Angle operators and phase operators associated with 1D-harmonic oscillator

Fumio Hiroshima
Kyushu University, Fukuoka Japan

A quantum two-day meeting with green talks, green FUNCTIONS, AND THRESHOLD BEHAVIOR Hobro, Denmark

April 28, 2022
(1) Time operator

- Domain
- Three time operators of 1D harmonic oscillator
(2) Angle operator
- Ultra-weak time operators
- Hierarchy of time operators
- Continuous limit
- Matrix representations for $\alpha \in(0,1)$
(3) Galapon operator=Positive operator-valued measure
(4) Phase operator
- Angle operator and phase operator
- Shift operator
- Galapon operators and shift operators
(5) Concluding remarks

This is the joint work with Noriaki Teranishi

- Time Operators of Harmonic Oscillators and Their Representations I (arXiv:2201.06352v4)
-Time Operators of Harmonic Oscillators and Their Representations II (in preparation)

Advertisement

Ground state of quantum field models (Springer) 2019

Feynman-Kac type theorem and Gibbs measures on path space vol.I and II (J.Lorinczi+V.Betz, De Gruyter) 2020

J. von Neumann I, II, III, (in Japanese) 2021

CCR

Let $[A, B]$ be the commutator of linear operators A and B defined by

$$
[A, B]=A B-B A
$$

If a sa operator A in Hilbert space \mathcal{H} admits a symmetric operator B satisfying CCR:

$$
[A, B]=-i \mathbb{1}
$$

on a non-zero subspace $D_{A, B} \subset D(A B) \cap D(B A)$, then B is called a time operator of A. We shall show several examples of time operators.

Examples: Let $\hat{h}_{0}=\frac{1}{2} p^{2} . \operatorname{Spec}\left(\hat{h}_{0}\right)=[0, \infty)$. Let

$$
\hat{T}_{A B}=\frac{1}{2}\left(p^{-1} q+q p^{-1}\right) .
$$

$\hat{T}_{A B}$ is called the Aharonov-Bohm operator or time of arrival operator. It holds that

$$
\left[\hat{h}_{0}, \hat{T}_{A B}\right]=-i \mathbb{1} .
$$

Question: What is a time operator of $\hat{h}=\frac{1}{2}\left(p^{2}+q^{2}\right), \operatorname{Spec}(\hat{h})=\left\{n+\frac{1}{2}\right\}$

Domains

-When considering time operators of sa operator possessing purely discrete spectrum, we should take care of domains.
-Let $H e_{n}=E_{n} e_{n}$ and $[H, T]=-i \mathbb{1 1}$. We apply e_{n} on both sides to result

$$
\left(H-E_{n}\right) T e_{n}=-i e_{n}
$$

and hence

$$
0=\left(e_{n},\left(H-E_{n}\right) T e_{n}\right)=-i .
$$

This is a contradiction. Thus we can see (1) or (2):
(1) $e_{n} \notin D(T)$
(2) $e_{n} \in D(T)$ but $T e_{n} \notin D(H)$

Three time operators of 1D harmonic oscillator

-1D harmonic oscillator $\hat{h}_{\varepsilon}=\frac{1}{2}\left(p^{2}+\varepsilon q^{2}\right) \quad 0<\varepsilon \leq 1$.

1. Angle operator:

$$
\hat{T}_{\varepsilon}=\frac{1}{2} \frac{1}{\sqrt{\varepsilon}}\left(\arctan \left(\sqrt{\varepsilon} p^{-1} q\right)+\arctan \left(\sqrt{\varepsilon} q p^{-1}\right)\right) .
$$

The existence of a dense domain of \hat{T}_{ε} is not trivial.
2. Galapon operator=POVM: Let P be a positive operator valued measure on a measurable space (Ω, \mathcal{B}) associated to \hat{h}_{ε}. We define

$$
T_{G}=\int_{\Omega} t d P_{t}=i \sum_{n=0}^{\infty} \sum_{m \neq n} \frac{\left(e_{m}, \cdot\right)}{m-n} e_{n} .
$$

Then T_{G} becomes a time operator of \hat{h}_{ε}.
3. Phase operator: Let a and a^{*} be the annihilation operator and the creation operator in $L^{2}(\mathbb{R})$. A phase operator is formally described as

$$
\hat{\phi}=\frac{i}{2}\left(\log a-\log a^{*}\right)
$$

It is hard to define $\log a^{*}$ as an operator.

