (logLk)
−10 ≪ (logLk+1)

−9 = εk+1.
This is technically slightly annoying, but not difficult to prove. We skip the
argument for that.
Task 2:
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Unfortunately, here, there is an additional difficulty here which we have
not addressed till now: If ∥(Π̂k−π̂k)π̂k (x, ·) ∥tv is really bad in one or several
points x in one of the cubes in Ck, then ∥X1π̂k+1(0, ·)∥var will typically not
be of order (logLk+1)

−9 , how good the situation in the other cubes may
be. The reader can easily construct an example which shows that this is the
case, even when the disorder outside the bad cube is as good as it can, i.e.
the disorder that has disappeared completely.

However, using the same type of arguments as above, one can prove that
if there is just one (or two adjacent) bad cubes, then ∥X1π̂k+1(0, ·)∥var ≤
(logLk)

−3 with high probability. More precisely, if ∥(Π̂k − π̂k)π̂k (x, ·) ∥tv is
bigger than εk for some x in one (or two adjacent) cubes, but at maximum

still ≤ (log)−α, with 0 ≤ α, then ∥X1π̂k+1(0, ·)∥var ≥ (logLk)
−min(9,α+3) has

again probability ≪ exp[− (logLk+1)
2]. I don’t want to go into the technical

details as they quite cumbersome, but essentially, the “badness” of the one
(or two adjacent) cubes is washed out by the increase of the scale with the
factor (logLk)

3 , where the contributions of the good cubes is estimated in
the same way as in the good situation.

Unfortunately, however, this requires a modification of the basic induc-
tion scheme (4.10) and one has to work with 3 levels of badness. Actually
we did it with 4, in order to keep more flexibility: ONEBAD is split up
according to supx ∥(Πk − πk) π̂k (x, ·)∥tv, and (4.10) has to be adapted ac-
cordingly. There is no point to discuss that in technical details here, as it
would take a couple of pages.

The reader should remember that up to now, we have only investigated
the level k + 1 based on the first term in the perturbation expansion, and
we clearly have to check that the others X2, X3, . . . are not spoilsports.
(Actually they are for d = 2). This is Task 4.
Task 4:

To see the problems which arise, we start by looking formally at the issue:

With g
def
= gk,k+1, π̂

def
= πVk+1

π̂k+1, for abbreviation, we get for m ≥ 2,

Xmπ̂k+1 = g (∆g)m−1∆π̂.

First, we should observe that

∆g (x, y) =
∑
u

∆(x, u) g (u, y)

=
∑
u

∆(x, u) [g (u, y)− g (x, y)]

(see the notation above (4.6)). This means that we “gain” a discrete deriva-
tive in the Green’s function. In fact, it is not difficult to see that for x in
the bulk and u at distance of order Lk from x, one gets∑

y∈Vk

|g (u, y)− g (x, y)| ≈ (logLk)
3 ,
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where, as remarked before,
∑

y g (x, y) ≈ (logLk)
6 . Forgetting for the mo-

ment the issue of the necessity of smoothing of the ∆, we expect a behavior
∥∆(x, ·)∥var ≤ (logLk)

−9 from the induction hypothesis. Therefore, in the
above expression for Xmπ̂k+1, we have the contribution of the first g, which,
as there is no gain from a derivative, is of (logLk)

6 , then m times the ∆,
giving (logLk)

−9m , and m−1 times the g with the discrete gradient, giving

(logLk)
(m−1)3 . So, in the end we have, without doing any type of probabilis-

tic estimates, however assuming that all cubes are good, that Xnπ̂k+1 should
in total variation behave like (logLk)

3 (logLk)
−6m . At least for m ≥ 3, this

would be totally fine as (logLk)
−n ≪ (logLk+1)

−9 , for n > 9.
There is however the problem that the induction hypothesis does not give

an estimate, which decays to 0, on ∥∆(x, ·)∥var but only after smoothing. g is
however not quite a good smoothing kernel, but we now observe, neglecting
for simplicity the killing at the boundary,

gk,k+1 = I + π̂kgk,k+1.