References

[1] Y. Aharonov and D. Bohm. Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev., 122:1649-1658, 1961.
[2] A. Arai. Generalized weak Weyl relation and decay of quantum dynamics. Rev. Math. Phys., 17:1071-1109, 2005.
[3] A. Arai. Necessary and sufficient conditions for a Hamiltonian with discrete eigenvalues to have time operators. Lett. Math. Phys., 87:67-80, 2009.
[4] A. Arai. Inequivalent Representations of Canonical Commutation and Anti-Commutation Relations. Springer, 2020.
[5] A. Arai and F. Hiroshima. Ultra-weak time operators of Schrōdinger operators. Ann. Henri Poincare, 18:2995-3033, 2017.
[6] A. Arai and Y. Matsuzawa. Time operators of a Hamiltonian with purely discrete spectrum. Rev. Math. Phys., 20:951-978, 2008.
[7] M. Bauer. A time operator in quantum mechanics. Ann. Phys., 150:1-21, 1983.
[8] C.M. Bender and G.V. Dunne. Polynomials and operator orderings. J. Math. and Phys., 29:17271731, 1988.
[9] C.M. Bender and G.V. Dunne. Exact solutions tp operator differential equations. Phys. Rev. D, 40:2739-2742, 1989.
[10] C.M. Bender and G.V. Dunne. Interaction of operator differential equations. Phys. Rev.D, 40:3504-3511, 1989.
[11] C.M. Bender and M. Gianfreda. Matrix representation of the time operator. J. Math. Phys, 53:062102, 2012.
[12] C.M. Bender, R.L. Mead, and S.S. Pnsky. Continous hahn polynomials and the heisenberg algebra. J. Math. and Phys., 28:509-513, 1987.
[13] F. Cannata and L. Ferrari. Canonical conjugate momentum of discrete label operators in quantum mechanics i.formalizm. Found. Phys. Lett., 4:557-568, 1991.
[14] F. Cannata and L. Ferrari. Canonical conjugate momentum of discrete label operators in quantum mechanics ii:formalizm. Found. Phys. Lett., 4:569-579, 1991.
[15] P. Carruthers and M.M. Niet. Phase and angle variable in quantum mechanics. Rev. Mod. Phys., 40:411-440, 1968
[16] G. Dorfmeister and J. Dorfmeister. Classification of certain pair of operators (p,q) satisfying [p,q]=-iid. J. Funct. Anal., 57:301-328, 1984.
[17] B. Fuglede. On the relation $P Q-Q P=-i I$. Math. Scand., 20:79-88, 1967.
[18] E.A. Galapon. Pauli's theorem and quantum mechanical pairs: the consistency of bounded, selfadjoint time operator canonically conjugate to a hamiltonian with non-empty point spectrum. Proc. R. Soc. Lond. A, 458:451-472, 2002.
[19] E.A. Galapon. Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians. Proc. R. Soc. Lond. A, 458:2761-2689, 2002.
[20] E.A. Galapon, R.F. Caballar, and R. Bahague. Confined quantum time of arrivals. Phys. Reu. Lett., 93:180406, 2004.
[21] E.A. Galapon, R.F. Caballar, and R. Bahague. Confined quantum time of arrivals for the vanishing potential. Phys. Rev. A, 72:062107, 2005.
[22] T. Goto, K. Yamaguchi, and N. Sudo. On the time opertor in quantum mechanics. Prog. Theor. Phys., 66:1525-1538, 1981.
[23] T. Goto, K. Yamaguchi, and N. Sudo. On the time opertor in quantum mechanics ii. Prog. Theor. Phys., 66:1915-1925., 1981.
[24] G.H. Hardy, J.L. Littlewood, and G. P'olya. Inequalities. Cambridge University Press, 1934.
[25] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43:172-198, 1927.
[26] F. Hiroshima and N. Teranishi. Time operators of harmonic oscillators and their representations II. in preparation.
[27] B. Leaf. Canonical operators for the simple harmonic oscillator. J. Math. and Phys., 10:19801987, 1969.
[28] L. Mandelstam and Ig. Tamm. The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys., 1945.
[29] M. Miyamoto. A generalized Weyl relation approach to the time operator and its connection to the survival probability. J. Math. Phys., 42:1038-1052, 2001.
[30] G. Muga, R.S. Mayato, and I. Egusquiza. Time in quantum mechanics-vol. 1. Springer, 2007.
[31] W. Pauli. General Principles of Quantum Mechanics. Springer, 1980.
[32] D.T. Pegg and S.M. Barnett. Phase of properties the quantized single-mode electromagnetic field. Phys. Rev. A, 39:1665-1675, 1989.
[33] C.R. Putnam. Commutation Properties of Hilbert Space Operators and Related Topics. Springer, 1967.
[34] H. Ralph, Lewis, E. Lawrence, Walter, and D. Harris, Joseph. Quantum Action-Angle Variables for the Harmonic Oscillator. Phys. Reu. Lett., 77:5157-5159, 1996.
[35] H. Ralph, Lewis, E. Lawrence, Walter, and D. Harris, Joseph. A Reply to the Comment by T. B. Smith and John A. Vaccaro. Phys. Rev. Lett., 80:2746-2746, 1998.
[36] M. Razavy. Quantum-machinanical time operator. Amer. J. Phys., 35:955-960, 1967.
[37] D. Rosenbaum. Super hilbert space and the quantum- mechanical time operators. J. Math. Phys., 10:1027-1144, 1969.
[38] K. Schmüdgen. On the heisenberg commutation relaton. i. J. Funct. Anal., 50:8-49, 1983.
[39] K. Schmüdgen. On the heisenberg commutation relaton. ii. Publ RIMS Kyoto, (19):601-671, 1983.
[40] T.B. Smith and John.A. Vaccaro. Comment on "Quantum Action-Angle Variables for the Harmonic Oscillator". Phys. Rev. Lett., 80:2745-2745, 1998.
[41] L. Susskind and J. Glogower. Quantum mechanical phase and time operator. Physics, 1:49-61, 1964.
[42] N. Teranishi. A note on time operators. Lett. Math. Phys., 106:1259-1263, 2016.
[43] J. von Neumann. Die Eindeutigkeit der Schrōdingerschen Operatoren. Math.Ann., 104:570-578, 1931.

Heuristic derivation of angle operator \hat{T}_{ε}

- Take momentum representation. $F p F^{-1}=M_{k}$ and $F q F^{-1}=+i \frac{d}{d k}$. Instead of notations $L^{2}\left(\mathbb{R}_{k}\right), M_{k}$ and $-i \frac{d}{d k}$ we denote them as $L^{2}\left(\mathbb{R}_{x}\right), q$ and p, respectively. Thus $[p, q]=-i l l$ also holds in the momentum representation.
- \hat{h}_{ε} is transformed to

$$
h_{\varepsilon}=\frac{1}{2}\left(\varepsilon p^{2}+q^{2}\right) .
$$

We shall construct symmetric operator T_{ε} such that

$$
\left[h_{\varepsilon}, T_{\varepsilon}\right]=+i \mathbb{1}
$$

in the momentum representation.
-Let $t=q^{-1} p$ with $D(t)=\left\{f \in D(p) \mid p f \in D\left(q^{-1}\right)\right\}$.
$\rightarrow\left[h_{\varepsilon}, t\right]=i\left(\mathbb{1}+\varepsilon t^{2}\right) \Longrightarrow\left[h_{\varepsilon}, f(t)\right]=i\left(\mathbb{1}+\varepsilon t^{2}\right) f^{\prime}(t) \Longrightarrow f^{\prime}(t)=\left(\mathbb{1}+\varepsilon t^{2}\right)^{-1}$

$$
f(t)=\frac{1}{\sqrt{\varepsilon}} \arctan \sqrt{\varepsilon} t
$$

Symmetrizing f, we see that

$$
T_{\varepsilon}=\frac{1}{2} \frac{1}{\sqrt{\varepsilon}}\left(\arctan \sqrt{\varepsilon} t+\arctan \sqrt{\varepsilon} t^{*}\right)
$$

may be a time operator.

We define T_{ε} by using the Taylor expansion:

$$
\arctan x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \quad|x|<1
$$

Note also that $\arctan x$ can be extended to a function on \mathbb{C} as

$$
\arctan z=\frac{i}{2} \log \frac{i+z}{i-z} \quad z \in \mathbb{C} \backslash\{i\},
$$

which is a multi-valued function. Since t is unbounded and non-symmetric, it is not trivial to define

$$
\arctan \sqrt{\varepsilon} t^{\#}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left(\sqrt{\varepsilon} t^{\#}\right)^{2 n+1}
$$

If $\sqrt{\varepsilon} t f=i f$, then $f \notin D(\arctan \sqrt{\varepsilon} t)$.