If the I would not be there, we would be fine, as we the kernel π̂k appears
which is smoothing ∆ to (logLk)

−9 , in good regions. Actually, this point is
the very reason that we are working with the π̂ as smoothing kernels. But
we have to take care of the I which does not smooth ∆ at all. For instance
with m = 2, one has

X2π̂k+1 = gk,k+1∆
2
k,k+1π̂kπVk+1

π̂k+1

+ gk,k+1(∆k,k+1π̂k)gk,k+1∆k,k+1π̂kπVk+1
π̂k+1.

In the second summand, one has twice smoothed ∆: ∆k,k+1π̂Lk
which are,

by the induction hypothesis, of order at most (logLk)
−9 , each, with high

probability. There is still some work to be done along the line as in the
X1-case, but essentially, this part behaves much better than the X2π̂k+1.

In the first summand, things are less pleasant. One should also remark
that, in the end, we have to estimateXmπ̂k+1 and we get there a summand of
the form gk,k+1∆

m
k,k+1π̂kπVk+1

π̂k+1, and we finally have to sum over m. It is
here that we need the second part of the induction assumptions, namely that
for some δ < 1, one has ∥∆k,k+1∥var ≤ δ, with high probability. Therefore,
up to small probability, one gets∥∥∆m

k,k+1π̂Lk
(x, ·)

∥∥
var

≤ δm−1 (logLk)
−9 ,

and this can be summed over m.
In this way, one can finally prove that the left hand side of (4.10) implies

P(GOOD(1) (k + 1)) ≥ 1 − 1
2 exp[− (logLk+1)

2], where, however, we have
neglected the additional complication coming from the different levels of
“badness”, as we remarked above.
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There now remains the task to prove that the left hand side of (4.10)
also implies

P
(
GOOD(2) (δ, k + 1)

)
≥ 1− 1

2
exp

[
− (logLk)

2
]
.

This however cannot be achieved through the shrinking scheme where
we stop shrinking the balls on the lower scale at Lk+1/ (logLk)

10 . We need
here a scheme where the balls from which we exit shrink proportional to
the distance from the boundary of Vk+1. Essentially, that does not change
the above procedure, except that on the small balls close to the boundary
of Vk+1, say of size Lj , we of course only have estimates by εj , so there is
no hope that we get an estimate for the total variation ∥Π̂k+1 − π̂k+1∥tv
which shrinks to 0. But that is no problem, as we know that there cannot
be such an estimate. Therefore, in the case, that for all these exits in the
smaller scale, we could use the bounds εj , then some easy modification of
the scheme discussed would to the job. In fact, the corresponding Tasks 1,
2, and 4 are a straightforward rerun of the ones before.

However, there is the problem there can be no good estimate of

P ((ALLGOOD∪ONEBAD)c)

in the modified setting, as this probability simply goes to 1 as k → ∞. In
fact, the reason we chose Lk+1/ (logLk)

10 as the smallest radius for the exits
was done exactly to avoid that.

That
P ((ALLGOOD∪ONEBAD)c) → 1

as k → ∞, when we shrink the exits to scale of order 1 near the boundary of
Vk+1 can easily be seen. Whatever the size of VL is, there is a nonvanishing
probability that ∆, on this scale, is bad in total variation, say bigger than
a constant. In our new scheme, we therefore have, with probability close
to 1, many such non-intersecting cubes of a fixed size L to consider, and
therefore, there are always many, for large k, which are bad.

In order to cope with this problem, one needs an additional probabilistic
argument which shows that with large probability these bad regions, al-
though being many, are thinly spread, and so they don’t influence the total
variation of the exit distribution from Vk+1 too much, at least of one is only
interested to get a total variation estimate by some (small) δ.
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