- It is not trivial to specify a dense domain D such that

$$
D \subset \bigcap_{n=0}^{\infty}\left(D\left(t^{n}\right) \cap D\left(\left(t^{*}\right)^{n}\right)\right)
$$

Ultra-weak time operators

- $L_{0}^{2}=\left\{f \in L^{2}(\mathbb{R}) \mid f(-x)=f(x)\right\}$
$-L_{1}^{2}=\left\{f \in L^{2}(\mathbb{R}) \mid f(-x)=-f(x)\right\}$.
$h_{\text {even }}=h_{\varepsilon} \Gamma_{L_{0}^{2}}$ and $h_{\text {odd }}=h_{\varepsilon} \Gamma_{L_{1}^{2}}$. Henceforth we have

$$
h_{\varepsilon}=h_{\text {even }} \oplus h_{\text {odd }} .
$$

Let \mathfrak{L}_{0} and \mathfrak{L}_{1} be

$$
\begin{aligned}
& \mathfrak{L}_{0}=\operatorname{LH}\left\{e^{-\alpha x^{2} /(2 \sqrt{\varepsilon})} \mid \alpha \in(0,1)\right\} \subset L_{0}^{2}, \\
& \mathfrak{L}_{1}=\operatorname{LH}\left\{x e^{-\alpha x^{2} /(2 \sqrt{\varepsilon})} \mid \alpha \in(0,1)\right\} \subset L_{1}^{2} .
\end{aligned}
$$

Then $\mathfrak{L}_{0}+\mathfrak{L}_{1}$ is dense in $L^{2}(\mathbb{R})$, and $\mathfrak{L}_{0} \perp \mathfrak{L}_{1}$.
$-S_{\varepsilon}^{\#}=S_{\varepsilon}, S_{\varepsilon}^{*}, t^{\#}=t, t^{*}$.
-te $e^{-\alpha x^{2} / 2}=q^{-1} p e^{-\alpha x^{2} / 2}=i \alpha e^{-\alpha x^{2} / 2}$
$\rightarrow t^{*} x e^{-\alpha x^{2} / 2}=p q^{-1} x e^{-\alpha x^{2} / 2}=i \alpha x e^{-\alpha x^{2} / 2}$

$$
\begin{aligned}
& S_{\varepsilon}^{\#}=\frac{1}{\sqrt{\varepsilon}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left(\sqrt{\varepsilon} t^{\#}\right)^{2 n+1}, \\
& D\left(S_{\varepsilon}^{\#}\right)=\left\{f \in \bigcap_{n=0}^{\infty} D\left(t^{\not \#^{2 n+1}}\right) \left\lvert\, \lim _{N \rightarrow \infty} \sum_{n=0}^{N} \frac{(-1)^{n}}{2 n+1}(\sqrt{\varepsilon} t)^{2 n+1} f\right. \text { exists }\right\} .
\end{aligned}
$$

Formally we write $S_{\varepsilon}^{\#}$ as

$$
S_{\varepsilon}^{\#}=\frac{1}{\sqrt{\varepsilon}} \arctan \sqrt{\varepsilon} t^{\#}
$$

Theorem (FH+Teranishi)

(1) $D\left(S_{\varepsilon}^{\#}\right) \supset \mathfrak{L}_{\#}$.
(2) $i(0, \infty) \subset \operatorname{Spec}_{p}\left(t^{\#}\right)$ and $i(0, \infty) \subset \operatorname{Spec}_{p}\left(S_{\varepsilon}^{\#}\right)$.
(3) $\left[h_{\varepsilon}, S_{\varepsilon}^{\#}\right]=i \mathbb{1 1}$ on $\mathfrak{L}_{\#}$.

Hierarchy of time operators (abstract theory)

- We expect $T_{\varepsilon}=\frac{1}{2}\left(S_{\varepsilon}+S_{\varepsilon}^{*}\right)$ is a time operator of $h_{\varepsilon} . S_{\varepsilon}$ is well defined on \mathfrak{L}_{0} and S_{ε}^{*} on \mathfrak{L}_{1}, but

$$
\mathfrak{L}_{0} \cap \mathfrak{L}_{1}=\{0\} .
$$

Instead of considering time operators, we define an ultra-weak time operator of h_{ε}.

- Hierarchy of classes of time operators.
$\{$ ultra-st-time $\} \subset\{$ st-time $\} \subset\{$ time $\} \subset\{$ weak-time $\} \subset\{$ ultra-weak-time $\}$.
-Let A be a sa operator on \mathcal{H} and D_{1} and D_{2} be non-zero subspaces of \mathcal{H}. A sesqui-linear form

$$
\mathfrak{t}_{B}: D_{1} \times D_{2} \rightarrow \mathbb{C}, \quad D_{1} \times D_{2} \ni(\phi, \psi) \mapsto \mathfrak{t}_{B}[\phi, \psi] \in \mathbb{C}
$$

with domain $D\left(\mathfrak{t}_{B}\right)=D_{1} \times D_{2}$ is called an ultra-weak time operatorof A if $\exists D, \exists E \subset D_{1} \cap D_{2}$ such that the following (1)-(3) hold: (1) $E \subset D(A) \cap D$.
(2) $\mathfrak{t}_{B}[\phi, \psi]^{*}=\mathfrak{t}_{B}[\psi, \phi]$ for all $\phi, \psi \in D$. (3) $A E \subset D_{1}$ and, for all $\psi, \phi \in E$,

$$
\mathfrak{t}_{B}[A \phi, \psi]-\mathfrak{t}_{B}[A \psi, \phi]^{*}=-i(\phi, \psi) .
$$

\rightarrow We define

$$
\begin{array}{ll}
\mathfrak{t}_{0}[\psi, \phi]=\frac{1}{2}\left(\left(\psi, S_{\varepsilon} \phi\right)+\left(S_{\varepsilon} \psi, \phi\right)\right), & \psi, \phi \in \mathfrak{L}_{0}, \\
\mathfrak{t}_{1}[\psi, \phi]=\frac{1}{2}\left(\left(\psi, S_{\varepsilon}^{*} \phi\right)+\left(S_{\varepsilon}^{*} \psi, \phi\right)\right), & \psi, \phi \in \mathfrak{L}_{1} .
\end{array}
$$

$\mathfrak{t}_{\varepsilon}$ is defined by

$$
\mathfrak{t}_{\varepsilon}=\mathfrak{t}_{0} \oplus \mathfrak{t}_{1}
$$

I.e., $\mathfrak{t}_{\varepsilon}\left[\psi_{0} \oplus \psi_{1}, \phi_{0} \oplus \phi_{1}\right]=\mathfrak{t}_{0}\left[\psi_{0}, \phi_{0}\right]+\mathfrak{t}_{1}\left[\psi_{1}, \phi_{1}\right]$.

Theorem (FH+Teranishi)

$\mathfrak{t}_{\varepsilon}$ is an ultra-weak time operator of h_{ε} under the decomposition $h_{\varepsilon}=h_{\text {even }} \oplus h_{\text {odd }}$.

Continuous limit

The Aharonov-Bohm operator $T_{A B}=\frac{1}{2}\left(t+t^{*}\right)$ can be extended to the ultra-weak time operator. Let

$$
\begin{aligned}
& \mathfrak{t}_{A B, 0}[\psi, \phi]=\frac{1}{2}\{(\psi, t \phi)+(t \psi, \phi)\} \quad \psi, \phi \in \mathfrak{M}_{0}, \\
& \mathfrak{t}_{A B, 1}[\psi, \phi]=\frac{1}{2}\left\{\left(\psi, t^{*} \phi\right)+\left(t^{*} \psi, \phi\right)\right\} \quad \psi, \phi \in \mathfrak{M}_{1} .
\end{aligned}
$$

Define $\mathfrak{t}_{A B}$ by

$$
\mathfrak{t}_{A B}=\mathfrak{t}_{A B, 0} \oplus \mathfrak{t}_{A B, 1} .
$$

We can see that $\mathfrak{t}_{A B}$ is an ultra-weak time operator of $\frac{1}{2} q^{2}$.

Theorem (FH+Teranishi)

$$
\lim _{\varepsilon \rightarrow 0} \mathfrak{t}_{\varepsilon}[\psi, \phi]=\mathfrak{t}_{A B}[\psi, \phi] .
$$

Matrix representations for $\alpha \in(0,1)$

We set $\varepsilon=1$, and $\mathfrak{t}_{\varepsilon=1}=\mathfrak{t}, S_{\varepsilon=1}^{\#}=S^{\#}$ and $h_{\varepsilon=1}=h$. We also set

$$
\xi_{\alpha}=e^{-\alpha x^{2} / 2} .
$$

- We want to see the function $K_{a b}$ such that

$$
\mathfrak{t}\left[x^{a} \xi_{\alpha}, x^{b} \xi_{\alpha}\right]=\left(\xi_{\alpha}, K_{a b} \xi_{\alpha}\right), \quad a, b \in \mathbb{N} \cup\{0\} .
$$

Let us set

$$
t_{\alpha}=2\left(\frac{x^{2}}{2}-\frac{d}{d \alpha}\right) .
$$

Theorem (FH+Teranishi)

Suppose that $\alpha \in(0,1)$. Let ρ be a polynomial. Then

$$
\begin{aligned}
S \rho\left(x^{2}\right) \xi_{\alpha} & =\frac{i}{2}\left(\rho\left(t_{\alpha}\right) \log \frac{1+\alpha}{1-\alpha}\right) \xi_{\alpha}, \\
S^{*} \rho\left(x^{2}\right) x \xi_{\alpha} & =\frac{i}{2}\left(\rho\left(t_{\alpha}\right) \log \frac{1+\alpha}{1-\alpha}\right) x \xi_{\alpha} .
\end{aligned}
$$

Together with them we have the matrix representation of \mathfrak{t}. Let

$$
\mathfrak{K}_{\alpha}=\operatorname{LH}\left\{x^{n} e^{-\alpha x^{2} / 2} \mid n \in \mathbb{N} \cup\{0\}\right\} .
$$

We can see $\mathfrak{t}\left[f_{a}, f_{b}\right]$ for $f_{a}, f_{b} \in \mathfrak{K}_{\alpha}$ in the corollary below.

Corollary

Fix $\alpha \in(0,1)$. Let $f_{a}=x^{a} \xi_{\alpha}$ and $f_{b}=x^{b} \xi_{\alpha}$. Then $\mathfrak{t}\left[f_{a}, f_{b}\right]$ is given by

$$
\begin{cases}-\frac{i}{4} \\
-\frac{i}{4}\left(\xi_{\alpha},\left\{\xi_{\alpha},\left\{\begin{array}{ll}
\left.\left.\left(t_{\alpha}^{n} x^{2 m}-x^{2 n} t_{\alpha}^{m}\right) \log \frac{1+\alpha}{1-\alpha}\right\} \xi_{\alpha}\right) & a=2 n, b=2 m \\
\left.\left.\left(t_{\alpha}^{n} x^{2 m+2}-x^{2 n+2} t_{\alpha}^{m}\right) \log \frac{1+\alpha}{1-\alpha}\right\} \xi_{\alpha}\right) & a=2 n+1, b=2 m+1 \\
0 & \text { otherwise } .
\end{array} .\right.\right.\right.\end{cases}
$$

We discuss the case of $\alpha=1$. Let

$$
\mathfrak{K}=\operatorname{LH}\left\{x^{n} e^{-x^{2} / 2} \mid n \in \mathbb{N} \cup\{0\}\right\} .
$$

Theorem (FH+Teranishi)

 $\mathfrak{K} \cap D\left(S^{\#}\right)=\{0\}$. In particular, let e_{n} be an ev of h, then $e_{n} \notin D\left(S^{\#}\right)$.
Galapon operator

$$
T_{G} f=i \sum_{n} \sum_{m \neq n} \frac{\left(e_{m}, f\right)}{m-n} e_{n}
$$

We define the unbounded operator P_{0} by

$$
P_{0}=\lim _{N \rightarrow \infty} \frac{1}{2 \pi}\left(\sum_{n=0}^{N} e_{n}, \cdot\right) \sum_{n=0}^{N} e_{n} .
$$

Proposition

$\left[h, T_{G}\right]=-i\left(2 \pi P_{0}-\mathbb{1}\right)$ and $\left[h, T_{G}\right]=i \mathbb{1}$ on $\operatorname{LH}\left\{e_{n}-e_{m} \mid n \neq m\right\}$.
We can also define the sesqui-linear form associated with T_{G} by

$$
\mathfrak{t}_{G}[\phi, \psi]=\frac{1}{2}\left\{\left(\phi, T_{G} \psi\right)+\left(T_{G} \phi, \psi\right)\right\} .
$$

Theorem (angle operator \neq Galapon operator)
$\mathfrak{t} \neq \mathfrak{t}_{G}$.
Proof: \mathfrak{t}_{G} is bounded, but \mathfrak{t} is unbounded.

Phase operator

$a=p+i q$ and $a^{*}=p-i q$. Then $\left[a, a^{*}\right]=\mathbb{1}$. Let $N=a^{*} a$. Phase operator $\hat{\phi}$ satisfies $[N, \hat{\phi}]=i 11$. Heuristically we have

$$
[N, f(a)]=-f^{\prime}(a) a
$$

Setting $-f^{\prime}(a) a=+i \mathbb{1}$, we implicitly yield that $f(a)=-i \log a$.
-We formally have

$$
\hat{\phi}=-\frac{i}{2}\left(\log a-\log a^{*}\right) .
$$

-Let A be a linear operator in $L^{2}(\mathbb{R})$. We define $\log A$ by

$$
\log A=-\sum_{n=1}^{\infty} \frac{1}{n}(\mathbb{1}-A)^{n}
$$

with the domain

$$
D(\log A)=\left\{f \in L^{2}(\mathbb{R}) \left\lvert\, \sum_{n=1}^{\infty} \frac{1}{n}(\mathbb{1}-A)^{n} f\right. \text { strongly converges }\right\} .
$$

- $L^{2}(\mathbb{R})=\oplus_{n=0}^{\infty} L_{n}$, where

$$
L_{n}=\operatorname{LH}\left\{\frac{1}{\sqrt{n!}}\left(\prod^{n} a^{*}\right) \Omega\right\}
$$

where $\Omega(x)=\pi^{-1 / 4} e^{-x^{2} / 2}$ and $\left\|\frac{1}{\sqrt{n!}}\left(\prod^{n} a^{*}\right) \Omega\right\|=1$.

$$
a^{*} L_{n} \rightarrow L_{n+1}, \quad a: L_{n} \rightarrow L_{n-1}
$$

Let $\mathfrak{D}_{\text {finite }}$ be the finite particle subspace defined by

$$
\mathfrak{D}_{\text {finite }}=\mathrm{LH}\left\{\left.f=\sum_{n=0}^{\infty} \frac{c_{n}}{\sqrt{n!}} \prod^{n} a^{*} \Omega \right\rvert\, n=0 \text { for } n \geq \exists m\right\} .
$$

Lemma

$\mathfrak{D}_{\text {finite }} \subset D(\log a)$ and $\mathfrak{D}_{\text {finite }} \cap D\left(\log a^{*}\right)=\{0\}$. In particular $D(\hat{\phi}) \cap \mathfrak{D}_{\text {finite }}=\{0\}$.
From Lemma we can see that $\hat{\phi}$ is not well defined on $\mathfrak{D}_{\text {finite }}$. This fact is fatal to consider $\hat{\phi}$.

Angle operator and phase operator

- Another candidate of a time operator is formally given by

$$
\hat{\phi}_{*}=-\frac{i}{2}\left(\log a^{*-1} a+\log a a^{*-1}\right) .
$$

Note that formally $\left\{\frac{i}{2} \log a^{*-1} a\right\}^{*}=\frac{i}{2} \log a a^{*-1}$.
-Let

$$
\mathfrak{D}=\left\{\left.f=\sum_{n=0}^{\infty} \frac{c_{n}}{\sqrt{n!}} \prod^{n} a^{*} \Omega \right\rvert\, c_{0}=0, \sum_{n=1}^{\infty} \frac{c_{n}^{2}}{n}<\infty\right\} .
$$

The operator a^{*-1} is defined by

$$
a^{*-1} f=\sum_{n=1}^{\infty} \frac{c_{n}}{\sqrt{n!}} \prod^{n-1} a^{*} \Omega, \quad D\left(a^{*-1}\right)=\mathfrak{D} .
$$

Let $\left\{e_{n}\right\}_{n}$ be the set of normalized eigenvectors of N which satisfies that $N e_{n}=n e_{n} . U: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is a unitary operator defined by

$$
U e_{n}=(n!)^{-1 / 2} a^{* n} \Omega, \quad n \geq 0
$$

We define subspaces of $L^{2}(\mathbb{R})$ by

$$
\begin{aligned}
\mathfrak{L}_{0} & =\operatorname{LH}\left\{e^{-\alpha x^{2} / 2} \mid \alpha \in(0,1)\right\}, \\
\mathfrak{L}_{1} & =\operatorname{LH}\left\{x e^{-\alpha x^{2} / 2} \mid \alpha \in(0,1)\right\} .
\end{aligned}
$$

Lemma (FH+Teranishi)

$$
\begin{array}{ll}
U \arctan \left(q^{-1} p\right) U^{*}=-\frac{i}{2} \log \left(a^{*-1} a\right) & \text { on } U \mathfrak{L}_{0} \\
U \arctan \left(p q^{-1}\right) U^{*}=-\frac{i}{2} \log \left(a a^{*-1}\right) & \text { on } U \mathfrak{L}_{1}
\end{array}
$$

Let

$$
S=-\frac{i}{2} \log \left(a^{*-1} a\right), \quad S^{*}=-\frac{i}{2} \log \left(a a^{*-1}\right) .
$$

We define

$$
\begin{array}{ll}
\mathfrak{t}_{0}[\phi, \psi]=\frac{1}{2}\{(S \phi, \psi)+(\phi, S \psi)\}, & \phi, \psi \in U \mathfrak{L}_{0}, \\
\mathfrak{t}_{1}[\phi, \psi]=\frac{1}{2}\left\{\left(S^{*} \phi, \psi\right)+\left(\psi, S^{*} \phi\right)\right\}, & \phi, \psi \in U \mathfrak{L}_{1} .
\end{array}
$$

We define

$$
\mathfrak{t}_{*}=\mathfrak{t}_{0} \oplus \mathfrak{t}_{1} .
$$

Moreover the ultra-weak time operator associated with angle operator $T=\frac{1}{2}\left(\arctan t+\arctan t^{*}\right)$ is denoted by t .

Theorem (FH+Teranishi)

\mathfrak{t} and \mathfrak{t}_{*} are unitary equivalent, i.e., $\mathfrak{t}[\phi, \psi]=\mathfrak{t}_{*}[U \phi, U \psi]$.

Shift operator

$-L^{2}(\mathbb{R}) \cong \ell^{2}\left(\mathbb{N}^{\times}\right)$.
Let L be the left-shift and the adjoint L^{*} the right-shift. Let $f \in \ell^{2}\left(\mathbb{N}^{\times}\right)$. It is defined by

$$
\begin{aligned}
(L f)^{(n)} & = \begin{cases}f^{(n-1)} & n \geq 1 \\
0 & n=0\end{cases} \\
\left(L^{*} f\right)^{(n)} & =f^{(n+1)}
\end{aligned}
$$

We can see that

$$
L L^{*}=\mathbb{1}, \quad L^{*} L=\mathbb{1}-P_{\Omega},
$$

where P_{Ω} is the projection to 1D subspace spanned by Ω. In terms of the shift $L^{\#}$, we obtain that

$$
\begin{aligned}
& a=L \sqrt{N}=\sqrt{N+\mathbb{1}} L \\
& a^{*}=L^{*} \sqrt{N+\mathbb{1}}=\sqrt{N} L^{*} .
\end{aligned}
$$

Note that $N=a^{*} a$ and $N+\mathbb{1}=a a^{*}$.

Galapon operators and shift operators

Let

$$
L_{G}=i\left\{\log (\mathbb{1}-L)-\log \left(\mathbb{1}-L^{*}\right)\right\} .
$$

Lemma

(1) $\mathfrak{D}_{\text {finite }} \subset D\left(\log \left(\mathbb{1}-L^{\#}\right)\right)$. In particular L_{G} is well defined on $\mathfrak{D}_{\text {finite }}$.
(2) $\left[N, L_{G}\right]=-i \mathbb{1}$ on $\operatorname{Ran}\left((\mathbb{1}-L) L^{*}\right) \cap D\left(N L_{G}\right) \cap D\left(L_{G} N\right)$.

Let us remind you that

$$
T_{G} f=i \sum_{n=0}^{\infty}\left(\sum_{m \neq n} \frac{\left(e_{m}, f\right)}{n-m} e_{n}\right) .
$$

T_{G} is bounded and $\left[N, T_{G}\right]=i \mathbb{1}$ on $\operatorname{LH}\left\{e_{n}-e_{m} \mid n \neq m\right\}$.
$-\operatorname{LH}\left\{e_{n}-e_{m}\right\} \subseteq \operatorname{Ran}\left((\mathbb{1}-L) L^{*}\right) \cap D\left(N L_{G}\right) \cap D\left(L_{G} N\right)$.
Theorem (FH+Teranishi)
$T_{G}=L_{G}$ on $D(\log (\mathbb{1}-L)) \cap D\left(\log \left(\mathbb{1}-L^{*}\right)\right)$. In particular L_{G} has the bounded operator extension.

Concluding remarks

In physics it is formally treated that $[h, A]=+i \mathbb{1}$ for

$$
A=T, T_{G}, \hat{\phi},
$$

where $T=\frac{1}{2}\left(\arctan q^{-1} p+\arctan p q^{-1}\right), T_{G}=i \sum_{n} \sum_{m \neq n} \frac{\left(e_{m}, \cdot\right)}{m-n} e_{n}$ $\hat{\phi}=\frac{i}{2}\left(\log a-\log a^{*}\right)$. We made relationships among them clear.
(1) $T \neq T_{G}$.
(2) If T is defined in the sense of sesqui-linear form \mathfrak{t}, then the domain of \mathfrak{t} is dense and $\mathfrak{t}[h \phi, \psi]-\mathfrak{t}[h \psi, \phi]^{*}=-i(\phi, \psi)$ hols on a dense subspace.
(3) The continuous limit of T_{ε} is $T_{A B}=\frac{1}{2}\left(q^{-1} p+p q^{-1}\right)$.
(4a) A matrix representation of \mathfrak{t} is given for $\alpha \in(0,1)$.
(4b) It can be extended to $i \alpha \in \mathbb{H} \backslash\{i\}$.
(5) $D(\hat{\phi}) \cap \mathfrak{D}_{\text {finite }}=\{0\}$.
(6) $T \cong \frac{i}{2}\left(\log a^{*-1} a+\log a a^{*-1}\right)$.
(7) $T_{G}=i\left\{\log (\mathbb{1}-L)-\log \left(\mathbb{1}-L^{*}\right)\right\}$ holds true for shift operator L.
(8) We can construct time operators of the form $c\left(\log f(L)-\log f\left(L^{*}\right)\right)$.

